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Abstract. The identification of an optimal dividing surface that is free of recrossings is the most important
requirement for transition state theory to be exact. This task is particularly difficult in the presence of non-Markovian
friction, i.e., colored noise forces. In this paper, we report a novel geometric method that circumvents the recrossing
problem and is able to (i) identify reactive trajectories exactly, and (ii) compute reaction rates in a system with two
degrees of freedom driven by non-Markovian friction. The extension of our method to higher dimensional systems
is also discussed.
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1. Introduction

Transition State Theory (TST) plays a central role in rate
theory [1–3]. It provides a simple answer to two of the
most fundamental questions in chemistry: it predicts if
a trajectory will be reactive or not, and what the system
reaction rate is.

The rate-limiting step in many reactions is the cross-
ing of an energy barrier between reactant and prod-
uct regions in phase space. Close to the saddle point
at the top of the barrier an intermediate state, the
transition state or activated complex, is formed. TST
has been applied in many fields outside chemistry,
such as celestial mechanics, and atomic and solid state
physics.

The fundamental problem that TST faces is the
identification of a dividing surface (DS) that separates
reactants from products and is crossed only once by
all reactive trajectories. For isolated systems, such a
recrossing-free DS is provided by the Normally Hyper-
bolic Invariant Manifold (NHIM) [4–8]. However, the
NHIM does not provide accurate results in condensed
phase reactions, where the interaction with the environ-
ment cannot be neglected, and alternative procedures
must be used. Variational TST is one of them [9]. It

computes a DS by minimizing the number of recross-
ings.

In recent years, a strictly recrossing-free DS has
been identified [10–14]. This DS moves randomly in
the vicinity of the saddle point, attached to the so-
called transition state (TS) trajectory. The TS trajectory,
which was originally defined for parabolic barriers with
white noise [10], has been recently extended to colored
noise [15,16], laser-driven systems [17] and anharmonic
barriers [18–21].

The study of realistic systems usually requires time-
consuming simulations because of the large number
of surrounding particles that form the bath. The gen-
eralized Langevin equation (GLE) provides a simpli-
fied framework to adequately account for the interac-
tion with the enviroment. This interaction is substituted
by a time-correlated (colored) noise force, to account
for the bath correlations, and a non-Markovian friction
term. In the case of a harmonic barrier, the well-known
Grote–Hynes theory (GHT) [22] provides the reaction
rate. In the presence of anharmonicities, GHT no longer
holds, and new approaches must be found. In this paper,
we propose to use the stable manifold that separates
reactive from non-reactive trajectories. We demonstrate
that this manifold is easily defined in phase space and
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works well even in multi-dimensional systems. Our the-
ory also accounts for the anharmonicities using a per-
turbative scheme and it has been successfully applied to
compute the reaction rates of LiNC/LiCN isomerizing
system [15].

2. The fundamental rate formula

In this section, we summarize the fundamentals of reac-
tion rate theory that will be used in the rest of the
paper. For a more detailed discussion, see for example
[23–25].

As mentioned above, TST is based on the assumption
that there is a recrossing-free DS between reactants and
products that is crossed once and only once by every
reactive trajectory. In a two-dimensional reactive sys-
tem with configuration space coordinates x1 and x2, the
DS can be chosen by specifying the value x1 = x‡1 of
the reaction coordinate x1. Reactant and product regions
are defined by x1 < x‡1 and x1 > x‡1 respectively. TST
is based on the flux-over-population expression for the
reaction rate

k = J
N
, (1)

where N is the average population of the reactant region
and J is the reactive flux across the DS. The DS in phase
space can be parameterized by the velocity v1 in the
reactive mode, and the bath mode coordinates x2 and v2.
(We ignore, for now, the auxiliary coordinates that are
required to model correlated noise.) The reactive flux is
then given by

J = ⟨v1 ��(v1, x2, v2)⟩�,IC , (2)

where the average extends over all realizations � of
the noise and over a stationary-state ensemble of initial
conditions (IC) on the DS. The characteristic function
�� takes a value equal to 1 if the trajectory given by
the IC (x‡1 , v1, x2, v2) is reactive if driven by the noise
sequence � and 0 otherwise. It ensures that the trajecto-
ries included in the flux computation actually contribute
to the rate. Its accurate computation poses the main
dynamical challenge to a rate calculation, and there-
fore the principal building block of the theory developed
here is the expression (eq. 35) for the characteristic
function.

