# Unstable manifold，Conley index and fixed points of flows ${ }^{\text {w }}$ 

Héct•r Barge，José M．R．Sanjurj•＊<br>Facultad de C．C．Matemáticas，Universidad Complutense de Madrid，Madrid 28040，Spain

A B S TRACT


#### Abstract

 that some parts of the unstable manifold admit sections carrying a considerable amount of information．These sections enable the construction of parallelizable structures which facilitate the study of the flow．From this fact，many nice consequences are derived，specially in the case of plane continua．For instance，we give an easy method of calculation of the Conley index previded we have seme knowledge of the unstable manifold and，as a consequence，a relati•n between the Brouwer degree and the unstable manif॰ld is established for smoeth vector fields．We study the dynamics of n七n－saddle sets， preperties of existence or n$n$－existence of fixed p $\bullet i n t s$ of flows and cenditi•ns under which attractors are fixed peints， M•rse decempesitions，preservation of t $\bullet$ plogical prøperties by centinuati•n and classify the bifurcati•ns taking place at a critical peint．


## 1．Introduction

In this paper we are interested in the study of the unstable maniføld of an iselated invariant continuum $K$ －f a flow $\varphi: M \times \mathbb{R} \rightarrow M$ defined $\bullet$ a locally compact metric space $M$ ．We shall use the n七tation $W^{u}\left(K_{)}\right)$for the unstable manifold and we shall $\bullet$ ften consider the flow $\varphi \mid W^{u}\left(K^{K}\right): W^{u}(K) \times \mathbb{R} \rightarrow W^{u}(K)$ restricted t• the unstable manifold．The structure of $W^{u}\left(K^{\prime}\right)$ turns eut te be very complicated in many cases．By the very definition of unstable manifold，$K$ is a repelling set of the restricted flow $\varphi \mid W^{u}(K)$ ，i．e．$\omega^{*}(x) \in K$ for every $x \in W^{u}(K)$ ，where $\omega^{*}$ is the negative •mega－limit．H॰wever，in general，$K$ is n七t stable for negative times， which prevents us from saying that $K$ is a repeller for $\varphi \mid W^{u}(K)$ ．One of the nicest properties of attractors and repellers is that the flow is parallelizable when restricted to the complement of the attractor or the repeller in its basin of attraction or repulsion．H॰wever，if we consider the flow $\varphi \mid W^{u}(K)$ ，the structure of $W^{u}(K)-K$ might be rather wild in many cases and，in particular，the flow might be non－parallelizable in $W^{u}(K)-K$ ．Some attempts have been made te give $W^{u}\left(K^{\prime}\right)$ a reas nable structure；hewever，they pass

```
* The auth\bulletrs are supp\bulletrted by MINEC\bullet (MTM2012-30719).
* C\bulletrresp\bulletnding auth\bulletr.
    E-mail addresses: hbarge@ucm.es (H. Barge), j\bulletse_sanjurj\bullet@mat.ucm.es (J.M.R. Sanjurj\bullet).
```

through defining a different topology，the se－called intrinsic topology，in $W^{u}\left(K^{\prime}\right)$（see［32，40，3，37］）．This topology does not agree，in general，with the standard topology inherited from the phase space $M$ se the problem remains of studying $W^{u}(K)$ with its natural topology to detect some regularity in its structure． One of the aims of this paper is to contribute with some knowledge in that direction．In spite of the fact that $\varphi \mid W^{u}(K)-K$ is not parallelizable，we see that there exist certain sections $S$ of the flow such that it is parallelizable in an initial purt of $W^{u}(K)-K$ ，i．e．in the part of the flow coming before the section $S$ ． From this fact，which is proved in the very general case of flows in locally compact metric spaces，many nice consequences are derived，specially in the case of plane continua，to whose study we devote much of the paper．For instance，we give an easy method of calculation of the Conley index provided we have some knowledge of the unstable manifold．The Conley index is a basic toel in the theory of differential equations，and our meth七d for the calculation of this index alse allows the determination of the Brouwer degree of smoeth vector fields in $\mathbb{R}^{2}$ ．We study the dynamics of non－saddle sets，properties of existence or n七n－existence of fixed peints of flows，in particular conditi•ns under which attractors of flows are fixed points， Merse decompositi七ns，preservation of topolegical properties by continuation and classify the bifurcations taking place at a critical peint．

We shall use through the paper the standard notation and terminolegy in the theory of dynamical systems．In particular，we shall use the notation $\gamma(x)$ for the trajectory of the p॰int $x$ ，i．e．$\gamma(x)=\{x t \mid$ $t \in \mathbb{R}\}$ ．Similarly for the positive semi－trajectory $\gamma^{+}(x)=\left\{x t \mid t \in \mathbb{R}^{+}\right\}$and the negative semi－trajectory $\gamma^{-}(x)=\left\{x t \mid t \in \mathbb{R}^{-}\right\}$．By the omega－limit of a set $X \subset M$ we understand the set $\omega(X)=\bigcap_{t>0} \overline{X \cdot[t, \infty)}$ while the negative omega－limit is the set $\omega^{*}(X)=\bigcap_{t>0} \overline{X \cdot(-\infty,-t]}$ ．The unstable manifold of an invariant compactum $K$ is defined as the set $W^{u}(K)=\left\{x \in M \mid \emptyset \neq \omega^{*}(x) \subset K\right\}$ ．Similarly the stable manifold $W^{s}(K)=\{x \in M \mid \emptyset \neq \omega(x) \subset K\}$ ．An invariant compactum $K$ is stable if every neighborhood $U$ of $K$ contains a neighborh七ed $V$ of $K$ such that $V \cdot[0, \infty) \subset U$ ．Similarly，$K$ is negatively st able if every neighborheed $U$ of $K$ centains a neighborheod $V$ of $K$ such that $V \cdot(-\infty, 0] \subset U$ ．The compact invariant set $K$ is said to be attracting provided that there exists a neighborhood $U$ of $K$ such that $\omega(x) \subset K$ for every $x \in U$ and repelling if there exists a neighborhood $U$ of $K$ such that $\omega^{*}(x) \subset K$ for every $x \in U$ ． An attractor（or asymptotically st compactum）is an attracting stable set and a repeller is a repelling negatively stable set．We stress the fact that stability（positive or negative）is required in the definition of attractor or repeller．If $K$ is an attractor，its region（or basin）of attraction $\mathcal{A}$ is the set $\bullet$ all pөints $x \in M$ such that $\omega(x) \subset K$ ．It is well kn七wn that $\mathcal{A}$ is an invariant epen set and that the flow $\varphi \mid \mathcal{A}-K$（i．e．the flow restricted to $\mathcal{A}-K$ ）has compact sections and is parallelizable．By a section of $\mathcal{A}-K$ we understand a set $S \subset \mathcal{A}-K$ such that for every $x \in \mathcal{A}-K$ there exists a unique $t \in \mathbb{R}$ such that $x t \in S$ ．On the ether hand $\varphi \mid \mathcal{A}-K$ parallelizable means that there exists a set $C \subset \mathcal{A}-K$ such that the map $C \times \mathbb{R} \rightarrow \mathcal{A}-K$ defined by $(x, t) \mapsto x t$ is a homeomorphism；in this case $C$ is a section and the map $\sigma: \mathcal{A}-K \rightarrow \mathbb{R}$ defined by the property $x \sigma(x) \in C$ for every $x \in \mathcal{A}-K$ is continuous．Of course，the notions of section and parallelizability make sense for any invariant region of the flow．

We shall assume in the paper some knowledge of the Conley index theory of is lated invariant compacta of nows．These are compact invariant sets $K$ which possess a se－called isolating neighborhood，that is， a compact neighborhood $N$ such that $K$ is the maximal invariant set in $N$ ，or setting

$$
N^{+}=\{x \in N: x[0,+\infty) \subset N\} ; \quad N^{-}=\{x \in N: x(-\infty, 0] \subset N\}
$$

such that $K=N^{+} \cap N^{-}$．We shall make use of a special type of iselating neighborheods，the se－called iselating blecks，which have geod topelogical properties．Mere precisely，an iselating bleck $N$ is an iselating neighborh七od such that there are compact sets $N^{i}, N^{\bullet} \subset \partial N$ ，called the entrance and exit sets，satisfying
（1）$\partial N=N^{i} \cup N^{o}$ ，
（2）for every $x \in N^{i}$ there exists $\varepsilon>0$ such that $x[-\varepsilon, 0) \subset M-N$ and for every $x \in N^{\bullet}$ there exists $\delta>0$ such that $x(0, \delta] \subset M-N$ ，
（3）for every $x \in \boldsymbol{\partial} N-N^{i}$ there exists $\varepsilon>0$ such that $x[-\varepsilon, 0) \subset \dot{N}$ and for every $x \in \boldsymbol{\partial} N-N^{\bullet}$ there exists $\delta>0$ such that $x(0, \delta] \subset \dot{N}$ ．

These blecks form a neighborhood basis of $K$ in $M$ ．We shall alse use the n七tation $n^{+}=N^{+} \cap \partial N$ and $n^{-}=N^{-} \cap \partial N$ ．The Conley index $h(K) \bullet f$ an iselated invariant set $K$ is defined as the homotopy type of the pair $\left(N / N^{\bullet},\left[N^{\bullet}\right)\right.$ ，where $N$ is any is॰lating block of $K$ ．A crucial fact concerning the definition is，$\bullet$ course，that this homotopy type does not depend on the particular ch $\bullet$ ice of $N$ ．If the flow is differentiable， the iselating blocks can be chosen te be differentiable manifolds which centain $N^{i}$ and $N^{\bullet}$ as submanifelds $\bullet$ of their boundaries and such that $\boldsymbol{\partial} N^{i}=\boldsymbol{\partial} N^{\bullet}=N^{i} \cap N^{\bullet}$ ．F॰r flows defined $\bullet \mathbb{R}^{2}$ ，the exit set $N^{\bullet}$ is the disjoint union $\bullet$ a finite number of intervals $J_{1}, \ldots, J_{m}$ and circumferences $C_{1}, \ldots, C_{n}$ and the same is true for the entrance set $N^{i}$ ．We refer the reader t• $\left.9-11,35\right]$ for information about the Conley index theory．

