
A Novel SDN based Stealthy TCP Connection
Handover Mechanism for Hybrid Honeypot Systems

Wenjun Fan and David Fernández
Departamento de Ingenierı́a de Sistemas Telemáticos

Universidad Politécnica de Madrid
Madrid, Spain 28040

Email: {efan,david}@dit.upm.es

Abstract—Honeypots have been largely used to capture and
investigate malicious behavior through deliberately sacrificing
their own resources in order to be attacked. Hybrid honeypot
architectures consisting of frontends and backends are widely
used in the research area, specially due to the benefits of their
high scalability and fidelity for detailed attacking data collection.
A hybrid honeypot system often needs a facility aimed to tightly
control the network traffic, for purposes such as redirecting the
traffic from the frontends to the backends for in-depth attack
analysis. However, the current traffic redirection approaches,
particularly the TCP connection handover mechanisms, are
not stealthy and they can be easily detected by attackers.
This paper proposes an SDN based network data controller
for hybrid honeypot systems that uses a transparent TCP
connection handover mechanism and provides a traffic filtering
approach based on the Snort alert functionality. The controller
is implemented as an application based on the open-source Ryu
SDN framework. It allows the users to configure their own
network data control rules, which based on the Snort alert
messages will forward or redirect the traffic to the corresponding
honeypots. The experiments validate the proposed mechanism
and the testing results show that the controller can efficiently
perform the stealthy TCP connection handover as well.

Index Terms—Honeypots, Cyber Security, Virtualization, SDN,
Traffic Redirection, Intrusion Detection

I. INTRODUCTION

A honeypot is a security tool created to be attacked
with the aim to capture the attack datasets for measuring
and investigating network threats. Though an important
number of independent honeypot software have been
developed [1], according to the interaction level, the
honeypots can be roughly classified into three categories:
low-interaction, medium-interaction and high-interaction
honeypots. Low-interaction honeypots (LIH) like Honeyd
[2] can emulate multiple decoys simultaneously to monitor
unauthorized traffic. These decoys can emulate the appearance
of operating systems and vulnerable services, but they provide
little interaction to the adversaries. Medium-interaction
honeypots (MIH) like Dionaea [3] can provide much more
interaction capacity to the adversaries, allowing to catch the
malicious payload. They can emulate a variety of vulnerable
services by using the TCP/IP network protocols implemented
and managed by the underlying operating system where
the MIH runs. However, they are limited by the fact that

they just emulate well known vulnerabilities, being its
security program focused on capturing the malicious traffic
accessing to that emulated vulnerable services. Finally, a
genuine computer system running as a honeypot is called
high-interaction honeypot (HIH), since it can provide a fully
functional operating system to the adversaries. Using HIHs,
security researchers can capture not only the network activity,
but also the system activity. However, the limitation of HIHs
is the high resource consumption when used for large-scale
deployment.

Therefore, depending on its interaction level, these
independent honeypots are either expensive to administrate
and poorly scalable (HIHs) or based on emulated resources
that limit the level of detail they can collect about attacks
(MIHs and LIHs). Besides, the usage of single independent
honeypot is not adequate to cope with the various attacking
scenarios. In order to address the drawbacks, the hybrid
honeypot architecture and a number of relevant hybrid
honeypots [4], [5], [6] were proposed. A hybrid honeypot
system often include multiple frontends (i.e. LIHs or MIHs)
and backends (i.e. HIHs). The frontends are often deployed
in large-scale network space to provide highly scalable data
collection, while the backends are often deployed in a
centralized honeyfarm for in-depth data analysis.

Consequently, hybrid honeypots combine in one complex
system the benefits of both types of honeypots: the high
scalability of LIH/MIH and the fidelity of HIH. However,
hybrid honeypot systems require the use of a mechanism to
redirect the traffic from the frontends to the backends. The
traffic redirection functionality provided by current tools is
often not transparent enough to avoid the adversary to easily
detect it. This fact will go against the data capture utility
of the honeypot, because once the adversary is aware of his
submergence in a honeypot environment, he will stop the
attack and even pollute or damage his tracks to avoid being
traced.

Hence, new mechanisms to transparently redirect the traffic
from the frontends to the backends are needed to be
implemented in network data controllers of hybrid honeypot
systems. In this paper, a novel SDN controller application
is proposed for being used in hybrid honeypot systems, that
provides traffic filtering capabilities for data reduction and a
traffic redirection mechanism for transferring interesting traffic978-1-5090-6008-5/17/$31.00 c⃝ 2017 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148686834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

connections according to different requirements of intrusion
investigations.

The remainder sections of this paper are organized as
follows: Section 2 reviews the related work about hybrid
honeypot systems and traffic redirection approaches; Section
3 proposes the design of the controller’s architecture and
its functions; Section 4 describes the implementation of the
prototype; Section 5 presents the experiments and shows the
testing results; finally, Section 6 presents some conclusions
and suggest future work.

