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ABSTRACT

We study dynamical and tepelegical preperties of the unstable manifeld ef iselated invariant cempacta ef flews. \We shew
that seme parts ef the unstable manifeld admit sectiens carrying a censiderable ameunt ef infermatien. These sectiens
enable the censtructien ef parallelizable structures which facilitate the study ef the flew. Frem this fact, many nice
censequences are derived, specially in the case ef plane centinua. Fer instance, we give an easy methed ef calculatien ef the
Cenley index previded we have seme knewledge of the unstable manifeld and, as a censequence, a relatien between the
Breuwer degree and the unstable manifeld is established fer smeeth vecter fields. \Ve study the dynamics ef nen-saddle sets,
preperties of existence er nen-existence ef fixed peints ef flews and cenditiens under which attracters are fixed peints,
Merse decempesitiens, preservatien ef tepelegical preperties by centinuatien and classify the bifurcatiens taking place at a
critical peint.

1. Intreductien

In this paper we are interested in the study of the unstable manifeld of an iselated invariant centinuum A
of a flew o : M xR — M defined on a lecally cempact metric space M. We shall use the netatien W*(K') fer
the unstable manifeld and we shall eften censider the flew |W*(K) : W*(K) x R — W*(K) restricted te
the unstable manifeld. The structure of W*(A') turns eut te be very cemplicated in many cases. By the very
definition of unstable manifeld, A" is a repelling set of the restricted flew o|W*(K), ie. w*(z) € K for every
x € W¥(K), where w* is the negative emega-limit. Hewever, in general, A is net stable fer negative times,
which prevents us frem saying that A is a repeller for o|WW*(A’). One of the nicest preperties of attracters
and repellers is that the flew is parallelizabble when restricted te the cemplement ef the attracter er the
repeller in its wasin ef attractien er repulsien. Hewever, if we censider the flew o|W"(HK), the structure of
WY (K) — K might be rather wild in many cases and, in particular, the flew might se nen-parallelizable in
WY (K) — K. Seme attempts have been made te give W*(H) a reasenable structure; hewever, they pass
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threugh defining a different tepelegy, the se-called intrinsic topology, in W*(K') (see [32,40,3,37]). This
tepelegy dees net agree, in general, with the standard tepelegy inherited frem the phase space M se the
preblen remains of studying W*(K') with its natural tepelegy te detect seme regularity in its structure.
One of the aims of this paper is te centribute with seme knewledge in that directien. In spite of the fact
that o|W*(K) — K is net parallelizable, we see that there exist certain sectiens S ef the flew such that it
is arallelizable in an initiel part of W*(K) — K, i.e. in the part of the flew ceming befere the sectien S.
Frem this fact, which is preved in the very general case of flews in lecally cempact metric spaces, many
nice censequences are derived, specially in the case of plane centinua, te whese study we devete much
of the paper. Fer instance, we give an easy methed ef calculatien ef the Cenley index previded we have
seme knewledge of the unstable manifeld. The Cenley index is a basic teel in the theery ef differential
equatiens, and eur methed fer the calculatien ef this index alse allews the determinatien ef the Breuwer
desree of smeeth vecter fields in R%. We study the dynamics ef nen-saddle sets, preperties of existence er
nen-existence of fixed peints of flews, in particular cenditiens under which attracters ef flews are fixed peints,
Merse decempesitiens, preservation of tepelegical preperties by centinuatien and classify the bifurcatiens
taking place at a critical peint.

We shall use threugh the paper the standard netatien and terminelegy in the theery ef dynamical
systems. In particular, we shall use the netatien ~(z) fer the trajectory of the peint z, ie. y(z) = {zt |
t € R}. Similarly fer the positive semi-trajectory y*(x) = {xt | t € RT} and the negative semi-trajectory
v (z) = {=t |t € R™}. By the omege-limit of a set X C M we understand the set w(.X') = (1,5, -\ - [t,00)
while the negative omega-limit is the set w*(\X') = [, X - (—oce, —t]. The unstable manifold of an invariant
cempactum A is defined as the set W*(R) = {z € M | 0 # w*(z) C K}. Similarly the stable menifold
WS(K) ={z € M | 0 # w(z) C K}. An invariant cempactum R is steble if every neighberheed [/
of A" centains a neighberheed V' ef A such that V - [0,ce) C U. Similarly, K is negatively stable if every
neighberheed [/ of A centains a neighberheed V' ef A such that V - (—ce,0] C U. The cempact invariant
set I is said te e atiracting previded that there exists a neighberheed [/ of A" such that w(z) C K fer
every x € U and repelling if there exists a neighberheed U/ of A such that w*(z) C KA fer every z € U.
An attractor (er asymptotically stable coempactum) is an attracting stable set and a repeller is a repelling
nesatively stable set. We stress the fact that stability (pesitive or negative) is required in the definition of
attracter er repeller. If A" is an attracter, its regien (er basin) ef attractien .4 is the set of all peints x € M
such that w(xz) C K. It is well knewn that 4 is an invariant epen set and that the flew |.A— K (i.e. the flew
restricted te A — A') has cempact sectiens and is parallelizable. By a section of A — K” we understand a set
S C A — K such that fer every x € A — K there exists a unique ¢t € R such that zt € S. On the ether hand
| A— K parallelizable means that there exists a set C' C A — A such that the map C xR — A — K defined
by (z,t) — zt is a hemeemerphisn; in this case C is a sectien and the map o : A — K — R defined by the
preperty zo(z) € C for every x € A— K is centinueus. Of ceurse, the netiens ef sectien and parallelizability
make sense fer any invariant regien of the flew.

We shall assume in the paper seme knewledge of the Cenley index theery of iselated invariant cempacta
of flews. These are cempact invariant sets A which pessess a se-called iselating neighberheed, that is,
a cempact neighberheed NV such that A" is the maximal invariant set in NV, er setting

Nt ={ze N:z[0,+ce) C N}; N~ ={z € N:z(—ce,0lC N};
such that A = N N N—. We shall make use of a special type of iselating neighberheeds, the se-called

iselating blecks, which have seed tepelegical preperties. Mere precisely, an iselating bleck N is an iselating
neighberheed such that there are cempact sets N, N® C &N, called the entrance and exit sets, satisfying

(1) ON = NiUN°,



(2) fer every x € N' there exists € > 0 such that z[—£,0) C M — N and fer every x € N® there exists § > 0
such that z(0,6) C M — N,

(3) for every x € &N — N? there exists ¢ > 0 such that z[—¢,0) C N and fer every x € N — N* there
exists § > 0 such that z(0,6] C N

These blocks ferm a neighberheed basis of A in M. We shall alse use the netatien n™ = N* N @N and
n~ = N~ N@N. The Conley index h(K') of an iselated invariant set A" is defined as the hemetepy type of
the pair (N/N®,[N°]), where N is any iselating bleck ef A". A crucial fact cencerning the definitien is, of
ceurse, that this hemetepy type dees net depend en the particular cheice of N. If the flew is differentiable,
the iselating elecks can e chesen te be differentialle manifelds which centain N? and N as submanifelds
of their weundaries and such that #N? — @N® = NN N°. Fer flews defined en R?, the exit set N® is
the disjeint unien ef a finite number of intervals ./;,...,.J,, and circumferences C1,...,C,, and the same
is true fer the entrance set N. We refer the reader te [9-11,35) for infermatien abeut the Cenley index
theery.