We use a minimum of topelogical notions in the paper．Hom↔topy and homelogy theory play an important r॰le in the Cønley index theory，h七wever we try te restrict eurselves te the most basic facts．There is a form of h॰motopy which has proved te be the most cenvenient for the study of the global topological properties －f the invariant spaces invelved in dynamics，namely the shape theory introduced and studied by Karel Borsuk．We do not use shape theory in this paper．However，it is convenient toknow that søme topological properties of plane continua have a very nice interpretation in terms of shape．Tw compacta are said te be of the same shape if they have the same homotopy type in the homotopy theory of Borsuk（or shape theory）．The following result gives a classification of the shapes of all plane continua．

Theorem 1．（See K．Borsuk［7］．）Two continua $K$ and $L$ contained in $\mathbb{R}^{2}$ have the same shape if and only if they disconnect $\mathbb{R}^{2}$ in the same number（finite or infinite）of connected components．More generally， the shape of $K$ dominates the shape of $L$（shortly $S h(K) \geq S h(L)$ ）if and only if the number of connected components of $\mathbb{R}^{2}-L$ is less than or equal to the number of components of $\mathbb{R}^{2}-K$ ．In particular，continuum has trivial shape（the shape of point）if and only if it does not disconnect $\mathbb{R}^{2}$ ．A continuum has the shape of a circle if and only if it disconnects $\mathbb{R}^{2}$ into two connected components．Every continuum has the shape of wedge of circles，finite or infinite（Hawaian earring）．

Alth $\quad$ ugh we de not make use of shape theory in $\bullet u r$ preofs，we may $\bullet c c a s i \bullet n a l l y ~ r e f e r ~ t e ~ t h i s ~ t h e o r e m ~$ and to the terminelogy derived frem it to make it clear that some of the results can be interpreted in that context．For a complete treatment of shape theory we refer the reader t $[7,12,13,27,2 \mathbf{6}, 3 \mathbf{8}]$ ．The use of shape in dynamics is illustrated by the papers $[18,15,1 \mathbf{9}, 21,24,32,33,36]$ ．For information about basic aspects of dynamical systems we recommend $[5,34,44]$ and for algebraic topology the books written by Hatcher［22］ and Spanier［42］are very useful．

Concerning the Brouwer degree and fixed point theory we suggest Refs．［1］and［31］．
2．On the structure of the unstable manifold

In this secti•n we study the general case of a flow $\varphi: M \times \mathbb{R} \rightarrow M$ defined $\bullet$ a locally compact metric space $M$ ，and we consider an isolated invariant compactum $K$ of the flow．Our aim is t• understand the dynamics in $W^{u}(K)$ ，the unstable manifold of $K$ ．The set $W^{u}(K)-K$ is called the truncated unstable manifold of $K$（we remark that this terminology has been used with other meaning in［40］）．If we consider the restriction $\varphi_{0}=\varphi \mid W^{u}(K) \times \mathbb{R}$ of the flow $t \bullet W^{u}(K)$ then，in general，$K$ is not negatively stable and，therefore，it is n $\bullet$ a repeller $\bullet \varphi_{0}$ ．Moreover，the flow restricted to the truncated unstable manifold $W^{u}(K)-K$ is n七t，in general，parallelizable．However，we shall prove in this section that if we restrict
－urselves to an initial part of the truncated unstable manifold（in a sense that will be precised）then we －btain a parallelizable structure．

We start by studying an impertant particular case in which the flow on the truncated unstable manifold is，indeed，parallelizable．A similar result is contained in our paper［40］，h七wever we give here a more direct proof．We recall that an isolating block $N$ is non－return if every orbit leaving $N$（in positive time）never returns to $N$（see［40］）．In Example 1 we shall sh七w that this result does not hold in the absence of nen－return iselating blecks．

Theorem 2．Let $K$ be an isolated invariant compactum and suppose that $K$ has a non－return isolating block $N$ ．Then $K$ is a repeller for the flow $\varphi_{0}=\varphi \mid W^{u}(K) \times \mathbb{R}$ and，as a consequence，for every compuct section $S$ of $W^{u}(K)-K$ the $\operatorname{map} h: S \times \mathbb{R} \rightarrow W^{u}(K)-K$ defined $b y(x, t) \mapsto x t$ is a homeomorphism（i．e． the truncated unstable manifold is parallelizable．）．

Proof．By the definition of unstable manif॰ld，$K$ is a repelling set for $\varphi_{0}=\varphi \mid W^{u}(K) \times \mathbb{R}$ ．In order te qualify as a repeller $K$ must als be negatively stable．In order to prove this，we remark that the fact that $N$ is n七n－return implies that $W^{u}(K) \cap N=N^{-}$．N七w，if $K$ is n七t negatively stable，then there exist a neighborheod $U \bullet K$ ，a sequence $x_{n} \in W^{u}(K), x_{n} \rightarrow x_{0} \in K$ and a sequence $t_{n} \rightarrow-\infty, t_{n}<0$ ，such that $x_{n} t_{n} \notin U$ ．Since $W^{u}(K) \cap N=N^{-}$we may assume that $x_{n} \in N^{-}$for every $n$ and，since $N^{-}$is negatively invariant，$x_{n} t_{n} \in N^{-}$．By the compactness of $N^{-}$we may als assume that $x_{n} t_{n} \rightarrow y \in N^{-}$． Since $x_{n} t_{n} \notin U$ for every $n$ we have that $y \in N^{-}-K$ ．Møreover for every $t \in \mathbb{R}$ we have that $t_{n}+t$ is negative and $x_{n}\left(t_{n}+t\right) \in N^{-}$for almost all $n$ ，hence $y t \in N^{-}$．Thus the trajectory $\gamma(y) \subset N^{-}-K$ ，which is in contradiction to the fact that $N$ is isolating．This completes the proof of the theorem．

If $K$ does not have a n七n－return iselating block then $W^{u}(K)-K$ is n七t，in general，parallelizable．We postpone the proof of this fact to Example 1 since we must establish first some results．Our aim n七w is to study the general situation and prove that，in spite of this negative feature，certain parts of the truncated unstable manifold admit a parallelizable structure．We start by intreducing a definition．

Definition 1．Let $K$ be an isolated invariant compactum and let $S$ be a compact section of the truncated unstable manifold $W^{u}(K)-K$ ．Then $S$ is said to be an initial section provided that $\omega^{*}(S) \subset K$ ．

It is easy to see that if $N$ is an iselating block of $K$ then $n^{-}$is an example of initial section．If $S$ is an initial section we define $I_{S}^{u}(K)=S(-\infty, 0]$ and we say that $I_{S}^{u}(K)$ is an initial part of the truncated unstable munifold．Obviously $I_{S}^{u}(K)=\left\{x \in W^{u}(K)-K: x t \in S\right.$ with $\left.t \geq 0\right\}$ ．It will be seen that，alth七ugh $I_{S}^{u}(K)$ depends on $S$ ，all the initial parts have basically the same structure．In accordance with this terminology we say that $I_{S}^{u}(K) \cup K$ is an initial part of the unstable manifold of $K$ and we denete it by $W_{S}^{u}(K)$ ．

Theorem 3．Let $K$ be an isolated invariant compactum and suppose that $S$ is a compact section of the truncated unstable manifold $W^{u}(K)-K$ ．If $S$ is initial then the map $h: S \times(-\infty, 0] \rightarrow I_{S}^{u}(K)$ defined by $(x, t) \mapsto x t$ is homeomorphism．Conversely，if $h$ is homeomorphism then $S$ is initial．

Proof．The map $h$ is，obviously，a continuous bijection，hence we have to prove only that if $x_{n} t_{n} \rightarrow x_{0} t_{0}$ ， with $x_{n}, x_{0} \in S$ and $t_{n}, t_{0} \in(-\infty, 0]$ then $x_{n} \rightarrow x_{0}$ and $t_{n} \rightarrow t_{0}$ ．We remark that the sequence $t_{n}$ is bounded since，etherwise，there exists a subsequence $t_{n_{k}} \rightarrow-\infty$ and，thus，$x_{n_{k}} t_{n_{k}} \rightarrow x_{0} t_{0} \in \omega^{*}(S)$ with $x_{0} t_{0} \notin K$ ，in contradiction to the hypothesis that $S$ is an initial section．Now consider a subsequence $x_{n_{m}}$ of $x_{n}$ ．Suppese that $x_{n_{m}} \rightarrow y \in S$ ．Since $t_{n_{m}}$ is alse bounded，it has a convergent subsequence as well，say $t_{n_{m_{l}}} \rightarrow s \in(-\infty, 0]$ ．Hence $x_{n_{m_{l}}} t_{n_{m_{l}}} \rightarrow y s \in I_{S}^{u}(K)$ ．But $x_{n_{m_{l}}} t_{n_{m_{l}}} \rightarrow x_{0} t_{0}$ and，as a censequence，$x_{0} t_{0}=y s$ and，being $S$ a section，$y=x_{0}$ ．This proves that every convergent subsequence of $x_{n}$ converges to $x_{0}$ and，
since $S$ is compact, $x_{n} \rightarrow x_{0}$. On the ether hand, using that the sequence $t_{n}$ is bounded, a similar argument shows that $t_{n}$ converges to $t_{0}$.

Suppose n七w that the map $h: S \times(-\infty, 0] \rightarrow I_{S}^{u}(K)$ defined by $(x, t) \mapsto x t$ is a homeomorphism. We consider an is lating block $N$ of $K$ such that $N \cap S=\emptyset$. This implies that $N^{-} \subset I_{S}^{u}(K)$. Suppose, to get a contradiction, that there exists $y \in \omega^{*}(S), y \notin K$. Then, by definition, there exist $x_{n} \in S, t_{n} \rightarrow-\infty$ such that $x_{n} t_{n} \rightarrow y$. We may assume that $t_{n}<0$ for every $n$. N $\bullet$, if there is a subsequence $\left(x_{n_{k}} t_{n_{k}}\right) \subset N^{-}$then $x_{n_{k}} t_{n_{k}} \rightarrow y$ and, hence, $y \in N^{-}$. But, since $N^{-} \subset I_{S}^{u}(K)$, we have that $y=x t_{0}$ with $x \in S$ and $t_{0}<0$ and this is in contradiction to the fact that $h$ is a homemorphism. Then, necessarily, $x_{n} t_{n} \notin N^{-}$for almost every $n$ and, hence, there is a sequence $s_{n}$ such that $s_{n}<t_{n}$ and $x_{n} s_{n} \in n^{-}$for almost every $n$. By the compactness of $n^{-}$there is a subsequence $x_{n_{k}} s_{n_{k}} \rightarrow z \in n^{-}$with $s_{n_{k}} \rightarrow-\infty$ and the same argument as before leads to a contradiction.