II. RELATED WORK

Since 2006 a number of hybrid honeypot systems have been
staged [4], [5], [6] to take advantage of the benefits of the
hybrid approach: the collection of datasets of detailed attack
processes covering large network address spaces. For example,
the hybrid honeypot framework described in [7] integrates the
well-known virtual LIH Honeyd [2] with the Gen III honeynet
architecture [8] for improving intrusion detection systems that
protect local production networks.

As stated in the introduction, one of the main parts
of a hybrid honeypot system is the traffic redirection
mechanism, which is aimed to connect the frontends and
the backends, filtering and redirecting the interesting traffic
to the high-interaction honeypots for further investigation.
Several approaches have been proposed to facilitate this
function. The hybrid honeypot framework [7] simply used the
Honeyd’s built-in proxy function to redirect the traffic into
high-interaction honeypots. However, because of the lack of
a traffic filtering mechanism in this approach, the backends
could be easily flooded with invalid data. Besides, this simple
proxy approach suffers from the identical-fingerprint problem,
since the frontends and the backends have different IP
addresses assigned. Some other hybrid honeypot systems [4],
[9] use GRE tunnel to connect the frontends and the backends.
Due to the fact that backends appear to be directly deployed in
the production network, this type of hybrid honeypot systems
do not suffer from the identical-fingerprint problem. But all
the traffic is only either discarded or forwarded, owing to the
fact that frontends have no interaction capability, preventing
the implementation of more intelligent filtering capabilities.

Bailey et al. [5] use a connection handover mechanism
for traffic redirection. In order to avoid saving the state of
every TCP connection, the connection handoff mechanism
makes the decision based on the first payload of any
conversation. However, the author does not reveal the technical
details about how the connection handoff is made. Similarly,
Honeybrid gateway [10] uses a connection replay approach
to implement traffic transparent redirection between LIH and
HIH. Nevertheless, Honeybrid reveals the technical detail of
the gateway, which uses a TCP replay proxy based approach
that makes the use of Linux libnetfilter queue [11] to process
packets. In this case, knowing the details of the mechanism
used, security researchers can gain more insight into how
connection handoff is made.

Recently, some researchers have proposed solutions to
address the identical-fingerprint problem in hybrid honeypot
systems. For example, Lengyel et al. proposed a hybrid
honeynets architecture namely VMI-Honeymon [12], which
provides a novel solution to the clone-routing problem.
The challenge is to manage network connectivity with
identical HIHs clones without any internal in-guest network
reconfiguration, because the network interfaces in each clone
will have to remain identical, sharing the same MAC and IP
address of the original VM. Having the same MAC and IP
addresses will cause collision if the clones are placed on the
same network bridge. But in-guest network reconfiguration
would inadvertently lead to changing the state of the HIH.
Thus, the solution proposed retains the MAC and IP address
of the original VM for each clone, and each clone is placed
upon a separate network bridge which is attacked to the VM
running Honeybrid gateway, providing isolation for the MAC
and avoiding the collision. This solution indirectly addresses
the identical-fingerprint problem.

In addition, Fan et al. [13], [14] proposed a hybrid
honeypots based traffic redirection mechanism intending for
addressing the identical-fingerprint problem. The idea behind
the proposal is promising, while the solution still has some
drawbacks. Different honeypots using the identical-fingerprint
have to frequently switch up and down according to research
requirements. Besides, it is hard to conduct large-scale
deployment using the proposed hybrid architecture.

Software defined networking (SDN) is a new networking
paradigm that is aimed to separate the functions that
determine the direction of traffic (control plane) from the
underlying systems that forward traffic to the selected
destination (data plane). SDN brings a fine flow control
capability and programmability to networks that allows to
dynamically configure the data plane according to the network
administrator requirements. These SDN advantages perfectly
match the requirements of traffic redirection mechanisms. For
example, Binder et al. [15] proposed an SDN based method
for TCP connection handover in a Content Delivery Network
to deliver the requests into the best server.

At present, the SDN technology has been widely used in
the research field of network security in distributed systems
[16], [17]. The NICE system [18] is indeed an SDN based
intrusion response system (IRS), which includes a number
of attack countermeasures. It sufficiently makes use of the
network data and applies the scenario attack graph (SAG)
as well as the network intrusion detection system (NIDS,
i.e. Snort [19]) to analyze the network activity in order
to detect the suspicious and even the compromised VMs.
Because it focuses on detecting the zombies or botnets for
preventing DDoS attacks, the attack countermeasures mainly
consisting of network reconfiguration, packet manipulation,
and simple traffic containment, which can be easily achieved
using SDN technology. The fact that the NICE does not
use honeypots but the production VMs makes it is hard to
detect the anomaly-based attacks, i.e. zero-day attacks. Thus,
it is unable to reduce the negative false alarm. Therefore, the

NICE is powerful to confine the spread of the well-known
signature-based attacks among production systems, while it
has limitations to investigate anomaly-based attacks.

III. THE DESIGN OF THE CONTROLLER APPLICATION

Figure 1 shows an overview of the proposed software
architecture for the network data controller. It is mainly
organized around an OpenFlow based switch which manages
the control plane and it is in charge of redirecting the
connections among the controller and the different honeypots,
and a Ryu SDN framework based controller application, which
includes a decision and a redirection engine and makes use of
an IDS.