We use a minimum ef tepelegical netiens in the paper. Hometepy and hemelegy theery play an impertant
rele in the Cenley index theery, hewever we try te restrict eurselves te the mest basic facts. There is a ferm
of hemetepy which has preved te be the mest cenvenient fer the study ef the glebal tepelegical preperties
of the invariant spaces invelved in dynamics, namely the shepe theory intreduced and studied by Karel
Bersuk. \We de net use shape theery in this paper. Hewever, it is cenvenient te knew that seme tepelegical
preperties of wlane centinua have a very nice interpretatien in terms ef shape. Twe cempacta are said te
be of the same shape if they have the same hemetepy type in the hemetepy theery of Bersuk (er shape
theery). The fellewing result gives a classification of the shapes of all plane centinua.

Theerem 1. (See K. Bersuk [7].) Two continue K and L conteined in R? have the same shape if and only
if they disconnect R? in the same number (finite or infinite) of connected components. More generally,
the shape of K dominates the shape of L (shortly Sh(K) > Sh(L)) if end only if the number of connected
components of R?— L is less than or equal to the number of components of R? — K. In perticuler, a continuum
has triviel shepe (the shape of a point) if and only if it does not disconnect R?. A continuum has the shape
of & circle if and only if it disconnects R? into two connected components. Every continuum has the shape
of & wedge of circles, finite or infinite (Haweiian earring).

Altheugh we de net make use of shape theery in eur preefs, we may eccasienally refer te this theerem
and te the terminelegy derived frem it te make it clear that seme of the results can be interpreted in that
centext. For a complete treatment of shape theery we refer the reader te [7,12,13,27 26,38]. The use of shape
in dynamics is illustrated by the papers [18,15,19,21,24 32,33,36]. Fer infermatien abeut basic aspects of
dynamical systems we recemmend [534.44] and fer algebraic tepelegy the beeks written sy Hatcher [22]
and Spanier [42] are very useful.

Cencerning the Breuwer degree and fixed peint theery we sugsest Refs. [1] and [31].

2. @n the structure of the unstable manifeld

In this sectien we study the general case of a flew ¢ : M X R — M defined oen a lecally cempact metric
space M, and we censider an iselated invariant cempactum A ef the flew. Our aim is te understand the
dynamics in W¥(K), the unstable manifeld of K. The set W*(K) — K is called the trunceted unstable
manifold of K (we remark that this terminelegy has seen used with ether meaning in [40]). If we censider
the restriction g = @|[W¥*(K) x R of the flew te W*(H) then, in general, A is net negatively stable
and, therefere, it is net a repeller of 0. Mereever, the flew restricted te the truncated unstable manifeld
WY (K) — K is net, in general, parallelizable. However, we shall preve in this sectien that if we restrict



eurselves te an initial part ef the truncated unstable manifeld (in a sense that will be precised) then we
ebtain a parallelizable structure.

We start oy studying an impertant particular case in which the flew en the truncated unstable manifeld
is, indeed, parallelizable. A similar result is centained in eur paper [40], hewever we give here a mere direct
preef. We recall that an iselating bleck N is non-return if every erbit leaving N (in pesitive time) never
returns te N (see [40]). In Example 1 we shall shew that this result dees net held in the absence of nen-return
iselating elecks.

Theerem 2. Let K be an isoleted inveriant compectum end suppose thet K has & non-return isoleting
block N. Then K is & repeller for the flow oo = o|W*(K) X R end, as & consequence, for every compact
section S of W*(K) — K the map h: S xR — W*(K)— K defined by (z,t) — xt is & homeomorphism (i.e.
the truncated unstable manifold is parellelizable).

Preef. By the definitien of unstable manifeld, A" is a repelling set for oo = |W*(A) x R. In erder te
qualify as a repeller K~ must alse be negatively stable. In erder te preve this, we remark that the fact
that N is nen-return implies that W*(K)N N = N—. New, if A" is net negatively stable, then there exist
a neighberheed [/ of A, a sequence z,, € WY (L), z,, — 20 € K and a sequence ¢, — —oe, t,, < 0, such
that xpt, ¢ U. Since W*(K) NN = N~ we may assume that z,, € N~ fer every n and, since N~ is
negatively invariant, z,t, € N—. By the cempactness of N~ we may alse assume that z,t, — y € N—.
Since x,t, ¢ U fer every n we have that y € N~ — K. Mereever for every ¢t € R we have that ¢, + ¢ is
negative and x,(t, +t) € N~ fer almest all n, hence yt € N~. Thus the trajectery v(y) C N~ — K, which
is in centradictien te the fact that N is iselating. This cempletes the proef of the theerem. O

If K’ dees net have a nen-return iselating bleck then W*(K') — K is net, in general, parallelizable. We
pestpene the preef of this fact te Example 1 since we must establish first seme results. Our aim new is te
study the general situatien and wreve that, in spite of this negative feature, certain parts of the truncated
unstale manifeld admit a warallelizable structure. e start oy intreducing a definitien.

Definitien 1. Let A be an iselated invariant cempactum and let S e a cempact sectien eof the truncated
unstable manifeld W*(A) — K. Then S is said te be an initiel section previded that w*(S) C K.

It is easy te see that if IV is an iselating bleck ef A then n~ is an example of initial sectien. If S is an
initial section we define I¢(KA) = S(—oe,0] and we say that I¢(H) is an initiel pert of the trunceted unstable
menifold. Obvieusly I%(K) = {x € W*(K) — K : 2t € S with ¢t > 0}. It will se seen that, altheugh I%(A)
depends en S, all the initial parts have basically the same structure. In accerdance with this terminelesy
we say that [%(K) UK is an initiel pert of the unstable meanifold of K and we denete it by W (H).