In the next result we establish a topological property of $I_{S}^{u}(K)$.

Propesition 4. If $S$ is an initial section of the truncated unstable manifold then the closure of $I_{S}^{u}(K)$ in $M$ is cont ined in $I_{S}^{u}(K) \cup K$. As consequence $W_{S}^{u}(K)=I_{S}^{u}(K) \cup K$ (initial unstable manifold) is closed in $M$. In fact, $W_{S}^{u}(K)$ is compact.

Preof. If $y$ is in the closure of $I_{S}^{u}(K)$ then $x_{n} t_{n} \rightarrow y$ with $x_{n} \in S, t_{n} \leq 0$. We may assume that $x_{n} \rightarrow x \in S$. If $t_{n}$ is bounded then there exists a convergent subsequence $t_{n_{m}} \rightarrow t$. Hence $x_{n_{m}} t_{n_{m}} \rightarrow x t=y \in I_{S}^{u}(K)$. If $t_{n}$ is unbounded, then there exists a subsequence $t_{n_{k}} \rightarrow-\infty$ and $x_{n_{k}} t_{n_{k}} \rightarrow y \in \omega^{*}(S) \subset K$. This proves the inclusion. Since $K$ is compact, it is obvious that $W_{S}^{u}(K)$ is closed in $M$. Moreover, if $N$ is an iselating block, the fact that $S$ is initial implies the existence of a $t_{0}<0$ such that $S\left(-\infty, t_{0}\right] \subset N^{-}$. Hence $W_{S}^{u}(K)=\left(W_{S}^{u}(K) \cap N\right) \cup S\left[0, t_{0}\right]$ is compact.

We see now that all initial sections are homeomorphic and that the homeomorphism can be defined in a very natural way.

Theorem 5. Let $K$ be an isolated invariant compactum and suppose that $S$ and $T$ are initial sections of the truncated unstable manifold $W^{u}(K)-K$. Then the map $h: S \rightarrow T$ defined by $h(x)=\gamma(x) \cap T$ is a homeomorphism.

Proof. As we said before, if $N$ is an isolating block of $K$ then $n^{-}$is an initial section and there is a $t_{0}<0$ such that $S\left(-\infty, t_{0}\right] \subset N^{-}$. N七w, the exit map of $N^{-}$(i.e. the map which assigns te each $x \in N^{-}-K$ the point $\gamma(x) \cap n^{-}$) can be used to define a homeomorphism e:St$\rightarrow n^{-}$and, as a consequence, the map $S \rightarrow n^{-}$defined by $x \rightarrow \gamma(x) \cap n^{-}$is alse a homeomorphism. The map $h$ in the statement of the theorem is a composition of this homeomorphism and the inverse of the analogeus homeomorphism $T \rightarrow n^{-}$.

All eur censiderations se far are relative to the unstable manif $\bullet$ of $K$. It is clear, hewever, that they can be dualized for the stable manifold $W^{s}(K)$ se that they are valid for the dual notions of final section and final purt of the truncated stable manifold $W^{s}(K)-K$, which are defined in the obvious way. We shall use the notations $F_{S}^{s}(K)$ and $W_{S}^{s}(K)$ for the final part of the truncated stable manifold and final part of the stable manifold respectively, correspending to the final section $S$. All the previous results hold for this dual situation and, in particular, Theorem 3 takes the following nice form.

Theorem 6. Let $K$ be an isolated invariant compactum and suppose that $S$ is a compact section of the truncated stable manifold $W^{s}(K)-K$. If $S$ is final then the $m a p h: S \times[0, \infty) \rightarrow F_{S}^{s}(K)$ defined by $(x, t) \mapsto x t$ is homeomorphism. Moreover, the restriction $\varphi_{0}=\varphi \mid W_{S}^{s}(K) \times \mathbb{R}$ of the flow to the final part of the stable manifold $W_{S}^{S}(K)$ defines a semi-dynamical system and $K$ is alobal attractor of $\varphi_{0}$.


Fig. 1. Mendelson flow.


Fig. 2. Non-initial compact section. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

We remark that it is not in general true that $K$ is an attractor for the flow considered in the whole stable manifold $W^{s}(K)$. This a consequence of the following example.

Example 1. The flow defined by Mendelson in [29] (see Fig. 1) provides an example of an isolated invariant continuum $K=\left\{p_{2}\right\}$ which is an unstable attracting set of $\mathbb{R}^{2}$ with $W^{s}(K)=\mathbb{R}^{2}-\left\{p_{1}\right\}$ (we remind that the lack of stability means that $K$ does not qualify as an attractor according to our definition). Here the final section $S$ is homeomorphic to a segment (we can take, for instance, a semicircle with center $p_{2}$ and radius $r=d\left(p_{1}, p_{2}\right) / 2$ in the lower semiplane) while the truncated stable manifold $W^{s}(K)-K$ is $\mathbb{R}^{2}-\left\{p_{1}, p_{2}\right\}$. Then $W^{s}(K)-K$ is not parallelizable since, otherwise, $\mathbb{R}^{2}-\left\{p_{1}, p_{2}\right\}$ would be homeomorphic to $S \times \mathbb{R}$, which is not the case. This proves that $K$ is not an attractor in $W^{s}(K)$. This example can be dualized to show that, in general, the truncated unstable manifold $W^{u}(K)-K$ is not parallelizable.

Example 2. The flow described by Fig. 2 provides an example of a compact section of a continuum $K=\{p\}$ which is not initial. The section is marked in red.

Example 3. The following remarkable example (Fig. 3), presented by Campos, Ortega and Tineo in [8], describes a flow in a disk where all points in the boundary are stationary and such that the whole boundary is the $\omega$-limit and the $\omega^{*}$-limit of every interior point. The boundary $K$ is not isolated and its truncated unstable manifold does not have compact sections. This example shows that the condition of $K$ being isolated is necessary in Theorem 3.


Fig. 3. Flow in a disk.

## 3. Conley index of plane continua

We start this section by giving a precedure te calculate the Conley index of a plane continuum $K$ by inspection of its unstable manifold tegether with some top॰logical information $\bullet$ n $K$. We •nly need to kn॰w the number $\bullet$ f connected compenents in which $K$ decomposes $\mathbb{R}^{2}$ (i.e. the number $\bullet$ comp॰nents $\bullet \mathbb{R}^{2}-K$ ) and telecate an initial section $\bullet W^{u}(K)-K$ (we recall that n $n$ all compact secti•ns are initial). According t• this censtructi•n, iselating blocks of $K$ are n $\bullet$ necessary te determine the Cenley index. First we need the following auxiliary result.

Lemma 7. Let $K$ be non-empty isolated invariant continuum of the flow $\varphi: \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{m}$ with $m \geq 1$. Then $\mathbb{R}^{m}-K$ has finite number of connected components.

Proof. We remark first that if $U$ is an $\bullet$ pen neighborhood of $K$ then all c•mpenents $\bullet \mathbb{R}^{m}-K$ except a finite number of them are contained in $U$ (this is valid for every continuum in $\mathbb{R}^{m}$, even if it is n $n$-is॰lated). In ©rder t• prove it, den te by $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ the c•nnected c•mpønents of $\mathbb{R}^{m}-K$, where $A_{1}$ is the n• n-bounded $\bullet$ ne, and take a closed ball $D$ such that $K \subset \dot{D}\left(\right.$ and, thus, $\left.A_{2} \cup \ldots \cup A_{n} \cup \ldots \subset \dot{D}\right)$. If $\bullet$ ur remark is n七t true then an easy compactness argument shows that we have points $x_{n_{i}} \in A_{n_{i}}-U \subset D-U$, belonging to mutually disjoint components $A_{n_{i}}$, with $x_{n_{i}} \rightarrow x \in D-U$; but this is impossible since $x$ must belong te a compønent, $A$, which is an $\bullet$ pen set with empty intersectiøn with the rest of compønents. N $\bullet w$, if $K$ is iselated, suppose, t• get a contradiction, that $\mathbb{R}^{m}-K$ has an infinite number $\bullet$ cempønents. Then every is $\bullet$ lating neighborhood $N \bullet K$ contains a compønent $A_{n}$, which is an invariant set of the flow. Hence $N$ is not isolating for $K$.