Snort (IDS)
Ryu SDN

frameworkUnix Socket

Client

Alert event
Unix

Socket

Server

Controller ApplicationSnort rules

OVS
OFSoftswitch

OpenFlow Switches

attacker

frontend

backend

Decision

Engine

Redirection

Engine

Fig. 1. The Architecture of the Controller Application

On one hand, in the control plane, the open-source IDS
Snort is used to analyze the traffic to generate alerts and
send the alert messages to the controller application through
UNIX socket. According to the alert message, the decision
engine (DE) will take the decision to forward or redirect
connection and signal the redirection engine (RE) to perform
the corresponding action.

On the other hand, in the data plane, there are two types
of OpenFlow Switches. The main switch, named the Flow
Classification Forwarder (FCF), is an Open vSwitch (OVS)
that manages the traffic among the different components
of the system (controller, honeypots and Snort IDS). The
frontend and the backend honeypots use the same IP and
MAC addresses, but they are connected to different out ports
of the FCF, which are used to distinguish them. This aims
to ensure the transparent TCP connection handover will not
be detected by fingerprinting. The second switch, a modified
OFSoftswitch named Session Process Forwarder (SPF), is
used to implement the sequence (Seq) and acknowledgement
(Ack) number synchronization function needed for the TCP
redirection mechanism to work. A SPF is deployed in front of
any backend in order to synchronize the Seq and Ack number
of the TCP connections being redirected to it.

The SDN controller based TCP connection handover
mechanism and the Snort based traffic filtering approach are
described in detail in the next two subsections.

A. TCP Connection Handover Mechanism
This subsection focuses on presenting the redirection

engine’s function, which mainly provides the SDN based
TCP connection handover mechanism. Figure 2 graphically
describes the three phases that make up the mechanism, whose
details are described as follows.

Attacker HoneypotForwarder Controller

SYN

Seq = X, Ack: invalid
Packet_In

Store the SYN pkt

Forward SYN pkt to Frontend
Packet_out

SYN_ACK

Seq = Y, Ack = X+1

ACK

Seq = X+1, Ack = Y+1
Packet_In

ACK_PSH

Seq = X+1, Ack = Y+1

Len = N

Packet_In
Forward SYN_ACK pkt to Attacker

Save Frontend SYN Seq (Y)
Packet_out

SYN

Seq = X, Ack: invalid

SYN_ACK

Seq = Z, Ack = X+1

Packet_In

Packet_out

Made redirection decision

Install flow entry in SPF

(for Ack, Seq synchronization)

Flow_Mod

Store the payload pkt

Change FCF out port

Send the SYN pkt to Backend
Packet_out

ACK

Seq = Z+1, Ack = X+1+N

 Len = M

ACK

Seq = Z+1+(Y-Z),

Ack = X+1+N

 Len = M

SYN_ACK

Seq = Y, Ack = X+1

Forward ACK pkt to Frontend
Packet_out

ACK

Seq = X+1, Ack = Y+1

Install flow entry in FCF
Flow_Mod

Forward payload pkt to Frontend

ACK_PSH

Seq = X+1, Ack = Y+1

Len = N

If do not need redirect

If need redirect

SYN

Seq = X, Ack: invalid

Packet_In
Save Backend SYN pkt Seq (Z)

Respond with ACK
Packet_out

ACK

Seq = X+1, Ack = Z+1

Send payload pkt to Backend

ACK_PSH

Seq = X+1, Ack = Y+1+(Z-Y)

 Len = N

Packet_out

Phase 1

Phase 2

Phase 3

Frontend

Backend

Fig. 2. Transparent TCP connection handover mechanism

Phase 1: The session between the attacker and the controller
is established.

The attacker sends the TCP connection request to the target
honeypot. The controller will firstly forward the request to the
frontend, allowing the frontend and the attacker to perform
the TCP three way handshake to establish the connection. In
this phase, we assume that the initial Seq number chosen by
the attacker is X, and the one chosen by the frontend is Y.
Therefore, the Seq and Ack numbers of both the attacker and
the frontend once the connection has been established are:

Attacker : Seq = X + 1, Ack = Y + 1 (1)

Frontend : Seq = Y + 1, Ack = X + 1 (2)

Apart from establishing the connection, during this phase
the application has to: store the SYN packet received from
the attacker just in case it needs to replay it later in order to
transfer the connection; save the initial Seq number (X) of the
SYN packet from the attacker; and save the initial Seq number
(Y) of the SYN ACK packet from the frontend. Thereafter,
when the payload packet from the attacker is received, the
controller has to save and inspect it, so as to make a decision
about whether the connection is worth being redirected to the
backend, if it is still kept in the frontend, or if it should be
closed. As mentioned before, Snort alerts are used to make
the decision. The details of the decision engine main function
will be presented in the next subsection.

Phase 2: TCP session is being transferred from the frontend
to the backend using a TCP replaying approach.