If the DS is recrossing-free, as postulated by TST, the
reactive trajectories are precisely those that cross the DS
from the reactant to the product side, i.e., with positive
velocity

�TST(v1) =
{

1 ∶ v1 > 0,
0 ∶ v1 < 0. (3)

This assumption yields a reactive flux JTST and a rate
constant

kTST = JTST

N
, (4)

that always overestimates the true rate unless the DS is
strictly recrossing-free. The extent to which a given sys-
tem violates the no-recrossing assumption is measured
by the transmission factor

� = k
kTST

≤ 1. (5)

The dynamical theory of the characteristic function
that is to be developed below does not require any
assumptions about the distribution of initial conditions;
it applies equally to equilibrium and non-equilibrium
systems. In practice, however, unless the friction caused
by the heat bath is very weak, the stationary-state dis-
tribution of IC near the barrier is given by a Boltzmann
equilibrium distribution. Deviations from this assump-
tion give rise to the depopulation factor that is the crucial
ingredient of the Mel’nikov–Meshkov [26] and PGH
[27] turnover theories. A nontrivial depopulation factor
can be combined with the present results if necessary,
but for simplicity we will here assume an equilibrium
distribution. The average over IC is then performed over
an ensemble with probability density

p(x1, v1, x2, v2)=�(x1 − x‡1) exp

(

−
mv2

1

2kBT

)

p⟂(x2, v2),

(6)

where m is the particle mass and p⟂ is a Boltzmann
distribution

p⟂(x2, v2) =
1
Z
exp

(

−
mv2

2∕2 + U(x‡1 , x2)
kBT

)

(7)

for the transverse coordinates and velocities, with the
potential of mean force U. The factor Z in eq. (7) is the
partition function of the bath mode that ensures

∫ dx2 dv2 p⟂(x
‡
1 , x2, v2) = 1. (8)

Under the assumption of an equilibrium distribution, the
TST flux can be evaluated analytically to give
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JTST =
√

kBT

2� m
. (9)

The accurate evaluation of the true flux J will be the
main subject of this paper. To provide a benchmark
for the perturbative calculations, we have computed
the exact transmission factor numerically. To this end,
initial conditions were randomly sampled from the equi-
librium distribution (eq. 6), classical trajectories were
numerically propagated using the algorithm described
in Refs [28,29] until their energy was far enough below
the saddle point (−7kBT in our case) so that they can
be considered thermalized, and the necessary averages
computed from the results.

3. Model: The generalized Langevin equation

The system that we have chosen to study is formed by
a particle of mass m that interacts with its surroundings
and moves under the action of the potential

U(x1, x2) = −
1
2

m!2
1x2

1 +
1
2

m!2
2x2

2 + mcx2
1x2

2 (10)

shown in figure 1. This potential has been studied by
some of us in the presence of white noise [12, 13, 21].
The particle is said to react when it moves from one
side of the barrier to the other, and x1 changes its
sign.

The GLE provides a simplified approach to describe
the dynamics of a system that interacts with an isotropic
external heat bath wich presents some correlations as

mẍ = −∇xU(x) − m ∫

t

−∞
(t − t′) ẋ(t′) dt′ + m R�(t),

(11)

Figure 1. Potential energy surface given by eq. (10) for m
= 1,!1 = 1,!2 = 3 and c=− 1. The dividing surface (dashed
yellow line), defined by x‡1 = 0, crosses the saddle point (yel-
low dot) that sits at the barrier top (0, 0), and partitions the
system into a reactant (left) and a product (right) region.

where x = (x1, x2)T is a coordinate vector and −∇xU(x)
is the force produced by the potential (eq. 10). It can be
split into harmonic and anharmonic terms as

−
)U(x1, x2)

)xn
= (−1)n−1m!2

nxn + mfn(x1, x2), (12)

with n = 1, 2. The components of the Gaussian noise
force R�(t) have zero mean and are related to the friction
kernel (t) by the fluctuation-dissipation theorem

⟨

R�,n(0)R�,n′(t)
⟩

� =
kBT (t)

m
�n,n′ , (13)

where ⟨...⟩� denotes an average over the different
realizations � of the noise.

3.1 The extended phase space

The friction kernel of many realistic chemical
reactions [30] has an exponential decay

(t) =
0

�
e−t∕� , (14)

with a characteristic correlation time � and a damping
strength 0. Then, as for a variety of other friction kernels
with multi-exponential behaviour, the GLE (eq. 11) can
be simplified to a system of differential equations on a
finite dimensional extended phase space [15,16,31–34]
with two auxiliary coordinates

�1(t) = −∫

t

−∞
(t − t′) ẋ1(t′) dt′, (15a)

�2(t) = −∫

t

−∞
(t − t′) ẋ2(t′) dt′. (15b)

The lower limit−∞ in the integrals (eq. 15) implies that
the system was prepared in the remote past. It is cru-
cial in order to make all of the six-dimensional phase
space (x1, v1, �1, x2, v2, �2) dynamically accessible [35].
In thermal equlibrium, �1 and �2 follow a Gaussian
distribution with zero mean and correlations equal to

⟨

�2
n

⟩

=
kBT0

m�
, ⟨�1�2⟩ = 0, (16)

which are not correlated with the position x, nor with
the velocity v [33]. In this extended phase space,
the GLE can be replaced by a new set of Equations
of Motion (EoM) driven by a white noise source
�� = (��,1, ��,2)T :

ẋn = vn,

v̇n = −
1
m

)U(x1, x2)
)xn

+ �n, (17)
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�̇n = −
0

�
vn −

1
�
�n + ��,n(t),

with n= 1 for the reaction coordinate and n= 2 for
the transverse dof. The components of the white
noise source, ��(t), fulfill the fluctuation-dissipation
theorem

⟨

��,n(t)��,n′(s)
⟩

� =
2kBT 0

m�2
�nn′ �(t − s). (18)

3.2 Transition state trajectory and relative coordinates

The EoM (eq. 17) of a system with a harmonic barrier
(f = 0) and without noise (��(t) = 0) can be rewritten
as

u̇n =Mnun, (19)

where

Mn =
⎛

⎜

⎜

⎝

0 1 0
(−1)n−1!2

n 0 1
0 − 0

�
− 1
�

⎞

⎟

⎟

⎠

, and un =

(

xn
vn
�n

)

.