Theorem 8. Let $K$ be non-empty isolated invariant continuum of the flow $\varphi: \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ and $S$ an initial section of its truncated unstable manifold. Then $S$ has a finite number of connected components. If we denote by $n$ the number of components of $\mathbb{R}^{2}-K$, by u the number of components of $S$ (or, equivalently, of an initial part of its truncated unstable manifold $I_{S}^{u}(K)$ ) and by $u_{c}$ the number of contractible components of $S$, then $u-u_{c} \leq n$ and
(a) If $u \neq 0$ and $u-u_{c}<n$ then the Conley index of $K$ is the pointed homotopy type of $\left(\bigvee_{i=1, \ldots, k} S_{i}^{1}, *\right)$, where $k=n+u_{c}-2$ and $S_{i}^{1}$ is pointed 1-sphere based on $*$ for $i=1, \ldots, k$.
(b) If $u-u_{c}=n$ then $K$ is a repeller and its Conley index is the pointed homotopy type of ( $S^{2} \vee$ $\left.\left(\bigvee_{i=1, \ldots, n-1} S_{i}^{1}\right), *\right)$, where the 2-sphere $S^{2}$ and all the $S_{i}^{1}$ are pointed and based on *.
（c）If $u=0$ then $K$ is andractor and Conley index is the pointed homotopy type of $\left(\bigvee_{i=1, \ldots, n-1} S_{i}^{1} \cup\right.$ $\{\bullet\}, \bullet)$ ，where the $S_{i}^{1}$ are pointed 1－spheres based on $*$ and • denotes a point not belonging to $\bigvee_{i=1, \ldots, n-1} S_{\imath}^{1}$ ．
 logically equivalent to a differentiable flow，we may assume that $\varphi$ is differentiable．Denote the unbounded compenent $\bullet \mathbb{R}^{2}-K$ by $A_{1}$ and the bounded components by $A_{2}, \ldots, A_{n}$ ．As a consequence of the results proved by Conley and Easton in［10］（see alse［14］）© the structure of isolating blocks we may assume that there exists an isolating block，$N$ ，of $K$ in $\mathbb{R}^{2}$ which is a connected surface with boundary and，hence， $N$ can be represented，up tomeomorphism，as $N=D_{1}-\left(\dot{D}_{2} \cup \ldots \cup \dot{D}_{n}\right)$ where the $D_{i}$ are closed disks with $D_{2} \cup \ldots \cup D_{n} \subset \dot{D}_{1}$（i．e．$N$ is h七memorphic to a perforated disk，where $\dot{D}_{2}, \ldots, \dot{D}_{n}$ are the h七les）．On the $\bullet$ ther hand，for every $i=2, \ldots, n$ ，the disk $D_{i}$ is contained in the bounded cennected com－ penent $A_{i} \bullet \mathbb{R}^{2}-K$ and $\dot{D}_{i}=A_{i}-\left(N \cap A_{i}\right)$ ．Cøncerning the unbounded component，we remark that $\mathbb{R}^{2}-D_{1}=A_{1}-\left(N \cap A_{1}\right)$ ．Mөreөver，the boundary $\partial N$ agrees with $N^{i} \cup N^{\bullet}$ where $N^{\bullet}$ is a disjøint uni•n $\bullet$ a finite number of intervals and circumferences and similarly is $N^{i}$ ．The intersection $N^{i} \cap N^{\bullet}$ censists －f the extremes of the intervals．Since all initial sections are homeomerphic，we can consider the particular case $S=n^{-}$，where $n^{-}=\boldsymbol{\partial} N \cap N^{-}$．This kind of isolating neighborhoods will be used several times in the sequel．

In $\bullet$ rder t $\bullet$ preve the theorem，we shall sh॰w first that every compenent $L \bullet N^{\bullet}$ centains exactly $\bullet$ ne component of $n^{-}$．Consider the case when $L$ is contained in the circle $C_{1}=\boldsymbol{\partial} D_{1}$ ．We may assume that $L \neq C_{1}$（七therwise $C_{1} \subset n^{-}$and，thus，$L \subset n^{-}$），hence $L$ is a topological interval．Suppose $x, y \in L \cap n^{-}$． We claim that every point $z \in L$ lying between $x$ and $y$ alse belongs t• $n^{-}$．Otherwise the trajectory of $z$ abandons $N$ at a negative time $t<0$ with $z[t, 0] \subset N$ and $z t \in N^{i}$ ．Then $z[t, 0]$ disconnects $D_{1}$ int• tw• compenents and we can express $D_{1}=D_{1}^{\mathbf{a}} \cup D_{1}^{b}$ where $D_{1}^{\boldsymbol{a}}$ and $D_{1}^{b}$ are h$\bullet$ meomorphic te closed discs and $D_{1}^{\boldsymbol{a}} \cap D_{1}^{b}=z[t, 0]$ ．Suppose $D_{1}^{b}$ is the disc containing $K$ ．Then $\bullet$ ne of the points $x, y$ ，say $x$ ，is in $D_{1}^{\boldsymbol{a}}$ ．Since the trajectory of $x$ cannot meet $z[t, 0]$ ，this trajectory is forced te leave $D_{1}$ ，and hence $N$ ，in the past，which is in contradiction te the fact that $x \in n^{-}$．This proves that $L$ contains at most $\bullet$ ne component of $n^{-}$．The discussion for the discs $D_{i}$ lying in the bounded components $\bullet \mathbb{R}^{2}-K$ is $\bullet$ nly slightly different and we leave it to the reader．

We shall sh七w n七w that $L \cap n^{-}$is n$n$－empty．We consider again the case when $L$ is contained in the circle $C_{1}=\boldsymbol{\partial} D_{1}$ and $L \neq C_{1}$ ．Suppose first that $N^{\bullet} \cap C_{1}$ c nsists $\bullet$ at least tw $\bullet$ compenents，where $L$ is $\bullet$ ne $\bullet$ them．Then $L$ is adjacent t tw compønents $\bullet N^{i} \cap C_{1}$ and we denote by $J \bullet n e \bullet f$ them．The set $\bullet p \bullet i n t s$ －f $\dot{L}$（i．e．the interval excluding the extremes）which leave $N$ in the past through $J$ is open and non－empty． S• is the set of pøints which leave $N$ through the uni•n of the other compønents of $N^{i} \cap C_{1}$ different from $J$ ． Hence（by connectedness）not all points of $\dot{L}$ leave $N$ in the past and at least $\bullet$ ne of them stays for all negative times and，thus，it belongs t• $n^{-}$．If $N^{\bullet} \cap C_{1}$ c॰nsists of exactly $\bullet$ ne compenent $L$（different fr$\bullet m$ the whele circle $C_{1}$ ）then $N^{i} \cap C_{1}$ has exactly $\bullet$ ne compenent $L^{\prime}$ ．Suppose，te get a contradiction，that $n^{-} \cap L$ is empty．If we represent by $\boldsymbol{B}$ the union of all the bounded comp॰nents of $\mathbb{R}^{2}-K$（i．e． $\boldsymbol{B}=A_{2} \cup \ldots \cup A_{n}$ ） then the entrance mape：$D_{1}-(K \cup \boldsymbol{B}) \rightarrow L^{\prime}$ defines a strong deformation retraction，which is impossible since $L^{\prime}$ is c॰ntractible and $D_{1}-(K \cup \boldsymbol{B})$ is n七t．This preves that $L \cap n^{-}$is n七n－empty．The discussion for the discs $D_{i}$ lying in the bounded components of $\mathbb{R}^{2}-K$ is again slightly different and we leave it te the reader．

Our discussion，s•far，sh॰ws that the compønents of $n^{-}$are in bijection with the compønents $\bullet N^{\bullet}$ ，and that this bijection is induced by the inclusion．Hence $u$ is finite and，since $N^{\bullet} \subset \partial N$ ，there are，at mest，$n$ n•n－contractible components of $n^{-}$，which preves that $u-u_{c} \leq n$ ．

We proceed now to the calculation of the Conley index．We discuss first the case when $u \neq 0$ and $u-u_{c}<n$ ．Since $\mathbb{R}^{2}-K$ has $n$ components then $N$ is a perforated disk with $n-1$ holes and，thus，has the

$i \neq 1$ ，the effect of collapsing the component $C_{i}$ t• a point，say $c_{i}$ ，amounts te fill a hole of $N$ and，hence，te subtract a copy of $S^{1}$ in the former wedge．If $\boldsymbol{i}=1$ ，then $D_{1}$ becomes a sphere after identifying its boundary to a point $c_{1}$ ，and the effect on the wedge is the same．H॰wever，since all those compenents collapse te the same point，we must identify all the points $c_{i}$ te a single p॰int $*$ ，which preduces new copies of $S^{1}$ ． The result，after the identifications are carried eut，amounts to subtracting a unit to $n-1$ ，getting $n-2$ copies of $S^{1}$ in the former wedge of circles．Now，the rest of the components of $N^{\bullet}$ are in bijection with the contractible compenents of $n^{-}$and，thus，there are $u_{c} \bullet f$ them．Each $\bullet$ ne contributes，after identification with $*$ ，a copy of $S^{1}$ ．Hence we $\bullet$ btain $n+u_{c}-2$ copies of $S^{1}$ ．If there are n components of $\partial N$ entirely contained in $N^{\bullet}$ then we have to identify $u_{c}$ contractible components to the point $*$ and the result is the same again．The discussion of the cases（b）and（c）is similar．We have only to remark that in the case（b） we have that $n^{-}=\boldsymbol{\partial} N$ and，thus，$K$ is a repeller and，when all the components $\bullet \partial N$ are collapsed te a point，we get a sphere $S^{2}$ with $n-1$ leops attached．The case（c）is the easiest $\bullet$ ne since $N^{\bullet}=n^{-}$is empty．

A nice consequence of Theorem 8 is the following result，which establishes a relation between the Brouwer degree and the number of contractible compenents of the initial sections on the unstable manif॰ld．

Corollary 9．Let $X$ be smooth vector field on $\mathbb{R}^{2}$ and suppose that the flow $\varphi$ is generated by $\dot{x}=-X(x)$ ． Let $K$ be non－empty isolated invariant continuum of $\varphi$ and $N$ an isolating block for $K$ ．Then $\operatorname{deg}(X, \dot{N})=$ $2-n-u_{c}$ ．

Preof．It is kn七wn（see $[43,28,23])$ that $\operatorname{deg}(X, \dot{N})=\chi(h(K))$ ，where $\chi$ stands for the Euler characteristic and $h(K)$ is the C七nley index of $K$ ．New，the Euler characteristic of the Cenley index of $K$ is，according te Theorem 8， $2-n-u_{c}$ ．

## 4．Dynamics of plane continua

In this section we present several results about the dynamics of plane continua（or near plane continua）． In many of them we make use of the structure of the unstable manifold studied in Section 2 ．Ve start by discussing to what extent the numbers $u$ and $u_{c}$ determine the dynamics．In coherence with our previous notation，we denote by $u^{\prime}$ the number of components of a final section of the truncated stable manifold $W^{s}(K)-K$ and by $u_{c}^{\prime}$ the number of contractible components．

The vanishing of the coefficient $u_{c}$ turns out to be related with a property introduced and studied by N．P．Bhatia in［4］，namely the property of an invariant set being non－saddle．

Definition 2．A compact invariant set $K$ of a flow $\varphi: M \times \mathbb{R} \rightarrow M$ is said to be saddle provided that there exists a neighborheod $U$ of $K$ in $M$ such that for every neighborhood $V \subset U \bullet K$ in $M$ there is a point $x \in V$ such that $\gamma^{+}(x) \cap(M-U) \neq \emptyset$ and $\gamma^{-}(x) \cap(M-U) \neq \emptyset$（i．e．the orbit $\bullet x$ leaves $U$ in the past and in the future）．$K$ is said to be nen－saddle if it is not saddle．