If the decision is to redirect the connection, the controller’s
redirection engine starts to replay the three-way handshake by
sending the attackers SYN packet saved in the first phase to
the backend. Then, the backend honeypot will respond with a
SYN ACK packet including a randomly chosen Seq number,
which we assume to be Z. After the controller receives the
SYN ACK packet from the backend, it will perform two
actions: save the initial Seq number Z of the backend; and
answer the SYN ACK packet with the ACK packet that is
saved in the first phase as well. After that, the replaying of the
three-way handshake between the controller and the backend
is finished and the TCP connection is now formally established
between them.

At this moment, the Seq and Ack numbers of both the
controller and the backend are:

Controller : Seq = X + 1, Ack = Z + 1 (3)

Backend : Seq = Z + 1, Ack = X + 1 (4)

Later, the saved payload packet has to be sent from the
controller to the backend. However, before sending it, some
actions have to be done for synchronizing the Seq and Ack
numbers.

Notice that the backend expects to receive the payload
packet that has the same Seq and Ack numbers calculated
in equation (3). But the preserved payload packet has the Seq
and Ack numbers that are calculated in equation (1). Due to
the difference in the Ack number between equation (1) and
(3), in order to synchronize the Ack number, we will have to
modify the Ack number in the payload packet by a D-Ack
value that can be calculated by equation (5):

D-Ack = Z − Y (5)

Therefore, the first payload packet’s Ack number (Y+1)
have to be increased by the D-Ack value (Z-Y)to be
transformed to the one (Z+1) that the backend honeypot
excepts.

After sending the modified payload packet, the honeypot
will acknowledge it. If we suppose that the data length of the

payload packet is N, then the ACK packet sent by the honeypot
should have the Seq and Ack number calculated as expressed
by equation (6):

ACKfromBackend : Seq = Z +1, Ack = X +1+N (6)

However, the attacker expects to receive the ACK packet
from the honeypot with the Seq and Ack numbers as follows:

ACKfromController : Seq = Y +1, Ack = X+1+N (7)

The difference between the two above equations is the value
that has to be added to the Seq number of the segments going
to the attacker. We denote the difference Seq value as D-Seq,
which can be calculated by equation (8):

D − Seq = Y − Z (8)

Once the D-Ack and D-Seq have been calculated, the values
have to be communicated to the SPF, which is the element in
charge of performing the sequence numbers synchronization.
A modified OFSoftswitch that includes a new specific function
to modify the TCP Seq and Ack numbers, as well as some
new OpenFlow options to manage it in FlowMod messages
has been used for this purpose. Following this approach, the
controller will install flow entries in the SPF to perform the
synchronization: each packet coming from the backend will
have the D-Seq added to its Seq number, and each packet
going to the backend will have the D-Ack added to its Ack
number. Once it is done, the saved payload segment is replayed
to the backend.

Phase 3: TCP session has been transferred to the backend
and Seq and Ack numbers are being synchronized.

After the changes in phase 2, the connection has been
formally transferred and the rest packets have to be exchanged
directly between the attacker and the backend. For this
purpose, the corresponding flow entries will be installed into
the OVS. Therefore, all the subsequent segments will avoid
being forwarded to the controller and can smoothly traverse
between the two TCP end points.

As a summary, the algorithm of the SDN based TCP
connection handover used by the controller and described in
this subsection is presented as Algorithm 1.

B. Traffic Filtering Approach

This subsection presents the traffic filtering functionality
of the system provided by the cooperation of the decision
engine and the Snort alert function. We have reused the Snort
rule format as the basis to set our own traffic-control rules.
Roughly, Snort alert rule format is as follows:

alert protocol source-ip source-port → destination-ip
destination-port (msg: ”alert message”; sid: an integer;
priority: an integer; content: ”malicious pattern”;)

The text using bold font is the key words, and the text
using italics font needs to be replaced by the values. Thus, an
example of Snort NIDS rule can be:

Algorithm 1 SDN controller’s redirection engine
Require: SDN Controller and switches

SDN Controller Initialisation :
1: SDN switches are configured

PacketIn Event Loop Process :
{SDN controller waits for PacketIn event}

2: while PacketIn event do
3: if PacletIn is inbound then
4: if pkt is SYN pkt then
5: if pkt not in sessions{} then
6: new sessions[pkt.ipv4 src, pkt.tcp src]
7: end if
8: save SYN pkt
9: respond with SYN ACK pkt

10: save Seq number Y
11: end if
12: if pkt is ACK pkt then
13: if pkt has no payload data then
14: wait for the next pkt
15: end if
16: if pkt has payload data then
17: store payload pkt
18: make decision: DROP or REDIRECTION
19: if DROP then
20: discard the pkt
21: end the connection
22: end if
23: if REDIRECTION then
24: set FCF’s out port linking backend

{begin TCP connection replaying}
25: send the saved SYN pkt to the out port
26: end if
27: end if
28: end if
29: else if PacketIn is outbound then
30: if pkt is SYN ACK pkt then
31: save Seq number Z
32: respond with ACK pkt
33: calculate D-Ack = Z - Y
34: calculate D-Seq = Y - Z
35: install flow entries in SPF
36: send saved payload pkt to honeypot
37: end if
38: end if
39: end while

alert tcp any any → 192.168.1.0/24 111 (msg:”external
mountd access”)