(20)

Each of the two coefficient matrices M1 and M2 has
in general three different eigenvalues, at least one of
them, �n,0, real and the other two, �n,1 and �n,2, negative
real or complex conjugate with negative real parts. The
eigenvalues are the zeros of the characteristic polyno-
mials of the matrices Mn and obey the Vieta relations
[15, 16]

�n,0 + �n,1 + �n,2 = −
1
�
, (21a)

�n,0�n,1 + �n,0�n,2 + �n,1�n,2 =
0

�
+ (−1)n!2

n, (21b)

�n,0�n,1�n,2 = (−1)n−1
!2

n

�
. (21c)

The corresponding eigenvectors are ũn,j =
(

1, �n,j, �2
n,j

+ (−1)n!2
n

)T
.

The eigenvalue �1,0 associated with the reactive dof
has an eigenvector that describes an unstable direction
in phase space as 0 < �1,0 < !2

1. The remaining eigen-
values are negative or have negative real parts and are
therefore associated with eigenvectors that correspond
to stable directions in phase space. Since �2,0 is negative
real, a trajectory approaches the origin monotonically
in the direction of ũ2,0 as t → ∞. In the remaining
stable directions, this approach to the origin can simi-
larly take place monotonically, or in a non-monotonic

manner, depending on whether the eigenvalues are real
or complex.

In order to solve eq. (19), we now introduce the diag-
onal coordinates, zn,i, by decomposing the phase space
vectors

un = zn,0ũn,0 + zn,1ũn,1 + zn,2ũn,2 (22)

in the basis of eigenvectors. The components of the
transformation (22) read

xn = zn,0 + zn,1 + zn,2,
vn = �n,0zn,0 + �n,1zn,1 + �n,2zn,2,

�n =
[

�2
n,0 + (−1)n!2

n

]

zn,0 +
[

�2
n,1 + (−1)n!2

n

]

zn,1

+
[

�2
n,2 + (−1)n!2

n

]

zn,2, (23)

and its inverse is

(�n,j − �n,i)(�n,j − �n,k) zn,j

=
[

�n,i�n,k + (−1)n−1!2
n

]

xn − (�n,i + �n,k)vn + �n,
(24)

where i, j, k = 0, 1, 2 are distinct. The EoM (eq. 17) in
the diagonal coordinates are

żn,j = �n,jzn,j + Kn,j fn(x1, x2) +
1

Fn,j
��,n(t), (25)

with the abbreviations

Fn,j = (�n,j − �n,i)(�n,j − �n,k), Kn,j = −
�n,i + �n,k

Fn,j
. (26)

In order to solve eq. (25), we make a time-dependent
shift to the relative coordinates

Δzn,j(t) = zn,j(t) − z‡n,j(t), (27)

where z‡n,j are the six components of the TS trajectory,

z‡n,i(t) =
1

Fn,i
S[�n,i, �n,�; t], (28)

with S[�, g; t] ≡ St′[�, g; t] defined as

St′[�, g; t] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−∫

∞

t
g(t′) e�(t−t′) dt′ ∶ Re� > 0,

+∫

t

−∞
g(t′) e�(t−t′) dt′ ∶ Re� < 0.

(29)
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The functions z‡n,i(t) solve the EoM (eq. 25) in the har-
monic limit, f = 0. They are random variables with zero
mean whose correlation functions can be deduced from
eq. (28):

⟨z‡1,0(t)z
‡
1,0(0)⟩� =

kBT0

m�2�1,0F2
1,0

e−�1,0t , (30a)

⟨z‡1,0(t)z
‡
1,i(0)⟩� = ⟨z‡1,k(t)z

‡
2,l(0)⟩� = 0, (30b)

⟨z‡1,i(t)z
‡
1,0(0)⟩� =

2kBT0

(

e−�1,0t − e�1,it
)

m�2(�1,0 + �1,i)F1,0F1,i
, (30c)

⟨z‡1,i(t)z
‡
1,j(0)⟩� = −

2kBT0

m�2(�1,i + �1,j)F1,iF1,j
e�1,it , (30d)

⟨z‡2,k(t)z
‡
2,l(0)⟩� = −

2kBT0

m�2(�2,j + �2,k)F2,jF2,k
e�2,j t ,

(30e)

where i, j = 1, 2, k, l = 0, 1, 2, and t ≥ 0.
In relative coordinates (eq. 27), the EoM (eq. 25)

reduce to

Δżn,j = �n,j Δzn,j + Kn,j fn(x1, x2), (31)

where

x1 = x‡1 + Δz1,0 + Δz1,1 + Δz1,2, (32a)

x2 = x‡2 + Δz2,0 + Δz2,1 + Δz2,2. (32b)

Eq. (31) are coupled only through the force anharmonic-
ities fn, which makes them amenable to a perturbative
treatment in the case of weak anharmonicity.