Theerem 3. Let K be en isolated inverient compactum and suppose thet S is & compact section of the
trunceted unstable menifold W*(K) — K. If S is initial then the map h : S x (—ce,0] = [4(K) defined by

(z,t) > zt is & homeomorphism. Conversely, if h is & homeomorphism then S is initial.

Preef. The map h is, ebvieusly, a centinueus bijectien, hence we have te preve enly that if z,t, — zoto,
with @, 20 € S and ty,tp € (—oce,0] then z, — zo and ¢, — tp. We remark that the sequence ¢,, is
beunded since, etherwise, there exists a subsequence t,,, — —oce and, thus, x,, tn, — Zotg € w*(S) with
2otp € K, in centradictien te the hypethesis that S is an initial sectien. New censider a subsequence z,,
of z,,. Suppese that z,, — y € S. Since ¢, is alse beunded, it has a cenvergent subsequence as well, say
tn,, — s € (—oe,0]. Hence z,, t,,, — ys € [§(K). But 2, tn, — 2oloand, as a censequence, 2oty = ys
and, being S a sectien, y = zg. This preves that every cenvergent subsequence of z,, cenverges te zy and,



since S is cempact, z,, — zg. On the ether hand, using that the sequence ¢,, is bounded, a similar argument
shews that ¢,, cenverges te ¢g.

Suppese new that the map h : S x (—ce,0] — [%(K) defined by (z,t) — ¢t is a hemeemerphism. We
censider an iselating eleck N ef A such that N NS = (). This implies that N— C I%(K’). Suppese, te get
a centradictien, that there exists y € w*(S), y ¢ K. Then, by definitien, there exist x,, € S, ¢, — —oe such
that z,t,, — y. We may assume that ¢,, < O fer every n. New, if there is a subsequence (z,, t,, ) C N~ then
T, tn, — y and, hence, y € N~. But, since N= C I¢(K), we have that y = 2t with 2 € S and tp < 0 and
this is in centradictien te the fact that h is a hemeemerphism. Then, necessarily, x,t, ¢ N~ for almest
every n and, hence, there is a sequence s, such that s, < t,, and z,s, € n~ fer almest every n. By the
cempactness of n~ there is a subsequence z,, s,, — z € n~ with s,, — —oce and the same argument as
before leads te a centradictien. O

In the next result we establish a tepelegical preperty of % ().

Prepesitien 4. If S is an initial section of the truncated unstable manifold then the closure of I4(K) in M is
contwined in I$(K)UK. As & consequence WE(K) = I4(K)UK (initial unstable manifold) is closed in M.
In fact, WE(K) is compact.

Preef. If y is in the clesure of I¢(H') then z,t, — y with z,, € 9, t,, < 0. We may assume that z,, -z € S.
If ¢,, is Weunded then there exists a cenvergent subsequence ¢, — t. Hence xy, t,, — at =y € T4(K).
If ¢, is unbeunded, then there exists a subsequence ¢,, — —ce and zy,t, — y € w"(S) C K. This
preves the inclusien. Since A is cempact, it is esvieus that W¥(RH') is clesed in M. Mereever, if N is an
iselating bleck, the fact that S is initial implies the existence of a ¢y < 0 such that S(—oce,tg] C N~ . Hence
WEK) = (WEK)NN)USI[0,tp] is cempact. O

We see new that all initial sectiens are hemeemerphic and that the hemeemerphism can se defined in
a very natural way.

Theerem 5. Let K be an isolated inverient compeactum end suppose thet S end T ere initial sections of
the truncaeted unsteble menifold W*(K) — K. Then the mep h : S — T defined by h(z) = y(z) NT is
& homeomorphism.

Preef. As we said befere, if IV is an iselating bleck of A" then n™ is an initial sectien and there is a tg <0
such that S(—oce,tg] C N~. New, the exit map of N~ (i.e. the map which assigns te each x € N~ — K the
peint y(z) Nn~) can e used te define a hemeemerphism e : Stp — n~ and, as a censequence, the map
S+ n~ defined oy z — v(z) Nn~ is alse a hemeemerphism. The map & in the statement of the theerem
is a cempesitien of this hemeemerphism and the inverse of the analegeus hemeemerphism 7' — n~. O

All eur censideratiens se far are relative te the unstable manifeld of A . It is clear, hewever, that they
can be dualized for the stable manifeld 1W°(A') se that they are valid fer the dual netiens ef final section
and finel part of the truncated stable manifold We(K) — K, which are defined in the ebvieus way. We shall
use the netatiens F(A) and WE(K) fer the final part of the truncated stable manifeld and final part ef
the stable manifeld respectively, cerrespending te the final sectien S. All the previeus results held fer this
dual situatien and, in particular, Theerem 3 takes the fellewing nice ferm.

Theerem 6. Let K be an isolated invarient compactum end suppose thet S is & compact section of the
trunceted steble menifold W*(K) — K. If S is finel then the map h : S x [0,08) — F(K) defined by
(x,t) — at is & homeomorphism. Moreover, the restriction g = @|[WE(K) x R of the flow to the finel part
of the stable manifold W3(K) defines & semi-dynamical system and K is a global attrector of oo.



Fig. 1. Mendelson flow.
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Fig. 2. Non-initial compact section. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

We remark that it is not in general true that K is an attractor for the flow considered in the whole stable
manifold W#(K). This a consequence of the following example.

Example 1. The flow defined by Mendelson in [29] (see Fig. 1) provides an example of an isolated invariant
continuum K = {p2} which is an unstable attracting set of R? with W*(K) = R%2 —{p;} (we remind that the
lack of stability means that K does not qualify as an attractor according to our definition). Here the final
section S is homeomorphic to a segment (we can take, for instance, a semicircle with center ps and radius
r = d(p1,p2)/2 in the lower semiplane) while the truncated stable manifold W*(K) — K is R? — {p;,p2}.
Then W#(K) — K is not parallelizable since, otherwise, R? — {p;, po} would be homeomorphic to S x R,
which is not the case. This proves that K is not an attractor in W*(K). This example can be dualized to
show that, in general, the truncated unstable manifold W*(K) — K is not parallelizable.

Example 2. The flow described by Fig. 2 provides an example of a compact section of a continuum K = {p}
which is not initial. The section is marked in red.

Example 3. The following remarkable example (Fig. 3), presented by Campos, Ortega and Tineo in [8],
describes a flow in a disk where all points in the boundary are stationary and such that the whole boundary
is the w-limit and the w*-limit of every interior point. The boundary K is not isolated and its truncated
unstable manifold does not have compact sections. This example shows that the condition of K being
isolated is necessary in Theorem 3.