This rule means that any TCP traffic that wants to access
the port 111 of a system in the network 192.168.1.0/24 will
match this signature, and the Snort will make an alert with the
message ”external mountd access”. Furthermore, we can make
the rule more specific by adding the checking of a suspicious
pattern to the rule, e.g.:

alert tcp any any → 192.168.1.0/24 111 (msg:”external
mountd access”; content:”|000186a5|”)

Now the signature includes not only the IP header
information but also a malicious payload pattern. Therefore,
Snort will check both the IP header information and the
payload data of the captured packet against this signature.
When more than one rule exists, we can use the priority field
to set the priority level for every rule and the sid field to set
the alert ordering.

Therefore, based on the ”alert” rule format of Snort, we
create our own rules by setting an action into the ”msg” field.
In our case, we define three actions: DROP, MIH and HIH.
”DROP” refers to discard the packet, while ”MIH” and ”HIH”
indicates that the traffic destination should be the frontend and
the backend respectively.

To implement the traffic control mechanism, we apply the
Snort rules by two steps to carry out the traffic filtering
approach. In the first step, Ryu controller will read and parse
the Snort rules, translate them into flow entries, and install
those flow entries into the main OVS switch during the system
initialization phase. This step aims to set a data reduction
measure to improve the data capture efficiency. Only the rules
with a ”DROP” action that do not check the ”content” field
are translated into ”drop” flow entries. Therefore, any traffic
that matches these flow entries will be efficiently discarded
in the data plane, avoiding them to reach to the controller.
The rest rules will be translated into ”allow” flow entries, and
the traffic that matches them will be forwarded as a PacketIn
event to the Ryu controller for processing. In the second step,
the Ryu controller will cooperate with Snort to carry out the
content based traffic filtering and redirection (see Fingure 3).

The controller application will send the first payload packet
of each session to the Snort port. Snort thereafter will inspect
the payload packet, raise an alert, and send the corresponding
action as the alert event back to the controller application
through Unix socket. The algorithm of the controller’s decision
engine can be described as Algorithm 2.

Note that some malicious activity can not be detected by
only inspecting the first payload packet, but examining a
higher number of payload packets. For those cases, another
well-known open-source IDS Bro [20] could be used. Bro is a
bit different from Snort. In a way, Bro is both a signature
and anomaly-based IDS. Thus, we could use it to detect
the unknown malicious traffic patterns instead of inspecting
the first payload packet. However, the collaboration of Ryu
controller and Bro will need more effort on TCP connection

Start

Yes No

SDN controller sends the

payload pkt out to Snort

Is the alert msg

drop ?

SDN controller starts TCP

connection handover for

pkt redirection

Loop

PacketIn

event

SDN controller

Discards the packet and

end the connection

Snort: 1) detects the payload pkt; 2) sends

the alert msg back to SDN Controller

Is it payload pkt ?No Yes

SDN controller

forwards the pkt

Event is

finished

Event is

finished
TCP

replay

Fig. 3. The controllers workflow for making decision

Algorithm 2 SDN controller’s decision engine
Input: First Payload pkt
Output: Decision

Decision Making :
1: if pkt has payload then
2: Controller sends the payload pkt to Snort
3: Snort inspects the pkt
4: Snort makes the alert msg
5: Snort sends the alert msg back to the controller
6: end if

hand over approach, which needs to save more than one
payload packets until the decision can be made and later
replaying all the saved packets. At present, our controller
application does not implement this function. However, we
still could set a mirror port in the main OVS to mirror all the
traffic to the anomaly-based IDS as off-line inspection.

IV. IMPLEMENTATION

In order to validate the functionality of the proposed SDN
controller application, we implemented a hybrid honeypot
system as a prototype that uses the proposed application as
its network data controller. We implemented the whole system
inside one physical machine, as it is shown in Figure 4.

Creating and configuring a honeypot network (honeynet)
manually is, in general, a complex and tedious task. In
order to hide all the technical dependent complexity of the
underlying tools, we have used the honeypot deployment tool

 OpenFlow based Switches

OVS

ofsoftswitch13

Ryu SDN

Controller

HIHs (based on Xen, Qemu,

KVM, LXC, etc.)

LIHs and MIHs (could be

based on LXC)

HoneyversSnort
Cuckoo

Rekall

OSSEC

H
o
n
e
y
p
o
ts
p
h
y
s
ic
a
ls
e
rv
e
r

eth
0

Control Plane

Data Plane

2. Start Honeyvers.5. Launch the controller.

3. Run tools

for system data

capture.