The solution of the EoM (eq. 31) is given by

Δz1,0(t)= C0 e�1,0t + K1,0 S[�1,0, f1(x1, x2); t], (33a)

Δzn,j(t)= Δzn,j(0) e�n,j t+Kn,j S̄[�n,j, fn(x1, x2); t], (33b)

where n = 1, 2, j = 0, 1, 2 and (n, j) ≠ (1, 0). The
functional S̄ is defined as

S̄t′[�, g; t] = ∫

t

0
g(t′)e�(t−t′) dt′. (34)

It satisfies the differential equation

d
dt

S̄[�, g; t] = � S̄[�, g; t] + g(t)

and the IC S̄[�, g; 0] = 0. All trajectories with C0 ≠ 0
will fall in the reactant or product well after suficiently
long time, depending on the sign of C0. The critical
situation where C0 = 0 defines the stable manifold
which encodes all the necessary information to deter-
mine whether a given trajectory is reactive or not, as
described in the section below.

4. The geometric separatrix for reactivity

By setting C0 = 0 in eq. (33a), we obtain a trajectory
that lies on the stable manifold. This object is five-
dimensional, like the DS defined by x1 = 0. The inter-
section of the previous structures in a six-dimensional
phase space is a four-dimensional surface that par-
titions the DS into reactive and nonreactive regions.
It can be described as the critical velocity function
V ‡ = V ‡(�1, x2, v2, �2), which can be used to circunvent
the problem on the existence of a recrossing-free DS
as all reactive trajectories have initial velocities larger
than the critical one, V ‡. The characteristic function of
reactive trajectories can therefore be expressed exactly
as

��(v1, �1, x2, v2, �2) =
{

1 ∶ v1 > V ‡(�1, x2, v2, �2),
0 ∶ v1 < V ‡(�1, x2, v2, �2).

(35)

Since the critical velocity, or the stable manifold that
gives rise to it, identifies reactive trajectories accurately,
it can be used to circunvent the problematic search of a
recrossing-free DS.

4.1 The critical velocity

To find the critical velocity of the trajectories lying at
the DS, we have to solve eq. (33) with the IC x1(0) = 0,
�1(0), x2(0), v2(0) and �2(0). As in Refs [20, 21], the
IC z1,1(0) and z1,2(0) of the stable coordinates in the
reactive dof must be adapted in each step of perturbation
theory in order to fulfill the conditions

x1(0) = 0 = z1,0(0) + z1,1(0) + z1,2(0), (36a)

�1(0) =
(

�2
1,0 − !

2
1

)

z1,0(0) +
(

�2
1,1 − !

2
1

)

z1,1(0)

+
(

�2
1,2 − !

2
1

)

z1,2(0), (36b)

which are satisfied by

z1,j(0) =
�1(0) +

(

�2
1,k − �

2
1,0

)

z1,0(0)

�2
1,j − �

2
1,k

, (37)

with k = 1, 2 for j = 2, 1. The unstable coordinate z1,0(0)
and the critical velocity

V ‡ = v1(0) = �1,0z1,0(0) + �1,1z1,1(0) + �1,2z1,2(0)

= 1
K1,0

z1,0(0) +
1

�1,1 + �1,2
�1(0) (38)
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are determined such that the trajectory lies on the stable
manifold. The IC for the transversal dof are fixed by
imposing the conditions

x2(0) = z2,0(0) + z2,1(0) + z2,2(0), (39a)

v2(0) = �2,0z2,0(0) + �2,1z2,1(0) + �2,2z2,2(0), (39b)

�2(0) =
(

�2
2,0 + !

2
2

)

z2,0(0) +
(

�2
2,1 + !

2
2

)

z2,1(0)

+
(

�2
2,2 + !

2
2

)

z2,2(0). (39c)

It follows that

z2,i(0) =
�2,j�2,k − !2

2

F2,i
x2(0) + K2,iv2(0) +

�2(0)
F2,i

, (40)

where i ≠ j ≠ k.
For anharmonic barriers, we expand the TS trajectory

in powers of the coupling constant c around its harmonic
approximation:

X1(t) = x‡1(t) + Δz1,1(0)e�1,1t + Δz1,2(0)e�1,2t , (41a)

X2(t) = x‡2(t) + Δz2,0(0)e�2,0t + Δz2,1(0)e�2,1t

+ Δz2,2(0)e�2,2t . (41b)

The coordinates

x1(t) = X1(t) + cΔx(1)1 (t) + c2Δx(2)1 (t) +… , (42a)

x2(t) = X2(t) + cΔx(1)2 (t) + c2Δx(2)2 (t) +… (42b)

and the critical velocity (eq. 38)