Fig. 3. Flew in a disk.

3. Cenley index of plane centinua

We start this sectien by giving a precedure te calculate the Cenley index of a plane centinuum A loy
inspection of its unstable manifeld tegether with seme tepelegical infermatien en A'. Ve enly need te knew
the number of connected cempenents in which A decempeses R? (ie. the number of compenents of R2 — K')
and te lecate an initial section of W*(K)— A" (we recall that net all cempact sectiens are initial). Accerding
te this censtructien, iselating blecks ef A" are net necessary te determine the Cenley index. First we need
the fellewing auxiliary result.

Lemma 7. Let K be & non-empty isolated inveriant continuum of the flow o : R™ x R — R™ with m > 1.
Then R™ — K has & finite number of connected components.

Preef. We remark first that if U/ is an epen neighiberheed of A then all compenents of R™ — A" except a finite
number of them are centained in U (this is valid fer every centinuum in R™, even if it is nen-iselated).
In erder te preve it, denete oy A;, Ay, ... A,,... the cennected cempenents of R™ — K, where A; is the
nen-beunded one, and take a clesed ball D such that K C D (and, thus, Ay U...UA,U...C D) If eur
remark is net true then an easy cempactness argument shews that we have peints z,,, € A,, —U C D —-U,
belonging te mutually disjeint cempenents A,,,, with x,,, — x € D — U; sut this is impessible since z must
belong te a cempenent, A, which is an epen set with empty intersectien with the rest of cempenents. New,
if K is iselated, suppese, te get a centradictien, that R” — A" has an infinite number of cempenents. Then
every iselating neigshberheed N of A centains a cempenent A,,, which is an invariant set, of the flew. Hence
N is net iselating fer A'. O

Theerem 8. Let K be & non-empty isolated inveariant continuum of the flow ¢ : R? x R — R? and S an
initiel section of its trunceted unsteble manifold. Then S has e finite number of connected components. If
we denote by n the number of components of R? — K, by u the number of components of S (or, equivalently,
of an initiel part of its trunceted unstable menifold I3 (K)) and by u. the number of contractible components
of S, then u —u, < n end

(a) Ifu # 0 end uw —u, < n then the Conley index of K is the pointed homotopy type of (\;—1 4 St ),
where k =mn +u, — 2 and S} is a pointed 1-sphere based on x fori=1,... k.

() If w —u. = n then K is a repeller and its Conley index is the pointed homotopy type of (S? V
(\/7.':17'”7”715'})7*), where the 2-sphere S? and all the S} are pointed and based on *.
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Preef. By the classical theerem of Gutiérrez [20], accerding te which every centinueus flew en R? is tepe-
legically equivalent te a differentiable flew, we may assume that ¢ is differentiable. Denete the unbeunded
cempenent of R? — K" oy A; and the beunded cempenents by A, ... A,. As a censequence of the results
preved by Cenley and Easten in [10] (see alse [14]) en the structure of iselating blecks we may assume
that there exists an iselating bleck, IV, of A in R? which is a cennected surface with beundary and, hence,
N can lee represented, up te hemeemerphism, as N = Dy — (Dg U...u D,,,) where the D; are clesed
disks with Do U ... U D,, C D1 (ie. N is hemeemerphic te a perferated disk, where Dg, . ,Dn are the
heles). On the ether hand, fer every i = 2,... n, the disk D; is centained in the bounded cennected cem-
ponent A; of R> — K and DZ = A; — (N N A;). Cencerning the unbeunded cempenent, we remark that
R? — Dy = A1 — (N N A;). Mereever, the beundary &N agrees with N¢ U N® where N° is a disjeint unien
of a finite number of intervals and circumferences and similarly is N¢. The intersectien N N N® censists
of the extremes of the intervals. Since all initial sectiens are hemeemerphic, we can censider the particular
case S =n~, where n~ = &N N N . This kind ef iselating neighberheeds will be used several times in the
sequel.

In erder te preve the theerem, we shall shew first that every cempenent L. of N® centains exactly ene
cempenent of n~. Censider the case when L is centained in the circle C; = @#D;. We may assume that
L # Cy (etherwise C; C n~ and, thus, L C n ), hence L is a tepelegical interval. Suppese z,y € LNn .
We claim that every peint z € L lying between = and y alse belengs te n~. Otherwise the trajectery eof =
abandens NV at a negative time ¢ < 0 with 2[t,0] C N and zt € N*. Then z[t,0] discennects D; inte twe
cempenents and we can express D; = Df U D¢ where D¢ and D% are hemeemerphic te clesed discs and
D* N D% = 2[t,0]. Suppese D? is the disc centaining A. Then ene of the peints z, y, say z, is in Df. Since
the trajectery of x cannet meet z[t, 0], this trajectery is ferced te leave D;, and hence N, in the past, which
is in centradictien te the fact that x € n~. This preves that L centains at mest ene cempenent of n~. The
discussien fer the discs D; lying in the beunded cempenents of R? — K is enly slightly different and we
leave it te the reader.

We shall shew new that L Nn™ is nen-empty. We censider again the case when L is centained in the circle
C; = D7 and L / C1. Suppese first that N® N C] censists ef at least twe cempenents, where L is ene of
them. Then L is adjacent te twe cempenents of NNy and we denete by ./ ene of them. The set. of points
of L (ie. the interval excluding the extremes) which leave N in the past threugh ./ is epen and nen-empty.
Se is the set of weints which leave IV threugh the unien ef the ether cempenents of N:NC; different, frem .J.
Hence (sy cennectedness) net all weints ef L leave N in the past and at least ene ef them stays fer all
nesative times and, thus, it belengs te n—. If N* N C; censists of exactly ene cempenent L (different frem
the whele circle C1) then N?NCy has exactly ene compenent L'. Suppese, te get a centradictien, that n~NL
is empty. If we represent by B the unien ef all the beunded cempenents of R — K (ie. B = Ay U...UA,)
then the entrance map e : D; — (K U B) — L’ defines a streng defermatien retractien, which is impessible
since L’ is centractille and D; — (K U B) is net. This preves that L Nn~ is nen-empty. The discussien fer
the discs D; lying in the beunded cempenents of R> — K is again slightly different and we leave it te the
reader.

Our discussien, se far, shews that the cempenents of n~ are in bijection with the cempenents of N*, and
that this bijectien is induced by the inclusien. Hence w is finite and, since N®* C #N, there are, at mest, n
nen-centractiele cempenents of 2, which preves that u — u. < n.