Nen－saddle sets have alse been studied in［16］，and they turn out to have very nice dynamical and tepolegical preperties；attractors and repellers are particular types of n七n－saddle sets．The first part of the next result characterizes non－saddleness．The second part can be interpreted as a form of time duality in terms of the stable and unstable manifolds．

Theorem 10．Let $K$ be an isolated invariant continuum of plane flow $\varphi$ ．Then
（1）$u_{c}=0$ if and only if $K$ is non－saddle．
（2）The coefficients $u_{c}$ and $u_{c}^{\prime}$ agree．Hence the initial sections of the truncated unstable manifold and the final sections of the truncated stable manifold have the same homotopy type if and only if they have the same number of connected components（i．e．if and only if $u=u^{\prime}$ ）．

Preof．Suppose，t• get a contradiction，that $K$ is n七n－saddle but $u_{c} \neq 0$ ．C•nsider an iselating block $N \bullet f$ as in the proof of Theorem 8．Then，$N^{\bullet}$ has at least ene connected compenent $E$ which is a（topological） interval．Denote $E_{0}=E \cap n^{-}$，which is als॰ an interval or a point．Since $E_{0} \neq E$ ，there is a sequence $x_{n} \in E-E_{0}$ such that $x_{n} \rightarrow x_{0} \in E_{0}$ ．Obviously，$\gamma^{+}\left(x_{n}\right)$ is not contained in $N$ and，since $x_{n} \notin n^{-}$，the negative semiorbit $\gamma^{-}\left(x_{n}\right)$ is not contained in $N$ either．On the other hand，since $\omega^{*}\left(x_{0}\right) \subset K$ and $x_{n} \rightarrow x_{0}$ then for every $\varepsilon>0$ there is an $x_{n}$ and a $t>0$ such that $x_{n}[-t, 0] \subset N$ and $\boldsymbol{d}\left(x_{n}(-t), K\right)<\varepsilon$ ．The orbit of the point $x_{n}(-t)$ must leave $N$ in the past and in the future and this contradicts the fact that $K$ is n七n－saddle．This proves that $u_{c}=0$ if $K$ is n七n－saddle．C七nversely，if $u_{c}=0$ ，censider an is $\bullet$ lating bleck $N$ of $K$ as in before．The neighborheod $N$ can be chesen arbitrarily small．Since $u_{c}=0$ ，all the connected compenents of $N^{\bullet}$ ，and als of $N^{i}$ ，are circles，which implies that $N^{\bullet}=n^{-}$and $N^{i}=n^{+}$．Hence，every orbit through $\partial N$ stays in $N$ either for all positive times or for all negative times．This implies that $K$ is n七n－saddle．

Concerning the second statement，the numbers $u_{c}$ and $u_{c}^{\prime}$ can be calculated using an iselating bleck as indicated before．This block has a form of symmetry in the following respect：if we consider a component of $\partial N$ not entirely contained either in $N^{\bullet} \bullet r$ in $N^{i}$ then the number of intervals of $N^{\bullet}$ lying in this compenent is exactly the same as the number of intervals of $N^{i}$ lying in the same compenent．Since $u_{c}$ and $u_{c}^{\prime}$ are the sums of the respective numbers for all components of $\partial N$ ，we get that $u_{c}=u_{c}^{\prime}$ ．Hence $u=u^{\prime}$ if and only if the number of nen－contractible components of the initial section agrees with the number of components of the final ene and from this readily fellows the statement．

As a consequence of our previous discussion we see that if $K$ is non－saddle then，given a compenent $A$ of $\mathbb{R}^{2}-K$ ，it happens that $K$ has either an attracting behavior or a repelling behavior towards the points of $A$ which are close t $\quad K$ ．In fact，$K$ is either an attractor or a repeller of the restricted flow $\varphi \mid A \cup K$ ． The first kind of components，which are the compenents of $\mathbb{R}^{2}-K$ having empty intersection with $W^{u}(K)$ ， will be called a－components and the second kind，i．e．those with empty intersection with $W^{s}(K)$ will be called $r$－components．A consequence of the previous remark is that every boundeda－component $A$ contains a dual repeller $R$ of the flow $\varphi \mid A \cup K$ whose basin of repulsion is $A$ ．This dual repeller is the largest compact invariant set contained in $A$ ，and an easy consequence of this is that it does not disconnect $\mathbb{R}^{2}$（i．e．$R$ has trivial shape）．Similarly，every bounded $r$－compenent contains an attractor of trivial shape whese basin of attraction is the whole component．If we fill all the holes of $K$ we get a continuum $\hat{K}$ ，which is the union of $K$ with all the bounded components of $\mathbb{R}^{2}-K$ ．Obviously $\hat{K}$ does not disconnect $\mathbb{R}^{2}$（and，hence，is of trivial shape）and it is either an attractor or a repeller of the flow，depending $\bullet$ n the nature $\bullet \varphi$ in the unbounded compenent．We call $\hat{K}$ the saturation of $K$ ．The family of attractors and repellers just described，tegether with $K$ ，define a Morse decomposition $\mathcal{M}$ of $\hat{K}$ whose Morse equations contain a great deal of information both about the global topelogy of $K$ and the dynamics near $K$ ．Te be more precise，we dente by $M_{1}, \ldots, M_{k}$ the attractors contained in the $r$－compønents of $\mathbb{R}^{2}-K$ ，we take $M_{k+1}=K$ and den te by $M_{k+2}, \ldots, M_{n}$ the repellers contained in the components．Then $\mathcal{M}=\left\{M_{1}, \ldots, M_{k}, M_{k+1}, \ldots, M_{k+2}, \ldots, M_{n}\right\}$ is a Morse decomposition of $\hat{K}$ ，which we call the natural Morse decomposition of $\hat{K}$ ．For general information on Morse decompesitions and their correspending Morse equations we refer the reader te $[9,35,25]$ ．

Theorem 11．Suppose $K$ is an isolated non－saddle continuum of a flow $\varphi$ in $\mathbb{R}^{2}$ which is neither an attractor nor a repeller．Suppose that the number of bounded $r$－components of $\mathbb{R}^{2}-K$ is $k$ and that the unbounded component is also an r－component．Then the Morse equations of $\varphi$ for the natural Morse decomposition $\mathcal{M}$ of $\hat{K}$（the saturation of $K$ ）are：

$$
k+(n-2) t+(n-k-1) t^{2}=t^{2}+(1+t) \boldsymbol{Q}(t)
$$

where $n$ is the number of components of $\mathbb{R}^{2}-K$ and the coefficients of $\boldsymbol{Q}(t)$ are non-negative integers.
In the same situation, but assuming now that the unbounded component is an-component, the equations are:

$$
k+(n-2) t+(n-k-1) t^{2}=1+(1+t) \boldsymbol{Q}^{*}(t)
$$

where $\boldsymbol{Q}^{*}(t)$ has also non-negative coefficients.
Hence the Morse equations completely determine the shape of $K$ and the dynamical structure near $K$.
Proof. N॰ne of the attractors and repellers involved in the Morse decomposition disconnects $\mathbb{R}^{2}$, and the same is true for $\hat{K}$. On the ether hand, $K$ is a n $\bullet$-saddle set disconnecting $\mathbb{R}^{2}$ int $n$ compønents. With these data, we can calculate the Conley index of all the elements of the Morse decomposition by using Theorem 8. In particular, the Conley index of $K$ is the pointed h॰motopy type of a wedge of $n-2$ circles. Since the ceefficients $\bullet$ the M•rse equations are $\bullet$ btained frem the Betti numbers of the h $\bullet \bullet \bullet l \bullet g i c a l ~ C \bullet n l e y ~$ indices we readily get the equations in the statement of the theorem. In particular, $K$ is responsible for the term $(n-2) t$, the $k$ attractors in the $r$-components give the term $k$ and the $(n-k-1)$ repellers in the a-components contribute with the term $(n-k-1) t^{2}$. The difference between the twe equations lies in the repelling or attracting character of the saturation of $K$. In the first case we have the term $t^{2}$ and in the second case, the term 1 in the second member of the equation.

The nøn-saddeness property turns eut te be related to the n•n-existence of fixed points. In fact, we have the following result, which gives necessary conditions for the non-existence of fixed points contained in isolated centinua.

Theorem 12. Let $X$ be smooth vector field on $\mathbb{R}^{2}$ and suppose that the flow $\varphi$ is generated by $\dot{x}=-X(x)$. Let $K$ be an isolated invariant continuum of $\varphi$. Suppose that $K$ does not contain fixed points. Then $K$ is a non-saddle set which disconnects the plane into two components. Therefore it must be either limit cycle or homeomorphic to closed annulus bounded by two limit cycles.

Preof. If $K$ does not contain fixed points then it f॰llows from Corellary 9 that $2-n-u_{c}=0$. Therefere we have only the possibilities $n=1, u_{c}=1$ and $n=2, u_{c}=0$. The first possibility must be excluded since it leads to the following situation: the $\omega$-limit of every point of $K$ is a periodic $\bullet$ orbit whose interior is in $K$ (otherwise $K$ would disconnect the plane and $n$ would be greater than 1) but this implies the existence of a fixed point in $K$. If $n=2$ and $u_{c}=0$ then $K$ is a n $\bullet$-saddle set disconnecting the plane inte tw $\bullet$ components $A$ and $\boldsymbol{B}$. Suppose $A$ is the unbounded $\bullet$ ne and suppose it is an a-component (the argument is the same for $r$-compenents). Then if we take $x \in A$ sufficiently close $t \bullet K, \omega(x)$ is a periedic orbit contained in $K$, that we denote by $\gamma$. Moreover $\boldsymbol{B}$ is contained in the interior of $\gamma$ (otherwise we would have a fixed point in $K$ ). By the same argument, there is a point $y \in \boldsymbol{B}$ whose $\omega$ - or $\omega^{*}$-limit is a periodic $\bullet$ rbit $\gamma^{\prime}$ contained in $K$. If $\gamma \neq \gamma^{\prime}$ the orbits $\gamma$ and $\gamma^{\prime}$ bound a plane region $C$ homeomorphic te an annulus. $C$ is contained in $K$ since, $\bullet$ therwise $K$ would discennect the plane in more than tw compenents. On the $\bullet$ ther hand, we prove n•w that there are n• points $z \in K-C$. Suppose, te get a contradiction, that $z \in K$ is in the unbounded compenent of $\mathbb{R}^{2}-C$ (the ether case is $\bullet$ nly slightly different). Then $\omega(z)$ is a peri $\bullet$ dic $\bullet$ •rbit, $\gamma^{\prime \prime}$, containing $\gamma$ in its interior since, otherwise, the interior of $\gamma^{\prime \prime}$ would be entirely contained in $K$ and, thus, it w uld contain a fixed point of $K$. Since $\gamma$ is in the interior $\bullet \gamma^{\prime \prime}, \gamma$ cann $\bullet$ be a limit $\bullet$ rbit $\bullet \boldsymbol{p} \bullet$ ints $\bullet A$. This contradiction establishes that $C=K$. If $\gamma=\gamma^{\prime}$, an easier argument preves that $K=\gamma=\gamma^{\prime}$.