V ‡ = V ‡(0) + cV ‡(1) + c2V ‡(2) +… (43)

can similarly be expanded.
Substituting the perturbations (eq. 42) into the anhar-

monic terms of the force appearing in eq. (12), we
get

f1 = −2cx1x2
2 = cf (1)1 + c2f (2)1 +… , (44a)

f2 = −2cx2
1x2 = cf (1)2 + c2f (2)2 +… , (44b)

where the perturbation terms of order 1 and 2 are given
by

f (1)j = −2XiX
2
j (45)

f (2)j = −2
(

X2
i Δx(j)j + 2X1X2Δx(1)i

)

, (46)

with i, j = 1, 2, i ≠ j, and

Δx(k)n = Δz(k)n,0 + Δz(k)n,1 + Δz(k)n,2. (47)

Using eq. (33), it can easily be demonstrated that

Δz(k)1,0(t) = K1,0S[�1,0, f
(k)

1 ; t], (48a)

Δz(k)n,j (t) = Δz(k)n,j (0)e
�n,j t + Kn,jS̄[�n,j, f

(k)
n ; t] (48b)

for (n, j) ≠ (1, 0). Therefore, the computation of Δx(k)n
requires the previous computation of only the lower
order perturbative corrections.

From eqs (37–38) one obtains

V ‡(k) = 1
K1,0

Δz(k)1,0(0) (49)

and then Δz(k)1,j (0) = K1,jV
‡(k), for j = 1, 2. These equa-

tions allow one to determine the corrections to the crit-
ical velocity from eq. (48a), and then the corrections to
the IC Δz(k)1,j (0). Since the IC x2(0), v2(0), �2(0) in the
transverse dof are all fixed as arguments to the function
V ‡(�1, x2, v2, �2) that must be computed, it follows from
eq. (40) that Δz(k)2,j (0) = 0 for j = 0, 1, 2 and k ≥ 1.

We are now in a position to obtain explicit analyti-
cal expressions for the perturbative corrections to the
critical velocity. The lowest order term is given by the
harmonic approximation to eq. (38)

V ‡(0) = 1
K1,0

z‡1,0(0) +
1

�1,1 + �1,2
�1(0), (50)

while the first correction is obtained by setting k = 1 in
eq. (49) as

V ‡(1) = 1
K1,0

Δz(1)1,0(0) = −2S
[

�1,0,X1X2
2 ; 0

]

. (51)

The computation of the second order perturbative
term of the critical velocity is more cumbersome as the
first order corrections to the stable coordinates given
by

Δz(1)1,i (t) = Δz(1)1,i (0)e
�1,it + K1,iS̄[�1,i, f

(1)
1 ; t]

= −2K1,iS
[

�1,0,X1X2
2 ; 0

]

e�1,it

− 2K1,iS̄
[

�1,i,X1X2
2 ; t

]

, (52a)

Δz(1)2,j (t) = K2,jS̄[�2,j, f
(1)

2 ; t]

= −2K2,jS̄
[

�2,j,X
2
1 X2; t

]

, (52b)

with i = 1, 2 and j = 0, 1, 2, are also more complicated.
The first order corrections to the original coordinates are
given by
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Δx(1)1 (t) = Δz(1)1,0(t) + Δz(1)1,1(t) + Δz(1)1,2(t)

= −2K1,0S
[

�1,0,X1X2
2 ; t

]

− 2K1,1S
[

�1,0,X1X2
2 ; 0

]

e�1,1t

− 2K1,1S̄
[

�1,1,X1X2
2 ; t

]

− 2K1,2S
[

�1,0,X1X2
2 ; 0

]

e�1,2t

− 2K1,2S̄
[

�1,2,X1X2
2 ; t

]

, (53)

and

Δx(1)2 (t) = Δz(1)2,0(t) + Δz(1)2,1(t) + Δz(1)2,2(t)

= −2K2,0S̄
[

�2,0,X
2
1 X2; t

]

− 2K2,1S̄
[

�2,1,X
2
1 X2; t

]

− 2K2,2S̄
[

�2,2,X
2
1 X2; t

]

. (54)

By combination of eqs (44a), (48a), (49), (53) and (54),
one finally arrives at the second order correction to the
critical velocity, which is given by

V ‡(2) = 1
K1,0

Δz(2)1,0(0)

= −2S
[

�1,0,X
2
2Δx(1)1 + 2X1X2Δx(1)2 ; 0

]

= 4St

[

�1,0,X
2
2 (t)

(

K1,0S
[

�1,0,X1X2
2 ; t

]

+K1,1S
[

�1,0,X1X2
2 ; 0

]

e�1,1t + K1,2S
[

�1,0,X1X2
2 ; 0

]

e�1,2t
)

+ K1,1S̄
[

�1,1,X1X2
2 ; t

]

+ K1,2S̄
[

�1,2,X1X2
2 ; t

]

+ 2X1(t)X2(t)
(

K2,0S̄
[

�2,0,X
2
1 X2; t

]

+ K2,1S̄
[

�2,1,X
2
1 X2; t

]

+K2,2S̄
[

�2,2,X
2
1 X2; t

])

; 0
]

.
(55)

5. The transmission factor

As reported in Ref. [16] , the transmission factor for a
system of 2 dof can be computed as

� =
⟨

exp
(

− V ‡2

2kBT

)⟩

��⟂
, (56)

where � represents an average over different noise
ensembles, � an average carried out over the IC �1(0)
and �2(0), and ⟂ an average over the transversal coordi-
nates x2(0) and v2(0).