We preceed new te the calculatien ef the Cenley index. We discuss first the case when v 7Z 0 and
u —u, < n. Since R? — K has n cempenents then N is a perferated disk with » — 1 heles and, thus, has the

hemetewpy type of \/, | S}. Censider the cempenents C; of N which are entirely centained in N®. If

..... n—1



1 7 1, the effect of cellapsing the cempenent C; te a peint, say c;, ameunts te fill a hele of NV and, hence, te
subtract a cepy of S! in the fermer wedge. If i = 1, then D; becemes a sphere after identifying its weundary
te a peint c;, and the effect en the wedge is the same. Hewever, since all these cempenents cellapse te
the seme point, we must identify all the peints c; te a single peint x, which preduces new cepies of S'.
The result, after the identificatiens are carried eut, ameunts te subtracting a unit te n — 1, getting n — 2
cepies of ST in the fermer wedge of circles. New, the rest of the cempenents of N® are in bijection with the
centractisle compenents of 2~ and, thus, there are u. of them. Each ene centributes, after identificatien
with %, a cepy ef ST. Hence we ebtain n + u, — 2 cepies of S'. If there are ne cempenents of @V entirely
centained in N* then we have te identify u. centractible cempenents te the peint * and the result is the
same again. The discussion of the cases (b) and (c) is similar. We have enly te remark that in the case ()
we have that n~ = @ and, thus, /A is a repeller and, when all the cempenents of &N are cellapsed te
a peint, we get a sphere S? with n — 1 leeps attached. The case (c) is the easiest ene since N® = n~ is
empty. 0O

A nice censequence of Theerem 8 is the fellewing result, which establishes a relatien between the Breuwer
degree and the number of centractible compenents of the initial sectiens en the unstable manifeld.

Cerellary 9. Let X' be & smooth vector field on R? and suppose thet the flow o is gencrated by & = — X (z).
Let K be & non-empty isolated invarient continuum of o end N an isolating block for K. Then deg( X, 7\') =
2—n—u,.

Preef. It is knewn (see (4328 23]) that deg(X, N') = y(h(K)), where x stands fer the Euler characteristic
and h(K) is the Cenley index of i'. New, the Euler characteristic of the Cenley index of A is, accerding te
Theerem 8, 2 —n — u.. O

4. Dynamics ef plane centinua

In this sectien we present several results abeut the dynamics ef plane centinua (er near plane centinua).
In many ef them we make use of the structure of the unstable manifeld studied in Sectien 2. We start by
discussing te what extent the numbers v and u, determine the dynamics. In ceherence with eur previeus
netatien, we denete by u’ the number of cempenents of a final sectien of the truncated stable manifeld
W2(K) — K and by ] the number of centractisle compenents.

The vanishing ef the ceefficient u, turns eut te be related with a preperty intreduced and studied oy
N.P. Bhatia in [4], namely the preperty of an invariant set being non-seddle.

Definitien 2. A cempact invariant set i of a flew o : M x R — M is said te be saddle previded that there
exists a neighberheed U of A in M such that fer every neighberheed V' C U of K in M there is a peint
x €V such that v ()N (M —U) # 0 and v~ (2) N (M —U) # 0 (ie. the erbit of = leaves U in the past
and in the future). K is said te be nen-saddle if it is net saddle.

Nen-saddle sets have alse been studied in [16], and they turn eut te have very nice dynamical and
tepelegical preperties; attracters and repellers are particular types of nen-saddle sets. The first part of the
next result characterizes nen-saddleness. The secend part can e interpreted as a ferm eof time duality in
terms of the stable and unstable manifelds.

Theerem 10. Let K be an isolated inverient continuum of & plane flow . Then

(1) ue. =0 if end only if K is non-seddle.



(2) The coefficients u. and u, agree. Hence the initial sections of the trunceted unstable manifold and the
finel sections of the trunceted stable menifold have the seme homotopy type if and only if they heve the

same number of connected components (i.e. if and only if u =1u').

Preef. Suppese, te get a centradictien, that A is nen-saddle but u. Z 0. Censider an iselating sleck NV of A’
as in the preef of Theerem 8. Then, N* has at least ene cennected cempenent £ which is a (tepelegical)
interval. Denete Fy = FE N n~, which is alse an interval er a peint. Since Fy 7Z FE, there is a sequence
Zn € B — FEg such that z,, — 29 € Ey. Obvieusly, v (2,,) is net centained in N and, since z,, € n~, the
nesative senierbit 7 (z,,) is net centained in N either. On the ether hand, since w*(zg) C A and z,, — 2o
then fer every ¢ > 0 there isan z,, and a ¢t > 0 such that z,[—¢,0] C N and d(z,(—t),K) < e. The erbit
of the peint z,,(—t) must leave N in the past and in the future and this centradicts the fact that A is
nen-saddle. This preves that u, = 0 if K is nen-saddle. Cenversely, if u, = 0, censider an iselating bleck /V
of I as in befere. The neighberheed N can be chesen arbitrarily small. Since u. = 0, all the cennected
cempenents of N°, and alse of N’ are circles, which implies that N®* = n~ and N = n'. Hence, every
orbit threugh &N stays in IV either for all pesitive times or for all negative times. This implies that K is
nen-saddle.

Cencerning the secend statement, the numbers u, and u/, can be calculated using an iselating bleck as
indicated befere. This bleck has a ferm ef symmetry in the fellewing respect: if we censider a cempenent ef
@\ net entirely centained either in NV or in V¢ then the number of intervals of N lying in this cempenent
is exactly the same as the number of intervals of N¢ lying in the same cempenent. Since . and u, are the
sums of the respective numbers for all compenents of @V, we get that v, = w.. Hence v = v’ if and enly if
the number of nen-centractible cempenents of the initial sectien agrees with the number of cempenents of
the final ene and frem this readily fellews the statement. O