1. Previous work: a) Configure the honeypot scenario; b) Configure the traffic

control rules of Snort; c) Configure the Ryu SDN controller

4. Start Snort

Fig. 4. An implementation for validating the controller

called Honeyvers [21] to describe and deploy the honeypot
scenario. Honeyvers is a general virtual honeynet management
framework that offers the security researchers the versatility
to deploy heterogeneous honeypots through integrating the
corresponding virtualized deployment tools for managing
them. In this case, Honeyvers uses Virtual Networks over
linuX (VNX) tool [22] as the underlying virtualization testbed
for deploying virtual scenarios.

Honeyvers workflow can be summarized as follows:

1) The user prepares the configuration of the honeypot
scenario based on the Honeyvers description language
[23], configures the traffic control rules of Snort in order
to set the traffic filtering and redirection mechanism and
configures the SDN controller.

2) The Honeyvers tool is invoked to create the honeypot
scenario according to the configuration provided.

3) The security tools are turned on to monitor the HIH and
capture system activity.

4) Snort is launched to listen on the corresponding interface
that is linked with the Snort out port of the main OVS.

5) The Ryu controller and application is launched to control
the data plane and run the whole system.

Snort is configured in NIDS mode to utilize its intrusion
detection and alert raising functionality. We use the snortlib,
which can be accessed from Ryu SDN framework, to integrate
in this way the Snort alert function into the controller
application. The controller application combined with the
function of snortlib has been developed and uploaded to
Github (https://github.com/fanwj2010/ryu-honeymagic).

Furthermore, due to the specific requirement of
implementing the Seq and Ack numbers synchronization
function in the OFSoftswitch as discussed before, we have
developed new functions in the OFSoftswitch to implement
that functionality. OFSoftswitch is implemented in the user
space, which greatly facilitates the modification of its code.
Besides, the OFSoftswitch is open source and can be freely
forked from the Github project. Currently, the OFSoftswitch is
capable of handling OpenFlow messages till version 1.3. The

synchronization functions are achieved through adding a new
action based on the SET FIELD defined by the OpenFlow 1.3
standard. These two actions are SET TCP ACK DIFF and
SET TCP SEQ DIFF that are used to modify the Ack and
Seq numbers respectively. For example, if we install a flow
mod in the OFSoftswitch using SET TCP SEQ DIFF with
argument 1000, incoming TCP connections which matches
the flow entry will have its Seq number incremented by 1000
on the outgoing interface. The same action can be performed
for the Ack number as well. Therefore, using correctly these
new actions we are able to synchronize the TCP Seq and Ack
numbers for the two traffic directions of the TCP connection.
The new functions added to OFSoftswitch are also available
at Github (https://github.com/fanwj2010/ofsoftswitch13).

V. EXPERIMENTS

A. Testing Scenario

Figure 5 presents the simple testing scenario used to validate
the proposals described in this paper.

External Network Internal Network

Fig. 5. The testing scenario

The testing scenario includes: one internal network
(10.1.1.1/24) where the honeynet is deployed; one external
network (10.1.0.1/24) where the attacker is located; and a
router that connects both networks. As stated before, we assign
the same IP addresses (10.1.1.2) and also the MAC address
(not shown in the Figure) to both the MIH and HIH to make
sure they have the identical fingerprint.

For the tests we configured the following Snort rules:

alert tcp any any → any 21 (msg:”MIH”; sid:1000002;
priority:2;)
...
alert tcp any any → any 25 (msg:”HIH”; sid:1000005;
priority:2;)
...
alert tcp any any → any any (msg:”DROP”;
sid:1000008; priority:0;)

Therefore, the system has several open ports. The traffic
destined to these ports will be sent and processed by the
controller, and later the controller will forward the traffic to the
destination associated to the Snort alert message. Any other
uninteresting traffic will be filtered by the main OVS in order

to perform data reduction, which can prevent the controller
from being congestion. After the initialization of the controller
application, the corresponding flow entries in the Main OVS
are created as follows:

OFPST FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=90.798s, table=0,
n packets=0, n bytes=0, priority=2,tcp,tp dst=21
actions=CONTROLLER:65535
...
cookie=0x0, duration=90.798s, table=0,
n packets=0, n bytes=0, priority=2,tcp,tp dst=25
actions=CONTROLLER:65535
...
cookie=0x0, duration=90.798s, table=0, n packets=0,
n bytes=0, priority=0,tcp actions=drop

Once the system is started with the configuration described
above, we can use traceroute from the attacker’s VM to check
the connectivity and find the routing path to the honeypot IP
addresses.

traceroute -n 10.1.1.2
traceroute to 10.1.1.2 (10.1.1.2), 30 hops max, 60 byte
packets
1 10.1.0.1 0.088 ms 0.029 ms 0.025 ms
2 10.1.1.2 8.128 ms 8.021 ms 8.078 ms

B. Redirection

In order to validate the TCP connection handover
mechanism, we use SSH to establish a TCP connection and we
apply Wireshark to observe the connection changes occurred
between the frontend and the backend. Figure 6 shows the
observation of the TCP connection handover.