Fig．4．Centinuati•n．
Remark 1．According te Theorem 12 every iselated periodic $\bullet$ rbit $\gamma$ is a n n－saddle set．If $\gamma$ is neither an attractor n七r a repeller，it f七llows frem our previous discussion that $W^{u}(\gamma)$ is h七memorphic t a punctured disk，while every initial part $\bullet$ f its unstable manifold $W_{S}^{u}(\gamma)$ is h七me $\quad$ morphic t• an annulus with $\gamma$ as $\bullet$ ne －f the boundary components．On the ether hand，if $p$ is an is॰lated equilibrium which is neither an attractor nor a repeller then $u=u_{c}$ ，and it follows from Theorem 10 that the initial parts of the truncated unstable manifold，$I_{S}^{u}(p)$ ，and the final parts $\bullet$ f the truncated stable manifold，$F_{S}^{s}(p)$ ，have the same h•m七topy type． As a matter of fact，it can be readily seen that the unstable manifold $W^{u}(p)$ is the bijective continueus image（although not necessarily the homeomorphic image）$\bullet$ a set $\bullet \mathbb{R}^{2}$ composed of a finite union $\bullet$ rays from 0 plus a finite union of closed plane sectors with vertex at 0 ．

We shall discuss in the sequel some matters using the point of view of continuation，a central n七ti•n in the Conley index theory．We refer the reader to the papers $[\mathbf{9}, 35,17]$ for information on basic facts about this notion．In Fig． 4 we repreduce an example from［16］which shows that there exist a parametrized family $\varphi_{\lambda}$ of flows in the plane and a continuation $\left(K_{\lambda}\right)_{\lambda \in I} \bullet$ an is॰lated invariant continuum $K_{0}$ such that $S h\left(K_{\lambda}\right) \neq \operatorname{Sh}\left(K_{0}\right)$ for every $\lambda \geq 0$ ．Therefore shape is n七t necessarily preserved by continuation．

In the following result we show that if the shape is not preserved then the global complexity of isolated invariant continua can $\bullet$ nly decrease through small perturbations，i．e．the shape of the continuation $K_{\lambda}$ is dominated by the shape of the initial continuum $K_{0}$ for small values of $\lambda$ ．On the $\bullet$ ther hand，the preservation of shape implies a strong risidity of the truncated unstable manifeld towards deformations of the flow．

Theorem 13．Let $\left(\varphi_{\lambda}\right)_{\lambda \in I}$ be parametrized family of flows in $\mathbb{R}^{2}$ and let $K_{0}$ be an isolated invariant continuum for $\varphi_{0}$ ．Suppose that the family of continu $\left(K_{\lambda}\right)_{\lambda \in I}$ continues $K_{0}$ ．Then there exists $\lambda_{0} \leq 1$ such that $\operatorname{Sh}\left(K_{0}\right) \geq \operatorname{Sh}\left(K_{\lambda}\right)$ for every $\lambda \leq \lambda_{0}$ ．Moreover，if $\operatorname{Sh}\left(K_{0}\right)=\operatorname{Sh}\left(K_{\lambda}\right)$ for every $\lambda \in I$ ，then the initial parts of the truncated unstable manifolds of $K_{0}$ and $K_{\lambda}$ have the same homotopy type．

Proef．Suppose $K_{0}$ decempeses the plane int $n$ components and censider an iselating block $N$ of $K_{0}$ as in the proof of Theorem 8；in particular，$N$ decomposes the plane alse int• $n$ connected compønents．Since
$\left(K_{\lambda}\right)_{\lambda \in I}$ is a continuation $\bullet K_{0}$, then there exists a $\lambda_{0} \leq 1$ such that $N$ is an iselating neighborheod for every $K_{\lambda}$ with $\lambda \leq \lambda_{0}$. Since $K_{\lambda} \subset N$ then $\mathbb{R}^{2}-N \subset \mathbb{R}^{2}-K_{\lambda}$. If the relatiøn $S h\left(K_{0}\right) \geq S h\left(K_{\lambda}\right)$ does n七t hold for some $\lambda \leq \lambda_{0}$ then $\mathbb{R}^{2}-K_{\lambda}$ has a greater number of connected compenents than $\mathbb{R}^{2}-K_{0}$ and, thus, there are components $\bullet \mathbb{R}^{2}-K_{\lambda}$ with empty intersectiøn with $\mathbb{R}^{2}-N$. As a consequence they are contained in $N$. Since these compenents are invariant by the fl॰w $\varphi_{\lambda}$, the uni•n of $K_{\lambda}$ with all $\bullet$ them is an invariant compactum of $\varphi_{\lambda}$ centained in $N$ and $N$ is n $\bullet$ an is $\bullet$ lating neighborh $\bullet \bullet$ of $K_{\lambda}$. This contradiction establishes the first part of the theorem.

If $S h\left(K_{0}\right)=S h\left(K_{\lambda}\right)$ then $\mathbb{R}^{2}-K_{0}$ and $\mathbb{R}^{2}-K_{\lambda}$ have the same number of compønents, say $n$. We discuss the case $n=1$ and leave te the reader the slightly more complicated general case. By the preservation of the Conley index by continuation, the numbers $u$ and $u_{c}$ remain the same for all $\lambda \in I$. This means that the initial sections of $K_{0}$ and $K_{\lambda}$, and alse the initial parts of their truncated unstable manifolds, have the same h•motopy type.

In the next result we show that very strong dynamical consequences are derived from the topological property of connectedness of the initial sections.

Theorem 14. Let $K$ be an isolated invariant continuum of flow in $\mathbb{R}^{2}$ and let $S$ be initial section of the truncated unstable manifold $W^{u}(K)-K$. Suppose $S$ is connected and denote by $A$ the component of $\mathbb{R}^{2}-K$ which contains $S$. Then in every bounded component $\boldsymbol{B} \neq A$ of $\mathbb{R}^{2}-K$ there is a repeller $R \subset \boldsymbol{B}$ whose basin of repulsion is $\boldsymbol{B}$. Moreover, the repeller $R$ contains a critical point of the flow.

Proof. Suppose $\boldsymbol{B}$ is a bounded component of $\mathbb{R}^{2}-K$ different from the compenent $A$ which contains $S$. If $N$ is an is $\bullet$ lating bleck of $K$ as described in the preof $\bullet$ Theorem $\mathbf{8}$ then $N^{\bullet} \subset A$ since, $\bullet$ therwise, $S$ w uld meet $\bullet$ ther components of $\mathbb{R}^{2}-K$ and would n $\bullet$ be connected. Hence, the component $C$ of $\boldsymbol{\partial N}$ lying in $\boldsymbol{B}$ is totally contained in $N^{i}$. The circle $C$ is alse the boundary of a disk $D$ contained in $\boldsymbol{B}$ and, since every -rbit throgh $C$ enters $N$ (in the future) and remains there, the disk $D$ is negatively invariant by the flow. As a consequence, in the interior of $D$ there is a repeller $R$ which repels the whole disk. Moreover, since $N$ is iselating, every point of $N \cap \boldsymbol{B}$ gees t• $D$ in the past (and remains there), which implies that the basin of repulsion of $R$ is all $\boldsymbol{B}$. On the other hand, since $D$ is negatively invariant then, for every fixed $t \leq 0$, the correspondence $x \rightarrow \varphi(x, t)$ defines by restriction a map $\varphi_{t} \mid D: D \rightarrow D$ and, by Brouwer's fixed point theorem, there exists a sequence of points $x_{n} \in D$ and a sequence of numbers $t_{n}<0, t_{n} \rightarrow 0$ such that $\varphi\left(x_{n}, t_{n}\right)=x_{n}$. By the compactness of $D$ there is a convergent subsequence $x_{n_{i}}$ whose limit $x \in D$ is a fixed point of the flow.

The following nice result by Alarcón, Guíñez and Gutiérrez gives a relation between global asymptotic stability of a critical point and nøn-existence of additional critical points in the case of discrete dynamical systems.

Theorem 15. (See Alarcón, Guíñez, Gutiérrez [2].) Assume that $h \in \mathcal{H}_{+}$(homeomorphisms of $\mathbb{R}^{2}$ conserving the orientation) is dissipative and $p$ is an asymptotically stable fixed point of $h$. The following conditions are equivalent:
(a) $p$ is globally asymptotically stable.
(b) $\operatorname{Fix}(h)=\{p\}$ and there exists an arc $\gamma \subset S^{2}$ with end points at $p$ and $\infty$ such that $h(\gamma)=\gamma$.

The preof in [2] is based $\bullet$ Breuwer's theory of fixed point free h $\bullet$ memorphisms of the plane. Ortega and Ruiz del Portal give in [30] an alternative preof based on the theory of prime ends.

Inspired by Theorem 15, we present a result $\bullet$ n continua $K$ which are attracters of dissipative flows in the plane.