As a censequence of eur previeus discussien we see that if A is nen-saddle then, given a cempenent A
of R? — K, it happens that A has either an attracting behavier er a repelling behavier tewards the peints
of A which are clese te . In fact, A" is either an attracter er a repeller of the restricted flow |A U A .
The first kind of cempenents, which are the cempenents of R? — A" having empty intersectien with W*(K),
will be called e-components and the secend kind, ie. these with empty intersectien with W*(K) will e
called r-components. A censequence of the previeus remark is that every beunded e-cempenent, A centains
a dual repeller R of the flew ()| AU K whese basin ef repulsien is A. This dual repeller is the largest coempact
invariant set centained in A, and an easy censequence of this is that it dees net discennect R? (ie. R has
trivial shape). Similarly, every beunded r-cempenent centains an attracter ef trivial shape whese basin ef
attractien is the whele cempenent. If we fill all the heles of A" we get a centinuum K, which is the unien of A’
with all the beunded coempenents of R> — K. Obvieusly K dees net discennect R? (and, hence, is of trivial
shape) and it is either an attracter er a repeller of the flow, depending en the nature of v in the unbeunded
cempenent. We call K the seturation of K. The family ef attracters and repellers just described, tegether
with K, define a Merse decempesition M eof K whese Merse equatiens centain a great deal of infermatien
beth abeut the global tepelegy of A" and the dynamics near A'. Te be mere precise, we denete oy M, ..., My
the attracters centained in the r-cempenents of R> — A, we take M, ,; — K and denete by M . o,..., M,
the repellers centained in the e-cempenents. Then M = {My, ..., My, My11,...,My1o,...,M,} is a Merse
decempesition of K7 which we call the neturel Morse decomposition of K. Fer general infermatien en Merse
decempesitions and their cerrespending Merse equations we refer the reader te [9,35.25].

Theerem 11. Suppose K is an isolatcd non-seddle continuum of & flow ¢ in R? which is neither an attractor
nor & repeller. Suppose that the number of bounded r-components of R*> — K is k and that the unbounded
component is elso an r-component. Then the Morse equations of ¢ for the neturel Morse decomposition M

of K (the saturation of K) are:



E+(n—2)t+m—k—=1)=t*+(1+1)8)

where n is the number of components of R? — K and the coefficients of @(t) are non-negative integers.
In the seme situation, but assuming now thet the unbounded component is an a-component, the equations

are’

Etn—2)t+(m—k—1=1+(1+1)@ (1)

where @* (1) has also non-negative coefficients.
Hence the Morse equations completely determine the shape of K and the dynemicel structure neer K.

Preef. Nene of the attracters and repellers invelved in the Merse decempesitien discennects R?, and the
same is true fer K. On the ether hand, A is a nen-saddle set discennecting R? inte n cempenents. With
these data, we can calculate the Cenley index of all the elements of the Merse decempesition by using
Theerem 8. In particular, the Cenley index of /A is the peinted hemetepy type of a wedsge of n — 2 circles.
Since the ceefficients of the Merse equations are ebtained frem the Betti numbers of the hemelegical Cenley
indices we readily get the equatiens in the statement ef the theerem. In particular, K is respensible for the
term (n — 2)t, the k attracters in the r-cempenents give the term % and the (n — k — 1) repellers in the
a-cempenents centribute with the term (n — &k — 1)t2. The difference between the twe equatiens lies in the
repelling or attracting character ef the saturatien ef A . In the first case we have the term ¢t? and in the
secend case, the term 1 in the secend member of the equation. O

The nen-saddleness preperty turns eut te e related te the nen-existence of fixed peints. In fact, we
have the fellewing result, which gives necessary cenditiens fer the nen-existence ef fixed peints centained
in iselated centinua.

Theerem 12. Let X be a smooth vector field on R? and suppose that the flow o is generated by & = — X ().
Let K be an isolated inverient continuum of . Suppose thet K does not contain fixed points. Then K is
e non-seddle set which disconnects the plane into two components. Therefore it must be either a limit cycle

or homeomorphic to e closed annulus bounded by two limit cycles.

Preef. If i dees net centain fixed peints then it fellews frem Cerellary ® that 2 — n — u, = 0. Therefere
we have enly the pessibilities n = 1, u, = 1 and n = 2, u, = 0. The first pessibility must be excluded since
it leads te the fellewing situatien: the w-limit of every peint of A" is a periedic erbit whese interier is in A’
(etherwise A” weuld discennect the plane and n weuld be greater than 1) ut this implies the existence
of a fixed point in A'. If n = 2 and u, = 0 then K is a nen-saddle set discennecting the plane inte twe
cempenents A and B. Suppese A is the unbeunded ene and suppese it is an e-cempenent (the argument is
the same for r-cempenents). Then if we take x € A sufficiently clese te A, w(z) is a periedic erlit centained
in /', that we denete by . Mereever B is centained in the interier of v (etherwise we weuld have a fixed
peint in A’). By the same argument, there is a peint y € B whese w- er w*-limit is a periedic oribit
centained in KA. If v # «' the erbits v and ' seund a plane regien C' hemeemerphic te an annulus. C' is
centained in A since, etherwise A" weuld discennect the plane in mere than twe cempenents. On the ether
hand, we preve new that there are ne peints z € k' —C'. Suppese, te get a centradictien, that z € K isin the
unbeunded cempenent of R — ' (the ether case is enly slightly different). Then w(z) is a periedic orlit, 7,
centaining v in its interier since, etherwise, the interier of v/ weuld e entirely centained in A and, thus,
it weuld centain a fixed weint of A". Since v is in the interier of v, 4 cannet e a limit erbit of peints of A.
This centradictien establishes that C' = K. If y = 7/, an easier argument preves that A =~ =1+'. O



Fig. 4. Centinuatien.

Remark 1. Accerding te Theerem 12 every iselated periedic erbit v is a nen-saddle set. If v is neither an
attracter ner a repeller, it fellews frem eur previeus discussien that W*(y) is hemeemerphic te a punctured
disk, while every initial part ef its unstabele manifeld ¢ () is hemeemerphic te an annulus with v as ene
of the beundary cempenents. On the ether hand, if p is an iselated equilibrium which is neither an attracter
ner a repeller then v = u,., and it fellews frem Theerem 10 that the initial parts ef the truncated unstalle
manifeld, I%(p), and the final parts ef the truncated stable manifeld, F'3(p), have the same hemetepy type.
As a matter of fact, it can be readily seen that the unstable manifeld W*(p) is the bijective centinueus
image (although not necessarily the homeomorphic image) of a set, of R? cempesed of a finite unien ef rays
frem O plus a finite unien ef clesed plane secters with vertex at 0.

We shall discuss in the sequel seme matters using the peint eof view of centinuatien, a central netien in
the Cenley index theery. We refer the reader te the papers [9.35,17] for infermatien en basic facts abeut
this netien. In Fig. 4 we repreduce an example frem [16] which shews that there exist a parametrized
family ¢, of flews in the plane and a centinuatien (A'y)xc; of an iselated invariant centinuum A’ such that
Sh(K)) # Sh(K ) fer every A > 0. Therefere shape is net necessarily preserved by centinuatien.