��

��

��

��

��

����

��

Fig. 6. The Wireshark flow graphs of the SSH redirection testing

The upper flow graph shows the initial TCP connection
established between the attacker and the frontend. However,
thereafter the attacker does not sent the ACK PSH segment
to the frontend, since the Snort makes an alert indicating

the controller to redirect the traffic to the backend. Thus,
the controller starts to replay the TCP three-way handshake
as the lower graph shows. After finishing the new TCP
establishment between the attacker and the backend, the
rest of the segments are exchanged fluently between them.
Meanwhile, the segments retransmitted by the frontend to the
attacker are dropped by the controller, and finally the old
TCP connection between the attacker and the frontend will
be terminated. Here we should note that the time displayed
by Wireshark is relative to the first packet it captures by the
network interface it is listening on during the testing (not
related to the time the connection was initiated).

C. Performance

For the performance evaluation, we designed a simple test
based on SMTP to monitor the latency of the first push
packets arriving at the honeypot under concurrent incoming
connections. An SMTP server (Postfix) was installed in
honeypots. An SMTP client script was installed on the remote
attacker. The script consists of the following sequence of five
SMTP commands:

HELO test \n
MAIL FROM: <test@test.test> \n
RCPT TO: <root@localhost> \n
DATA. \n
test. \n

The experiment consisted of running the automated SMTP
client script at the rate of 10 connections per second. We
just record the duration for all the first push packet of each
connection arriving at the honeypot. The experimental results
under different scenarios are shown in Fig 7.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

forward honeybrid SDN controller

Ten smtp requests occurred in one second

La
te

n
cy

 o
f

th
e

 f
ir

st
 p

a
y
lo

a
d

 p
k

t
a

rr
iv

in
g

 a
t

h
o

n
e

p
it

(s
)

Fig. 7. Connection latency raised by different approaches

The first PSH ACK packet including payload arriving at
the honeypot means the TCP connection between the attacker
and honeypot has been established. So the timestamp of
the first payload packet arriving at the network interface

of the honeypot can be used to calculate the duration for
establishing TCP connection. The experimental results show
that the connections processed Honeybrid gateway and our
SDN controller application can cause much more latency than
the normal forward connections. The reason is that both the
Honeybrid gateway and the SDN controller need to replay the
TCP connection in order to redirection the traffic. However,
the delay introduced by the replaying phase of the redirection
mechanism is low in our case, as the dialog is made between
local systems. Therefore, it will not change importantly the
external connection behavior. Furthermore, our SDN controller
needs Snort to make decision that results in more latency than
the Honeybrid gateway that just uses the rules of IPTABLES
to make decision.

Fig. 8 shows the packet I/O graph of honeypot using
different mechanisms. The selected interval is 100ms, so the
diagram refers to the number of packets is processed by
the honeypot in each 100ms. Within this interval, we can

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

forward honeybrid SDN controller

Interval (x100ms)

T
H

e
 n

u
m

b
e

r
o

f
p

a
ck

e
ts

 p
ro

ce
ss

e
d

p

e
r

se
co

n
d

Fig. 8. Packet I/O graph of honeypot under different mechanisms

observe the packet I/O is much more equal-distributed when
we use our SDN controller application or never apply any
redirection approach. The packet I/O distribution of Honeybrid
is much sharper than the other two. Therefore, if the adversary
uses the difference of the packet I/O performance to detect
the redirection, our mechanism is much stealthier than the
Honeybrid gateway’s approach.

VI. CONCLUSION

Honeypots have become a very important security tool for
malicious data capture and investigation. However, due to the
wide variety of the attacks that take place in real network
environments, securing computer systems and investigating
the attacks often require the use of sophisticated honeypot
systems. The use of individual honeypots is useful when
the focus is on some specific attacks, but they have limited
application to investigate other types of attacks. The creation
and development of hybrid scalable honeypots is aimed to
address this problem. A hybrid honeypot system should be
able to deploy different types of independent honeypots and
control the access of the interesting traffic to the corresponding
honeypots according to certain security requirements.

The SDN based network data controller proposed in this
paper is aimed to perform the traffic control in hybrid
honeypot systems. The controller provides a transparent
traffic redirection mechanism that allows forwarding the
interesting traffic into corresponding honeypots for further
investigation. It implements a TCP connection handover
mechanism and a traffic filtering approach based on the use
of OpenFlow switches, a Ryu SDN application and the Snort
alert mechanism. The use of SDN technologies in this context,
specially the facility they provide to programmatically detect
and control the data flows in the network has greatly simplified
the development of the data controller, compared to other
traditional networking approaches.

The preliminary experimental results have allowed to
validate the proposal, showing that it can be used to redirect
the interesting traffic in a hybrid honeypot systems in a stealthy
way. However, some efficiency problems have been detected,
mainly due to the limited and simple virtual scenario used for
the tests. In the future, we plan to address this inefficiencies
and improve the testing scenario, as well as applying the
proposed SDN controller to real honeypot systems.

ACKNOWLEDGMENT

This research has been partially supported by the Spanish
Ministry of Economy and Competitiveness in the context of
GREDOS project (contract no. TEC2015-67834-R) and Elastic
Networks (grant no. TEC2015- 71932- REDT).