Substituting the expansion of the critical velocity
given by eq. (43) in eq. (56), we get an expansion of
the transmission factor in the coupling constant c as

� = �(0) + c�(1) + c2�(2) +… . (57)

The lowest order terms are given by

�(0) = ⟨P⟩��⟂ , (58a)

�(1) = − m
kBT

⟨

PV ‡(0)V ‡(1)⟩

��⟂ , (58b)

�(2) = m2

2(kBT )2
⟨

PV ‡(0)2V ‡(1)2⟩

��⟂

− m
kBT

⟨

PV ‡(0)V ‡(2)⟩

��⟂ −
m

2kBT

⟨

PV ‡(1)2⟩

��⟂ ,

(58c)

with P = exp
(

−mV‡ (0) 2

2kBT

)

, and the perturbative terms

of the critical velocity are taken from eqs (50), (51)
and (55). The evaluation of the perturbative terms of the
transmission factor (eq. 58) requires the evaluation of
averages ⟨P(…)⟩��⟂ as discussed in the next subsection.

5.1 Distorted correlation functions

The averages appearing in eq. (58) can be rewritten in
the form

⟨P(… )⟩�� =
�1,0

!1
⟨...⟩0 , (59)

where the random variables w1 = V ‡(0),w2,… appear-
ing in (…) follow a multi-dimensional Gaussian distri-
bution with zero mean and covariance matrixΣ. The fac-
tor P can be absorbed [20,21] into a modified covariance
matrix Σ0 that satisfies

Σ−1
0 = Σ−1 + m

kBT
J , with J =

⎛

⎜

⎜

⎜

⎝

1 0 0 …
0 0 0 …
0 0 0 …
⋮ ⋮ ⋮ ⋱

⎞

⎟

⎟

⎟

⎠

, (60)

or

Σ0 = Σ −
m

kBT + m�2
ΣJΣ

= Σ − m
kBT + m�2

�2
1,0

!2
1

ΣJΣ, (61)

where

�2 =
⟨

V ‡(0) 2
⟩

��

=
(�1,0 − �1,1)2(�1,0 − �1,2)2

(�1,1 + �1,2)2
⟨

z‡ 2
1,0(0)

⟩

�

+ 1
(�1,1 + �1,2)2

⟨

�2
1 (0)

⟩

�

=
kBT0

m�1,0(1 + �1,0�)
. (62)

In the derivation of eq. (62) from eq. (50) the following
were taken into account:

• z‡1,0(0) depends solely on the noise and � (0) solely
on the IC; in particular
⟨

z‡1,0(0)� (0)
⟩

�,�
=
⟨

z‡1,0(0)
⟩

�
⟨� (0)⟩� = 0.
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• According to the Vieta relation (eq. 21),

(�1,1 + �1,2)� = −(1 + �1,0�).

• Since P1(�1,0) = 0,

�2
1,0

!2
1

[

�1,0(1 + �1,0�) + 0

]

= − �
!2

1

�1,0 P1(�1,0) + �1,0(1 + �1,0�)

= �1,0(1 + �1,0�). (63)

The average (eq. 59) of a product of two Gaussian
random variables is then given by

⟨

wiwj

⟩

0
=
⟨

wiwj

⟩

��−
m

kBT

�2
1,0

!2
1

⟨

V ‡(0)wi

⟩

��

⟨

V ‡(0)wj

⟩

�� ,

(64)

which allows one to obtain the moments of the dis-
torted Gaussian distribution, once those of the original
Gaussian are known.

By setting wi = V ‡(0), and taking into account that
�2

1,0(1 + �1,0�) = (!2
1� − 0)�1,0 + !2

1, we find

⟨

V ‡(0)wj

⟩

0
=
⟨

V ‡(0)wj

⟩

��

(

1 − m
kBT

�2
1,0

!2
1

⟨

V ‡(0) 2
⟩

��

)

=
⟨

V ‡(0)wj

⟩

��

!2
1(1 + �1,0�) − �1,00

!2
1(1 + �1,0�)

=
�2

1,0

!2
1

⟨

V ‡(0)wj

⟩

�� . (65)

If wi = wj = V ‡(0), eq. (65) reduces to

⟨

V ‡(0) 2
⟩

0
=
�2

1,0

!2
1

⟨

V ‡(0) 2
⟩

�� =
kBT

m

(

1 −
�2

1,0

!2
1

)

,

(66)

as 0 = −�2
1,0�−�1,0+!2

1�+
!2

1

�1,0
= ( 1

�1,0
+�)(!2

1−�
2
1,0).

Distorted averages involving more than two factors
of V ‡(0), X1(t) and X2(t), like those in eq. (56), can be
reduced to the correlation functions in eqs (66), (68a)
and (68b) by Isserlis’ theorem, e.g.