In the fellewing result we shew that if the shape is net preserved then the glebal complexity of iselated
invariant centinua can enly decrease threugh small perturbatiens, ie. the shape of the centinuatien A’ is
deminated by the shape of the initial centinuum Ay fer small values of A. On the ether hand, the preservatien
of shape implies a streng rigidity of the truncated unstable manifeld tewards defermatiens of the flew.

Theerem 13. Let (oa)acs be & perametrized family of flows in R? and let Ko be an isolated inveriant
continuum for . Suppose that the family of continue (Ky\)xcr continues Ko. Then there exists A\g < 1
such that Sh(K o) > Sh(Ky\) for every X < X\o. Moreover, if Sh(Ko) = Sh(K)) for every A € I, then the
initial parts of the trunceted unstable menifolds of Ko and K heve the same homotopy type.

Preef. Suppese /') decempeses the plane inte » cempenents and censider an iselating bleck N of A as
in the preef of Theerem §&; in particular, N decempeses the plane alse inte n cennected cempenents. Since



(K\)xer is a centinuatien ef Ay, then there exists a Ag < 1 such that N is an iselating neighberheed fer
every K with A < Ag. Since Ky C N then R? — N C R? — K. If the relatien Sh(Ko) > Sh(K ) dees net
held fer seme A < Ao then R? — K’y has a greater number of cennected cempenents than R? — Ky and,
thus, there are cempenents of R? — K’y with empty intersectien with R? — N. As a censequence they are
centained in N. Since these cempenents are invariant oy the flew ), the unien of A’y with all ef them is an
invariant cempactum ef ) centained in NV and NN is net an iselating neighberheed ef /'y. This centradictien
establishes the first part of the theerem.

If Sh(Kp) = Sh(K)) then R? — Ky and R? — K’y have the same number of cempenents, say n. We discuss
the case n = 1 and leave te the reader the slightly mere cemplicated general case. By the preservatien ef
the Cenley index by centinuatien, the numbers » and u. remain the same fer all A € I. This means that
the initial sectiens of Ay and A'y, and alse the initial parts ef their truncated unstable manifelds, have the
same hemetepy type. 0O

In the next result we shew that very streng dynamical censequences are derived frem the tepelegical
preperty of cennectedness of the initial sectiens.

Theerem 14. Let K be an isolated inveriant continuum of & flow in R? and let S be an initial section of
the trunceted unstable manifold WY(K) — K. Suppose S is connected and denote by A the component of
R? — K which contains S. Then in every bounded component B 7 A of R? — K there is & repeller R C B
whose basin of repulsion is B. Moreover, the repeller R conteins & criticel point of the flow.

Preef. Suppese B is a weunded compenent of R? — I different frem the cempenent A which centains S.
If N is an iselating sleck of A" as described in the preef of Theerem 8 then N® C A since, etherwise, S weuld
meet ether cempenents of R? — A and weuld net e cennected. Hence, the compenent C of &N lying in B
is tetally centained in N¢. The circle C is alse the beundary ef a disk D centained in B and, since every
orbit threugh C enters NV (in the future) and remains there, the disk D is negatively invariant by the flow.
As a censequence, in the interier of D there is a repeller R which repels the whele disk. Mereever, since [NV
is iselating, every peint of N N B sees te D in the past (and remains there), which implies that the basin
of repulsion of R is all B. On the ether hand, since D is negatively invariant then, fer every fixed ¢t < 0,
the cerrespendence x — o(z,t) defines oy restriction a map ;|D : D — D and, by Breuwer’s fixed peint
theerem, there exists a sequence of peoints z,, € D and a sequence of numbers ¢,, < 0, ¢t,, — 0 such that
@(Tn,tn) = zpn. By the cempactness of D there is a cenversent subsequence z,,, whese limit € D is a fixed
peint of the flew. O

The fellewing nice result by Alarcén, Guinez and Gutiérrez gives a relatien between glebal asymptetic
stability ef a critical weint and nen-existence of additienal critical peints in the case of discrete dynamical
systems.

Theerem 15. (See Alarcén, Guifiez, Gutiérrez [2].) Assume thet h € H. (homeomorphisms of R? conserving
the orientetion) is dissipative and p is en asymptotically stable fixed point of h. The following conditions
are equivelent:

(a) p is globally asymptoticelly stable.
(@) Fiz(h) = {p} end there exists an arc v C S? with end points et p and ce such that h(y) = 7.

The preef in [2] is based on Breuwer’s theery eof fixed peint free hemeemerphisms of the plane. Ortega
and Ruiz del Pertal give in [30] an alternative preef based en the theery of prime ends.

Inspired oy Theerem 15, we present a result en centinua A which are attracters ef dissipative flews in
the plane.



Theerem 16. Let K be a connected attractor of e dissipative flow ¢ in R?. The following conditions are

equivalent:

(a) K is a global atirector.
() There are no fived points in R?> — K and there exists an orbit v connecting ce and K (i.e. such thet
7] = ce when t — —ce and w(y) C K).

Preef. Since o is dissipative, then there exists a glebal attracter A’ of the flew and, thus, A" C A’. We must
preve that A = K”. Otherwise, there exists a woint x € K/ — K, and we censider w*(z). By the invariance
and the cempactness of A/, we have that w*(z) C K’ and, since K is an attracter, w*(z) N A = (). Hence
w*(z) dees net centain fixed peints and, by the Peincaré—Bendixsen theerem, w*(z) is a periedic erbit.
Mereever, K is net centained in the interier of this eriit since, in that case, v weuld meet w*(x). Hence in
the interier of the periedic erbit w*(x) must exist a fixed peint net belenging te A', which is a centradictien.
This establishes the implicatien () = (a); the cenverse implicatien is trivial. O

The fellewing result, which is a censequence of Theerem 16 and a theerem by Bhatia, Lazer and Szesge
in [6], gives a nice characterization of glebally attracting fixed peints.

Cerellary 17. Let K be & minimal attractor of & dissipative flow in R?. The following conditions are equiv-
elent:

(a) K is a globally attrecting fixed point.

() There are no fived points in R2 — K and there exists an orbit connecting ce and K .

Preef. It is a censequence of Theerem 16 and Bhatia, Lazer and Szege’s Theerem 4.1 in [6] accerding which
minimal glekal attracters in R? are fixed peints. 0O

We shall e cencerned new with eifurcatiens at critical peints ef the flew. Suppese that we have a cen-
tinueus family of flews oy : R? x R — R?, with A € I, such that p € R? is an equilibrium fer every A. There
are several nen-equivalent definitiens ef bifurcatien at p when {p} is an attracter fer on. We adept the
fellewing ene, which cenveys the idea that a new centinuum, evelving frem p, is created in the bifurcatien.