Theorem 16．Let $K$ be connected attractor of a dissipative flow $p$ in $\mathbb{R}^{2}$ ．The following conditions are equivalent：
（a）$K$ is a global attractor．
（b）There are no fixed points in $\mathbb{R}^{2}-K$ and there exists an orbit $\gamma$ connecting and $K$（i．e．such that $\|\gamma(t)\| \rightarrow \infty$ when $t \rightarrow-\infty$ and $\omega(\gamma) \subset K)$ ．

Proof．Since $\varphi$ is dissipative，then there exists a global attractor $K^{\prime}$ of the flow and，thus，$K \subset K^{\prime}$ ．We must prove that $K=K^{\prime}$ ．Otherwise，there exists a point $x \in K^{\prime}-K$ ，and we consider $\omega^{*}(x)$ ．By the invariance and the compactness of $K^{\prime}$ ，we have that $\omega^{*}(x) \subset K^{\prime}$ and，since $K$ is an attractor，$\omega^{*}(x) \cap K=\emptyset$ ．Hence $\omega^{*}(x)$ does not contain fixed points and，by the Poincaré－Bendixson theorem，$\omega^{*}(x)$ is a periedic orbit． Moreover，$K$ is not contained in the interior of this orbit since，in that case，$\gamma$ would meet $\omega^{*}(x)$ ．Hence in the interior of the periodic orbit $\omega^{*}(x)$ must exist a fixed point not belonging t $K$ ，which is a contradiction． This establishes the implication $(\mathbf{b}) \Rightarrow(\mathrm{a})$ ；the converse implication is trivial．

The following result，which is a consequence of Theorem 16 and a theorem by Bhatia，Lazer and Szege in［6］，gives a nice characterization of globally attracting fixed points．

Corollary 17．Let $K$ be minimal attractor of dissipative flow in $\mathbb{R}^{2}$ ．The following conditions are equiv－ alent：
（a）$K$ is globally attracting fixed point．
（b）There are no fixed points in $\mathbb{R}^{2}-K$ and there exists an orbit connecting and $K$ ．

Preof．It is a consequence of Theorem 16 and Bhatia，Lazer and Szege＇s Theorem 4.1 in［6］according which minimal glebal attractors in $\mathbb{R}^{2}$ are fixed points．

We shall be concerned n七w with bifurcations at critical points of the flow．Suppose that we have a con－ tinuøus family of flows $\varphi_{\lambda}: \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ ，with $\lambda \in I$ ，such that $p \in \mathbb{R}^{2}$ is an equilibrium for every $\lambda$ ．There are several n七n－equivalent definitions of bifurcation at $p$ when $\{p\}$ is an attractor for $\varphi_{0}$ ．We adopt the following one，which conveys the idea that a new continuum，evolving from $p$ ，is created in the bifurcation．

Definition 3．Let $\varphi_{\lambda}: \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ ，with $\lambda \in I$ ，be a continuous family of flows．Suppose that $p$ is a fixed point for every $\varphi_{\lambda}$ and $\{p\}$ is an attractor for $\varphi_{0}$ ．Suppese alse that $\left(M^{\boldsymbol{\lambda}}\right)_{\lambda \in I}$ ，with $M^{0}=\{p\}$ ， is a continuation of $\{p\}$ ．If there is a $\lambda_{0} \in(0,1]$ and a Morse decomposition $\left\{M_{a}^{\lambda}, M_{b}^{\lambda}\right\} \bullet f M^{\lambda}$ inte tw也 continua，where $\bullet$ ne $\bullet$ them is $\{p\}$ for every $\lambda$ with $0<\lambda \leq \lambda_{0}$ ，we say that a bifurcation takes place in $p$ ．

Concerning the former definition we remark that the order is essential in the Morse decomposition $\left\{M_{a}^{\lambda}, M_{b}^{\lambda}\right\}$ and that we admit the tw possibilities $M_{a}^{\lambda}=\{p\}$ for every $\lambda$ with $0<\lambda \leq \lambda_{0}$ or $M_{b}^{\lambda}=\{p\}$ for every $\lambda$ with $0<\lambda \leq \lambda_{0}$ ．Since $\{p\}$ is an attractor for $\varphi_{0}$ we can select $\lambda_{0}$ se small that $M^{\lambda}$ is an attractor of trivial shape for $\varphi_{\lambda}$ with $0<\lambda \leq \lambda_{0}$（see［39］for properties of continuati•ns of attractors）．Since $M_{a}^{\lambda}$ is an attractor for the restricted flow $\varphi_{\lambda} \mid M^{\lambda}$ ，then $M_{a}^{\lambda}$ is alse an attractor for the flow $\varphi_{\lambda}$ ．The most notorious particular case is when $M_{b}^{\lambda}=\{p\}$ is a repeller for $\varphi_{\lambda}$ with $0<\lambda \leq \lambda_{0}$ and $M_{a}^{\lambda}$ is a periedic orbit．In this case we say that a Hopf bifurcation takes place at $p$ ．

The bifurcation may be embedded in a more complex process of continuation of an isolated invariant continuum．Suppose we have a continuum $K=K_{0}$ which is invariant and isolated for $\varphi_{0}$ ，endowed with a Mørse decomposition $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$ with $M_{1}=\{p\}$ and suppese that $K$ continues te a family of continua $\left(K_{\lambda}\right)_{\lambda \in I}$ ．Then $\mathcal{M}$ alse continues to Morse decompositions $\mathcal{M}^{\lambda}=\left\{M_{1}^{\lambda}, M_{2}^{\lambda}, \ldots, M_{k}^{\lambda}\right\} \bullet$ the $K_{\lambda}$ and
we suppose that simultaneously a bifurcation takes place at $p$ according te the previeus definition, i.e. that $M_{1}^{\lambda}$ has itself a Morse decomposition $\left\{M_{a}^{\lambda}, M_{b}^{\lambda}\right\}$ as in Definition 3. Then $\hat{\mathcal{M}}^{\lambda}=\left\{M_{a}^{\lambda}, M_{b}^{\lambda}, M_{2}^{\lambda}, \ldots, M_{k}^{\lambda}\right\}$ is alse a Morse decomposition of $K_{\lambda}$ which embodies information about the bifurcation and about the continuation. We call $\hat{\mathcal{M}}^{\lambda}$ the Morse decomposition associated to the bifurcation. We write the Morse equation of $\hat{\mathcal{M}}^{\lambda}$ in the usual form $P^{\lambda}(t)=R^{\lambda}(t)+(1+t) \boldsymbol{Q}^{\lambda}(t)$, where $\boldsymbol{Q}^{\lambda}(t)$ is a pølyn七mial whose ceefficients are n $\bullet$ n-negative integers.

Theorem 18. Let $K$ be an isolated invariant continuum of flow $\varphi$ in $\mathbb{R}^{2}$ and let $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$ be a Morse decomposition of $K$ with $M_{1}=\{p\}$. Suppose that Hopf bifurcation takes place at $p$ for a continuation $\varphi_{\lambda}$ of $\varphi$ and denote by $\hat{\mathcal{M}}^{\lambda}=\left\{M_{a}^{\lambda}, M_{b}^{\lambda}, M_{2}^{\lambda}, \ldots, M_{k}^{\lambda}\right\}$ the associated Morse decomposition. Then $P^{\lambda}-P=t^{2}+t$, where $P$ corresponds to the Morse equation of $\mathcal{M}$.

Proof. The main difference of $\hat{\mathcal{M}}^{\lambda}$ with the initial Morse decomposition $\mathcal{M}$ is that the point $p$ becomes repelling and an attracting periodic orbit $M_{a}^{\lambda}$ evolves from $p$. The repelling point is responsible for the term $t^{2}$ and the attracting orbit adds the term $t$ te the Morse equations. The contribution of the rest of the Mørse sets remains the same, since they are continuations of the Mørse sets of the initial decomposition.

We shall see now that the relation $P^{\lambda}-P=t^{2}+t$ captures seme of the topology involved in the Hopf bifurcation, although not the whole of the dynamics: if we have a bifurcation (not necessarily Hopf) whose Morse equation satisfies this particular relation then we shall show that a new attractor with the shape of $S^{1}$ (although not necessarily a periodic orbit) is created in the bifurcation. The following result enumerates all the possible types of bifurcati•ns. We see that the rest $\bullet$ f the bifurcations have n• effect $\bullet$ n the Mørse equations.

Theorem 19. Let $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$ be a Morse decomposition of $K$ with $M_{1}=\{p\}$. Suppose that a bifurcation (not necessarily Hopf) takes place at $p$ for a continuation $\varphi_{\lambda}$ of $\varphi$ and denote by $\hat{\mathcal{M}}^{\lambda}=\left\{M_{a}^{\lambda}, M_{b}^{\lambda}, M_{2}^{\lambda}, \ldots, M_{k}^{\lambda}\right\}$ the associated Morse decomposition. Then there are the following possibilities: (1) $M_{a}^{\lambda}=\{p\}$ is antractor and $M_{b}^{\lambda}$ is non-saddle set with the shape of $S^{1}$, (2) $M_{a}^{\lambda}=\{p\}$ is an attractor and $M_{b}^{\lambda}$ a saddle-set with trivial shape, (3) $M_{a}^{\lambda}$ is an attractor of trivial shape and $M_{b}^{\lambda}=\{p\}$ is a saddle-set, (4) $M_{a}^{\lambda}$ is an attractor with the shape of $S^{1}$ and $M_{b}^{\lambda}=\{p\}$ is repeller. In case (4) we have the relation $P^{\lambda}-P=t^{2}+t$ for the Morse equations and in cases (1), (2), (3) the Morse equations remain unaltered.