⟨w1w2w3w4⟩0 = ⟨w1w2⟩0 ⟨w3w4⟩0 + ⟨w1w3⟩0 ⟨w2w4⟩0

+ ⟨w1w4⟩0 ⟨w2w3⟩0 . (67)

This expression contains a sum over all possible pairings
of the four factors. Other even order moments can be
evaluated in a similar way. All odd order moments are
zero. However, as the anharmonic potential (eq. 10) is
even, no odd order moments arise in the calculation. If
the potential contained cubic terms, the leading order
rate correction would only be obtained in second order
perturbation theory.

For our purposes, the following modified correlation
functions are needed:

⟨

V ‡(0) X1(t)
⟩

0
=

kBT

m �1,0

[

e−�1,0t

+
�1,2� (�1,0 + �1,2)
(�1,2 − �1,1)

e�1,1t+
�1,1� (�1,0 + �1,1)
(�1,1 − �1,2)

e�1,2t

]

,

(68a)

⟨X1(t)X1(0)⟩0 =
kBT

m

[

K1,0

�1,0
e−�1,0t +

K1,1

�1,1
e�1,1t

+
K1,2

�1,2
e�1,2t +

�1,0�1,2 + !2
1

F1,1!2
1

(

e−�1,0t + e�1,1t
)

+ 1

!2
1

e−(t+s)�1,0+
�1,0�1,1 + !2

1

F1,2!2
1

(

e−�1,0t+e�1,2t
)

]

,

(68b)

⟨X2(t)X2(0)⟩0�⟂ = −
kBT

m

K2,0

�2,0
e�2,0|ts|

−
kBT

m

K2,1

�2,1
e�2,1|t| −

kBT

m

K2,2

�2,1
e�2,1|t|. (68c)

Eq. (68c) has been obtained by taking into account that
the IC of the transversal direction follow the Gaussian
distribution given by eq. (7), and therefore

⟨

x2
2(0)

⟩

0�⟂ =

⟨

v2
2(0)

⟩

0�⟂

m!2
2

=
kBT

m!2
2

, ⟨x2(0)v2(0)⟩0�⟂

= 0.

Finally,

⟨

V ‡(0)X2(t)
⟩

0�⟂ = ⟨X1(t)X2(s)⟩0�⟂ = 0

since X1(t) and X2(t) depend on different and uncor-
related components of the Gaussian noise ��(t). In
particular, the presence of the factor P in eq. (58)
has no influence on averages over the transverse
dof.
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5.2 Anharmonic corrections to the transmission factor

The lowest order term of the transmission factor equals
the well-known Grote–Hynes expression, which deter-
mines the rate over a one-dimensional harmonic barrier
as

�(0) = ⟨P⟩��⟂ = ⟨P⟩� =
�1,0

!1
. (70)

The first order correction to �(0) can be calculated
combining eqs. (58b) and (68) to yield

�(1) = −
kBT�(0)(1 − �(0)2)(�(0)2 + �2)

[

�(0)4 + �(0)2(�2 − 1) + �2
]

m!2
2!

2
1

, (71)

with �2 = �1,0(1 + �1,0�)∕(!2
1�). Eq. (71) agrees with

the white noise limit

�(1)(� →∞) = −
kBT0�(0)2

(1 + �(0)2)m!2
2!

3
1

, (72)

obtained in Ref. [21], since 0 = (1−�(0)2)!1∕�(0) in that
limit. (The corresponding eq. (85) in Ref. [21] contains
a misprint.)

An analytical expression for the second order correc-
tion (eq. 58c) can be similarly obtained, but we do not
present it here explicitly as it is very complicated. The
interested reader can find it in Ref. [16].

Figure 2. Transmission factor for the two–dimensional model potential (eq. 10) as a function of the coupling strength c,
for m = 1, kBT = 1, !1 = 1, !2 = 3. Correlation time (a) � = 4, (b) � = 8 and damping strength 0 = 1, 3, 5 are as
indicated. Numerical simulation results with 1� statistical error bars (blue symbols) are compared to harmonic (Grote–Hynes)
approximation (eq. 70) (dashed horizontal line), perturbative results to first-order obtained from eqs (70)+(71) (yellow straight
line), and second-order obtained from eqs (70)+(71)+(58c) (red parabola).
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Figure 2 shows the transmission factor for the 2–dof
model potential (eq. 10) as a function of the coupling
constant c for different values of the memory time � and
the friction 0. As can be seen, the numerical simulations
agree with the theoretical results over a wide range of
coupling parameters. Even for values of � that differ
from the harmonic approximation by about 10%, the
agreement with the perturbation theory is still excellent
in some cases. As expected in any perturbation theory,
the perturbative results eventually deviate from the exact
rates as the coupling strength becomes large. In this
regime the influence of higher order terms in the asymp-
totic series (eq. 57) makes itself felt. Though we did
not compute higher order corrections in this work, the
method can be applied, in principle, to arbitrary order.