Definitien 3. Let ¢y : R?> x R — R?, with A € I, be a centinueus family ef flews. Suppese that p is
a fixed point fer every o\ and {p} is an attracter fer p. Suppese alse that (M*)xc;, with M° = {p},
M} of M* inte twe
centinua, where ene of them is {p} for every A with 0 < A < Ay, we say that a bifurcatien takes place in p.

is a centinuatien ef {p}. If there is a Ay € (0,1] and a Merse decempesition {M}

a’?

Cencerning the fermer definitien we remark that the erder is essential in the Merse decempesitien
{M2}, M} and that we admit the twe pessibilities M} = {p} fer every A with 0 < A < Xy er M} = {p} fer
every A with 0 < A < Ag. Since {p} is an attracter fer oo we can select Ao se small that M A is an attracter
of trivial shape for o) with 0 < A < g (see [39] for preperties of centinuatiens ef attracters). Since M7 is
an attracter fer the restricted flow ox|[M*, then M) is alse an attracter fer the flew (oy. The mest neterieus
particular case is when le‘ = {p} is a repeller for o\ with 0 < A < A and M) is a periedic erbit. In this
case we say that a Hopf bifurcetion takes place at p.

The bifurcatien may be embedded in a mere complex precess of centinuatien ef an iselated invariant
centinuum. Suppese we have a centinuum A" = Ky which is invariant and iselated for (g, endewed with
a Merse decempesition M = {Mq, My, ..., My} with M; = {p} and suppese that A" centinues te a family of
centinua (A )acr. Then M alse centinues te Merse decempesitions M = { M} M3, ..., M} of the K\ and



we suppese that simultaneeusly a bifurcatien takes place at p accerding te the previeus definitien, ie. that
M3 has itself a Merse decempesition {M,', M}} as in Definitien 3. Then M = M, MM M3, ..., M}
is alse a Merse decempesition of A\ which embedies infermatien abeut the wifurcatien and abeut the
centinuatien. We call M* the Merse decempesition asseciated te the bifurcatien. We write the Merse
equation of MM in the usual ferm PA(t) = R (t) + (1 + t)®@*(1), where @*(1) is a pelynemial whese
ceefficients are nen-negative integers.

Theerem 18. Let K be an isolated inveriant continuum of & flow o in R? and let M = {Mi, Ms,. .., M}
be & Morse decomposition of K with My = {p}. Suppose thet & Hopf bifurcetion tekes place at p for
o continuation oy of © and denote by M> = {M}, M} M3,..., M} the associeted Morse decomposition.
Then PN — P = t? 4+ t, where P corresponds to the Morse equation of M.

Preef. The main difference of M with the initial Merse decempesitien M is that the peint p becemes
repelling and an attracting periedic erbit M. evelves frem p. The repelling weint is respensisle for the
term ¢? and the attracting erit adds the term ¢ te the Merse equations. The centributien of the rest of the
Merse sets remains the same, since they are centinuatiens ef the Merse sets of the initial decoempesitien. O

We shall see new that the relatien P) — P = t2 1t captures seme of the tewelegy invelved in the Hewpf
bifurcatien, altheugh net the whele of the dynamics: if we have a bifurcatien (net necessarily Hepf) whese
Merse equation satisfies this particular relatien then we shall shew that a new attracter with the shape of S*
(altheugh net necessarily a periedic erit) is created in the bifurcatien. The fellewing result enumerates
all the pessible types of bifurcatiens. Ve see that the rest of the bifurcatiens have ne effect en the Merse
equatiens.

Theerem 19. Let M = {Mi,Ms,..., My} be & Morse decomposition of K with My = {p}. Suppose
thet & bifurcation (not necessarily Hopf) tekes place at p for & continuation oy of ¢ end denote by
MY = {M} M} M2,... ,M}} the associated Morse decomposition. Then there are the following possi-
bilities: (1) M) = {p} is an attractor end M} is & non-seddle set with the shape of S, (2) M} = {p} is an
ettractor and M « seddle-set with triviel shape, (3) M} is an attrector of trivial shepe and M = {p} is
o seddle-set, () M) is an attrector with the shape of S' and M} = {p} is a repeller. In case (}) we have
the relation PN — P =t2 -t for the Morse equations and in cases (1), (2), (3) the Morse equations remein
uneltered.

Preef. The Merse decempesition {M,', M} of M} censists of twe sets, ene of them, for instance M}, is
equal te {p} and the ether, M)

a

is a plane centinuum. This plane centinuum cannet separate the plane
inte mere than twe cempenents since, being M of trivial shape, all the bounded cempenents of R? — M}
must be centained in M; and, thus, each ef them must centain a Merse set of the decompesition of M
ether than M), and there is enly ene. As a censequence we have the fellewing wessibilities: (1) M} = {p}
and M} a centinuum with the shape of S!, (2) M} = {p} and M; a centinuum with trivial shape,
(3) M} a centinuum ef trivial shape and M = {p}, (4) M} a centinuum with the shape of S and
M} = {p}. We discuss first the case (4). As we remarked before, since M; is an attracter and M, is
an attracter ef the restriction of the flew (y|M; then M) is, in fact, an attracter ef . The beunded
compenent of R? — M} must be centained in M; and p must lie there. As a censequence, the beunded
cempenent of R?— M) is the basin ef repulsien of {p}, which means that {p} is a repeller for 5 (and net enly
for the restriction ()| M7)). If we calculate new the Merse equations of the asseciated Merse decempesition
we see that the repeller {p} centributes with the term ¢? and the evelving attracter M, centributes with
a new t. The rest of the Merse sets have the same centributien te the Merse equatiens as in P since they
are centinuatiens ef these of the decermpesition M. Hence P) — P — t2 +t. The rest of the cases are



similarly discussed. Case (1) is very similar te case (4) and we leave it te the reader. Cases (2) and (3)
have in cemmen the fact that M7 has a Merse decermnpesition {M,', M} inte twe sets of trivial shape. The
Cenley index of M) is the index of an attracter ef trivial shape and the Cenley index of M;} can be easily
calculated frem the leng exact sequence of the Merse decempesition of M, frem which it results a trivial
Cenley index. A censequence of this is that M;' is a saddle-set and the Merse equation P is net changed
after the wifurcatien. 0O

Fer a discussien ef generalized Peincaré—Andrenev—Hepf bifurcatiens we refer the reader te the paper [41].
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