REFERENCES

[1] M. Nawrocki, M. Wählisch, C. Schmidt, T. C. andKeil, and
J. Schönfelder, “A survey on honeypot software and data analysis,” ArXiv
e-prints, Aug. 2016.

[2] N. Provos, “A virtual honeypot framework,” in Proceedings of the 13th
Conference on USENIX Security Symposium (SSYM’04), Berkeley, CA,
USA, 2004, pp. 1–14.

[3] “Dionaea - catched bugs,” Nov. 2011. [Online]. Available:
http://dionaea.carnivore.it/

[4] X. Jiang and D. Xu, “Collapsar: A vm-based architecture for network
attack detention center.” in USENIX Security Symposium, 2004, pp.
15–28.

[5] M. Bailey, E. Cooke, D. Watson, F. Jahanian, and N. Provos, “A
hybrid honeypot architecture for scalable network monitoring,” Technical
Report CSE-TR-499-04, University of Michigan, 2004.

[6] G. Portokalidis and H. Bos, “Sweetbait: Zero-hour worm detection
and containment using low-and high-interaction honeypots,” Computer
Networks, vol. 51, no. 5, pp. 1256–1274, 2007.

[7] H. Artail, H. Safa, M. Sraj, I. Kuwatly, and Z. Al-Masri, “A hybrid
honeypot framework for improving intrusion detection systems in
protecting organizational networks,” Comput. Secur., vol. 25, no. 4, pp.
274–288, Jun. 2006.

[8] L. Spitzner, “The honeynet project: trapping the hackers,” IEEE Security
Privacy, vol. 1, no. 2, pp. 15–23, Mar 2003.

[9] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren,
G. Voelker, and S. Savage, “Scalability, fidelity and containment in the
potemkin virtual honeyfarm,” ACM Symposium on Operating System
Principles (SOSP), vol. 39, no. 5, pp. 148–162, Oct 2005.

[10] R. Berthier and M. Cukier, “Honeybrid: A hybrid honeypot architecture,”
2008.

[11] H. Welte and P. N. Ayuso, “The libnetfilter queue project,” 2014.
[Online]. Available: http://www.netfilter.org/projects/libnetfilter queue/

[12] T. K. Lengyel, J. Neumann, S. Maresca, B. D. Payne, and A. Kiayias,
“Virtual machine introspection in a hybrid honeypot architecture,”
in Presented as part of the 5th Workshop on Cyber Security
Experimentation and Test. Berkeley, CA: USENIX, 2012.

[13] W. Fan, D. Fernndez, and Z. Du, “Adaptive and flexible virtual
honeynet,” in International Conference on Mobile, Secure, and
Programmable Networking, vol. 9395, Paris, France, June 2015, pp.
1–17.

[14] W. Fan, Z. Du, D. Fernández, and X. Hui, “Dynamic hybrid honeypot
system based transparent traffic redirection mechanism,” in 17th
International Conference on Information and Communications Security
(ICICS2015), Beijing, China, Dec.9-11 2015, pp. 311–319.

[15] A. Binder, T. Boros, and I. Kotuliak, A SDN Based Method of TCP
Connection Handover. Cham: Springer International Publishing, 2015,
pp. 13–19.

[16] T. Xing, Z. Xiong, D. Huang, and D. Medhi, “Sdnips: Enabling
software-defined networking based intrusion prevention system in
clouds,” in 10th International Conference on Network and Service
Management (CNSM) and Workshop, Nov 2014, pp. 308–311.

[17] P. K. Shanmugam, N. D. Subramanyam, J. Breen, C. Roach, and
J. Van der Merwe, “Deidtect: Towards distributed elastic intrusion
detection,” in Proceedings of the 2014 ACM SIGCOMM Workshop on
Distributed Cloud Computing, ser. DCC ’14. New York, NY, USA:
ACM, 2014, pp. 17–24.

[18] C. J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “Nice: Network
intrusion detection and countermeasure selection in virtual network
systems,” IEEE Transactions on Dependable and Secure Computing,
vol. 10, no. 4, pp. 198–211, July 2013.

[19] M. Roesch, “Snort - lightweight intrusion detection for networks,” in
Proceedings of the 13th USENIX Conference on System Administration,
ser. LISA ’99. Berkeley, CA, USA: USENIX Association, 1999, pp.
229–238.

[20] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Comput. Netw., vol. 31, no. 23-24, pp. 2435–2463, Dec. 1999.

[21] W. Fan, D. Fernndez, and Z. Du, “Versatile virtual honeynet management
framework,” IET Information Security, vol. 11, no. 1, pp. 38–45, 2016.

[22] D. Fernández, F. J. Ruiz, L. Bellido, E. Pastor, W. Omar, and
V. Mateos, “Enhancing learning experience in computer networking
through a virtualization-based laboratory model,” International Journal
of Engineering Education, vol. 32, no. 6, pp. 2569–2584, December
2016.

[23] W. Fan, D. Fernndez, and V. A. Villagr, “Technology independent
honeynet description language,” in 2015 3rd International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), Feb 2015, pp. 303–311.