6. Concluding remarks

In summary, we have presented a method that over-
comes the recrossing problem of TST. It identifies reac-
tive trajectories precisely by computing the geometric
structures that divide the phase space into reactive and
non-reactive parts. More specifically, all the information
on the reactivity of the system is encoded in the stable
manifold, whose intersection with the DS defines a crit-
ical velocity that trajectories must exceed in order to be
reactive. This procedure can be used with any choice of
DS. The intersection of the stable manifold with a dif-
ferent DS would yield a different critical velocity, but
would identify the same trajectories as reactive.

The method reported here has enabled us to obtain
analytic corrections to the Grote–Hynes expression for
anharmonic multi-dimensional potentials, while provid-
ing at the same time a clear geometrical picture of the
reaction mechanism.

Acknowledgements

The research leading to these results has received fund-
ing from the Ministerio de Economía y Competitivi-
dad under Contract MTM2015-63914-P, ICMAT Severo
Ochoa under SEV-2015-0554, and from the Euro-
pean Union’s Horizon 2020 research and innovation
programme under grant agreement No. 734557.

References

[1] D G Truhlar, W L Hase and J T Hynes, J. Phys. Chem.
87, 2664 (1983)

[2] D G Truhlar, B C Garrett and S J Klippenstein, J.
Phys. Chem. 100, 12771 (1996)

[3] W H Miller, Faraday Discuss. Chem. Soc. 110, 1
(1998)

[4] E Pollak and P Pechukas, J. Chem. Phys. 69, 1218 (1978)
[5] T Uzer, C Jaffé, J Palacián, P Yanguas and S Wiggins,

Nonlinearity 15, 957 (2002)
[6] H Waalkens, A Burbanks and S Wiggins, J. Phys. A 37,

L257 (2004)
[7] H Waalkens, A Burbanks and S Wiggins, J. Chem. Phys.

121, 6207 (2004)
[8] R G Mullen, J-E Shea and B Peters, The J. Chem. Phys.

140, 041104 (2014)
[9] B C Garrett and D G Truhlar, Variational transition state

theory. In C E Dykstra, G Frenking, K S Kim and G E
Scuseria, editors, Theory and Applications of Computa-
tional Chemistry: The First Forty Years, chapter 5, pages
67–87 (Elsevier 2005)

[10] T Bartsch, R Hernandez and T Uzer, Phys. Rev. Lett. 95,
058301 (2005)

[11] T Bartsch, T Uzer and R Hernandez, J. Chem. Phys. 123,
204102 (2005)

[12] T Bartsch, T Uzer, J M Moix and R Hernandez, J. Chem.
Phys. 124, 244310 (2006)

[13] T Bartsch, T Uzer, J M Moix and R Hernandez, J. Phys.
Chem. B 112, 206 (2008)

[14] R Hernandez, T Uzer and T Bartsch, Chem. Phys. 370,
270 (2010)

[15] F Revuelta, T Bartsch, P L Garcia-Muller, R Hernandez,
R M Benito and F Borondo, Phys. Rev. E 93, 062304
(2016)

[16] T Bartsch, F Revuelta, R M Benito and F Borondo,
Finite-barrier corrections for multidimensional barriers
in colored noise (2017) In press

[17] G T Craven, T Bartsch and R Hernandez, Phys. Rev. E
89, 040801(1) (2014)

[18] S Kawai and T Komatsuzaki, J. Chem. Phys. 131,
224505 (2009)

[19] S Kawai and T Komatsuzaki, J. Chem. Phys. 131,
224506 (2009)

[20] F Revuelta, T Bartsch, R M Benito and F Borondo, J.
Chem. Phys. 136, 091102 (2012)

[21] T Bartsch, F Revuelta, R M Benito and F Borondo, J.
Chem. Phys. 136, 224510 (2012)

[22] R F Grote and J T Hynes, J. Chem. Phys. 73, 2715 (1980)
[23] P Hänggi, P Talkner and M Borkovec, Rev. Mod. Phys.

62, 251 (1990)
[24] P Pechukas, Statistical approximations in collision the-

ory. In W H Miller, editor, Dynamics of Molecular
Collisions, Part B, pages 269–322 (Plenum, New York
1976)

[25] D Chandler, J. Chem. Phys. 68, 2959 (1978)
[26] V I Mel’nikov and S V Meshkov, J. Chem. Phys. 85,

1018 (1986)
[27] E Pollak, H Grabert and P Hänggi, J. Chem. Phys. 91,

4073 (1989)
[28] E Hershkovitz, J. Chem. Phys. 108, 9253 (1998)
[29] E Hershkovitz and R Hernandez, J. Phys. Chem. A 105,

2687 (2001)



Indian Academy of Sciences Conference Series (2017) 1:1 155

[30] P L García-Müller, F Borondo, R Hernandez
and R M Benito, Phys. Rev. Lett. 101, 178302
(2008)

[31] M Ferrario and P Grigolini, J. Math. Phys. 20, 2567
(1979)

[32] P Grigolini, J. Stati. Phys. 27, 283 (1982)
[33] F Marchesoni and P Grigolini, J. Chem. Phys. 78, 6287

(1983)
[34] C C Martens, J. Chem. Phys. 116, 2516 (2002)
[35] T Bartsch, J. Chem. Phys. 131, 124121 (2009)