Prøof. The Mørse decomposition $\left\{M_{a}^{\lambda}, M_{b}^{\lambda}\right\} \bullet f M_{1}^{\lambda}$ consists $\bullet$ tw sets, $\bullet$ ne $\bullet$ fhem, for instance $M_{b}^{\lambda}$, is equal t- $\{p\}$ and the ether, $M_{\boldsymbol{a}}^{\lambda}$, is a plane continuum. This plane continuum cannot separate the plane int• m•re than tw• components since, being $M_{1}^{\lambda} \bullet f$ trivial shape, all the bounded comp॰nents $\bullet \mathbb{R}^{2}-M_{a}^{\lambda}$ must be contained in $M_{1}^{\lambda}$ and, thus, each $\bullet$ f them must contain a M $\bullet$ rse set $\bullet$ the decomposition $\bullet M_{1}^{\lambda}$ $\bullet$-ther than $M_{\boldsymbol{a}}^{\lambda}$, and there is $\bullet$ nly $\bullet$ ne. As a consequence we have the following possibilities: (1) $M_{a}^{\lambda}=\{p\}$ and $M_{b}^{\lambda}$ a continuum with the shape of $S^{1}$, (2) $M_{a}^{\lambda}=\{p\}$ and $M_{b}^{\lambda}$ a continuum with trivial shape, (3) $M_{a}^{\lambda}$ a continuum of trivial shape and $M_{b}^{\lambda}=\{p\}$, (4) $M_{a}^{\lambda}$ a continuum with the shape of $S^{1}$ and $M_{b}^{\lambda}=\{p\}$. We discuss first the case (4). As we remarked before, since $M_{1}^{\lambda}$ is an attractor and $M_{a}^{\lambda}$ is an attractor of the restriction of the flow $\varphi_{\lambda} \mid M_{1}^{\lambda}$ then $M_{\boldsymbol{a}}^{\lambda}$ is, in fact, an attractor of $\varphi_{\lambda}$. The bounded component of $\mathbb{R}^{2}-M_{a}^{\lambda}$ must be contained in $M_{1}^{\lambda}$ and $p$ must lie there. As a consequence, the bounded c•mpønent $\bullet \mathbb{R}^{2}-M_{a}^{\lambda}$ is the basin $\bullet$ repulsiøn $\bullet\{p\}$, which means that $\{p\}$ is a repeller for $\varphi_{\lambda}$ (and n $\bullet \bullet n l y$ for the restriction $\varphi_{\lambda} \mid M_{1}^{\lambda}$ ). If we calculate now the Morse equations of the associated Morse decomposition we see that the repeller $\{p\}$ contributes with the term $t^{2}$ and the evolving attractor $M_{a}^{\lambda}$ contributes with a new $t$. The rest of the Morse sets have the same contribution to the Morse equations as in $P$ since they are continuations of those of the decomposition $\mathcal{M}$. Hence $P^{\lambda}-P=t^{2}+t$. The rest of the cases are
similarly discussed．Case（1）is very similar te case（4）and we leave it to the reader．Cases（2）and（3） have in comm•n the fact that $M_{1}^{\lambda}$ has a M $\bullet$ rse decomposition $\left\{M_{a}^{\lambda}, M_{b}^{\lambda}\right\}$ int $\bullet$ tw sets $\bullet$ frivial shape．The Conley index of $M_{a}^{\lambda}$ is the index $\bullet$ an attractor of trivial shape and the C $\bullet$ nley index $\bullet M_{b}^{\lambda}$ can be easily calculated from the long exact sequence of the Morse decomposition of $M_{1}^{\lambda}$ ，from which it results a trivial Conley index．A consequence of this is that $M_{b}^{\lambda}$ is a saddle－set and the Morse equation $P^{\lambda}$ is not changed after the bifurcation．


## Acknowledgments

The authors would like te express their thanks te the referees，whose remarks have helped to impreve the manuscript．

## References

［1］R．P．Agarwal，M．Meehan，D．－＇Regan，Fixed Point Theory and Applicati•ns，Cambridge University Press，Cambridge， 2004.
［2］B．Alarcén，V．Guíñez，C．Gutiérrez，Planar embedding with a glebally attracting fixed pøint，Nønlinear Anal． 69 （2008） 140－150．
［3］K．Athanassøpøules，Remarks $\bullet$ the regi•n $\bullet f$ attracti•n $\bullet$ an is॰lated invariant set，C•ll॰q．Math． 104 （2006）157－167．
［4］N．P．Bhatia，Attraction and nønsaddle sets in dynamical systems，J．Differential Equati•ns 8 （1970）229－249．
［5］N．P．Bhatia，G．P．Szege，Stability Theory of Dynamical Systems，Grundlehren Math．Wiss．，vel．16，Springer，Berlin， 1970.
［6］N．P．Bhatia，A．C．Lazer，G．P．Szege，On glebal weak attract•rs in dynamical systems，J．Math．Anal．Appl． 16 （1966） 544－552．
［7］K．Børsuk，Theøry $\bullet$ Shape，M॰nセgr．Mat．，vel．59，P॰lish Scientific Publishers，Warsaw， 1975.
［8］J．Camp•s，R．Ortega，A．Tineセ，H $\bullet$ me•m•rphisms of the disk with trivial dynamics and extincti•n $\bullet$ f cmpetitive systems， J．Differential Equations 138 （1997）157－170．
［9］C．C॰nley，Iselated Invariant Sets and the Mørse Index，CBMS Reg．C•nf．Ser．Math．，vel．38，American Mathematical Seciety，Previdence，RI， 1978.
［10］C．C॰nley，R．IV．East॰n，Is॰lated invariant sets and isølating blecks，Trans．Amer．Math．Sec． 158 （1971）35－61．
［11］C．C॰nley，E．Zehnder，M॰rse－type index theory for flows and peri॰dic søluti॰ns for Hamiltønian equati•ns，C•mm．Pure Appl．Math． 37 （1984）207－253．
［12］J．M．Cerdier，T．Pørter，Shape Theøry．Categørical Metheds of Appreximatiøn，Ellis Hセrweed Ser．Math．Appl．，Ellis H॰rweed Ltd．，Halsted Press，J•hn Wiley \＆S•ns，Inc．，Chichester，New York， 1989.
［13］J．Dydak，J．Segal，Shape Theory．An Intreducti•n，Lecture N七tes in Math．，vel．688，Springer，Berlin， 1978.
［14］R．W．East•n，Is॰lating blocks and symbelic ynamics，J．Differential Equations 17 （1975）96－118．
［15］A．Giralde，J．M．R．Sanjurje，©n the glebal structure of invariant regiens of flews with asymptetically stable attractors， Math．Z． 232 （4）（1999）739－746．

［17］A．Giralde，J．M．R．Sanjurje，Singular cセntinuatiøns $\bullet$ fattracters，SIAM J．Appl．Dyn．Syst． 8 （2009）554－575．
［18］A．Giralde，M．Mørón，F．R．Ruiz del Portal，J．M．R．Sanjurje，Shape of glebal attracters in tepセlegical spaces，N七nlinear Anal． 60 （5）（2005）837－847．
［19］B．Günther，J．Segal，Every attractor of a fl॰w $\bullet$ n a manifャld has the shape of a finite pølyhedrøn，Prec．Amer．Math． S－c． 119 （1993）321－329．
［20］C．Gutiérrez，Sme 17－44．
［21］H．M．Hastings，A higher－dimensional Poincaré－Bendixsøn theørem，Glas．Mat．Ser．III 14 （34）（2）（1979）263－268．
［22］A．Hatcher，Algebraic T•p•logy，Cambridge University Press，Cambridge， 2002.
［23］M．Izydørek，M．Stybørski，M॰rse inequalities via Cønley index theory，Lect．N॰tes N॰nlinear Anal． 12 （2011）37－60．
［24］L．Kapitanski，I．R•dnianski，Shape and M•rse theory $\bullet$ attract॰rs，C•mm．Pure Appl．Math． 53 （2000）218－242．
［25］D．Li，A．Qi，Mørse equation of attractors for nønsmゃゃth dynamical systems，J．Differential Equations 253 （2012） 3081－3100．
［26］S．Mardesic，Strøng Shape and H•m॰legy，Springer M॰n॰gr．Math．，Springer－Verlag，Berlin， 2000.
［27］S．Mardesic，J．Segal，Shape Theøry．The Inverse System Appreach，N॰rth－H॰lland Math．Library，v•l．26，N॰rth－H $\bullet l l a n d$ Publishing Ce．，Amsterdam－New York， 1982.
［28］C．K．McCord，On the H•pf index and the Cenley index，Trans．Amer．Math．Sec． 313 （1989）853－860．
［29］P．Mendelsen，On unstable attract•rs，B•l．S•c．Mat．Mexicana（2） 5 （1960）270－276．
［30］R．Ortega，F．R．Ruiz del Portal，Attractørs with vanishing retation number，J．Eur．Math．Sec． 13 （2011）1569－1590．
［31］D．©＇Regan，Y．J．Ch•，Y．－Q．Chen，T•p॰legical Degree Theory and Applicati•ns，Ser．Math．Anal．Appl．，Chapman \＆ Hall，Beca Raten－Lenden－New York， 2006.
[32] J.W. Rebbin, D. Salam॰n, Dynamical systems, shape theøry and the Cenley index, in: Charles Cenley Memөrial V $\bullet l u m e$, Ergedic Theory Dynam. Systems 8* (1988) 375-393.
[33] J.C. R॰bins॰n, Gl॰bal attract•rs: t•p•l॰gy and finite-dimensi॰nal dynamics, J. Dynam. Differential Equati•ns 11 (3) (1999) 557-581.
[34] J.C. R॰bins॰n, Infinite-Dimensi•nal Dynamical Systems. An Intreducti•n te Dissipative Parabelic PDEs and the The॰ry of Glebal Attractors, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2001.
[35] D. Salam॰n, Cennected simple systems and the Conley index of iselated invariant sets, Trans. Amer. Math. Sec. 291 (1985) 1-41.
[36] J.J. Sánchez-Gabites, Unstable attractørs in manifølds, Trans. Amer. Math. S•c. 362 (2010) 3563-3589.
[37] J.J. Sánchez-Gabites, An appreach t the shape C•nley index with
[38] J.M.R. Sanjurje, An intrinsic descripti•n $\bullet$ shape, Trans. Amer. Math. Sec. 329 (1992) 625-636.
[39] J.M.R. Sanjurje, ©n the structure of uniform attractors, J. Math. Anal. Appl. 192 (1995) 519-528.
[40] J.M.R. Sanjurje, M•rse equati•ns and unstable manifolds of iselated invariant sets, Nөnlinearity 16 (2003) 1435-1448.

[42] E. Spanier, Algebraic T•p•legy, McGraw-Hill, New Yørk, 1966.
[43] R. Srzednicki, ©n rest p ints $\bullet$ f ynamical systems, Fund. Math. 126 (1985) 69-81.
[44] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin, 1988.

