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Abstract. To develop robust algorithms for agricultural navigation, dif-

ferent growth stages of the plants have to be considered. For fast valida-

tion and repeatable testing of algorithms, a dataset was recorded by a 4 

wheeled robot, equipped with a frame of different sensors and was guided 

through maize rows. The robot position was simultaneously tracked by a 

total station, to get precise reference of the sensor data. The plant position 

and parameters were measured for comparing the sensor values. A hori-

zontal laser scanner and corresponding total station data was recorded for 

7 times over a period of 6 weeks. It was used to check the performance 

of a common RANSAC row algorithm. Results showed the best heading 

detection at a mean growth height of 0.268 m. 
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1 Introduction 

Autonomous robots can have a key role in increasing sustainability and resource effi-

ciency in food production for future world population [1]. Therefore the navigation 

must be planed precisely and be robust enough to deal with the changing conditions on 

a field. But this requires, that the machines know where the crop plants are and that 

they don´t get destroyed by the vehicle. As most of the current crops are planted in row 

structures, detecting these rows is one of the basic needs for the autonomous navigation 

of robots in semi-structured agricultural environments. Many researches had been con-

ducted on detecting this line structures by camera images ([2],[3]), light detection and 

ranging (LIDAR) laser scanner data ([4],[5],[6]), or other types of sensors. Neverthe-

less, precise line detection, relying on noisy sensor data, is still a challenging task for a 

computer algorithm due to the inherent uncertainty in the environment [6]. Humans can 

detect objects and shapes because of experience rather than a formal mathematical def-

inition, like a computer algorithm does [7]. The environment has a countless number of 
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variables influencing the sensors, making it hard to get the right information out of the 

values [8]. Aside from that, plants on the field are changing their shape rapidly, making 

object recognition even more challenging. First the plants are growing and, second, the 

conditions are changing. Therefore, there is a necessity for calibration of the algorithms 

before the robot is able to perform the task autonomously [6].   

Also, weather and lighting conditions can already produce big changes in the results. 

This is especially problematic for image analysis, where alternate and discontinuous 

luminance usual affects the outcome [7].  

To deal with these uncertainties, researchers have used simulated datasets [9], artificial 

plants ([9], [10]) or recorded datasets ([1],[3],[6]) to evaluate their algorithms. Since a 

simulation is always an approximate model of the environment, it will never cover all 

possibilities [8]. When recording data, the question is of how to refer to the algorithm 

performance. One option is to set the crop row manually [6]. The precise sensor value 

recording of the same plants over different growth stages, can be a good way for the 

later evaluation of navigation algorithms. In order to understand how algorithms behave 

under changing conditions in a field, it is necessary to know the pictured objects and 

how the sensors react on them. Therefore, it is important to know the correct plant po-

sition and parameters. In order to achieve that, the plant parameters must be mapped 

and referenced in every new test.  

The aim of this paper is to show how algorithm analyzing could be improved using 

precise referenced sensor data, especially when the same plants can be investigated with 

the same sensors over different growth stages. For that purpose, the data set of a hori-

zontal LIDAR is used. With the help of a highly accurate total station, all sensor data 

sets can be converted into the same reference frame, in order to obtain comparable re-

sults. This approach is tested by the performance evaluation of a common random sam-

ple consensus (RANSAC) line fitting algorithm [11]. The RANSAC algorithm has the 

advantage of being fast and robust against outliers, resulting in advanced performance 

when dealing with noisy sensor data. Therefore the performance at different growth 

stages can be precisely evaluated, by using the same reference. 

2 Materials and Methods 

2.1  Hardware and Sensors 

 

A small 4-wheel autonomous robot with differential steering was used to move the sen-

sors with manual control through the crop rows (see Fig. 1). The size of the robot plat-

form was 500 x 600 x 1100 mm. The weight of the robot is 50 kg and it is equipped 

with four motors with a total power of 200 W. Maximum driving speed is 0.8 m/s and 

the maximum static motor torque is 4 x 2,9 Nm. The robot system is equipped with 

wheel encoders, a VN-100 Inertial Measurement Unit (IMU) (VectorNav, Dallas, 

USA) and a LMS111 2D-LIDAR laser scanner (SICK, Waldkirch, Germany). The laser 

scanner was mounted horizontally at the front of the robot at a height of 0.2 m above 

the ground level. All other mounted sensors had not been used in this paper. 

For evaluating the precise position of the robot, the SPS930 Universal Total Station 

(Trimble, Sunnyvale, USA) was utilized. The total station was tracking a Trimble 



MT900 Machine Target Prism, which was mounted on top of the robot at a height of 

1.07 m in order to guarantee always line of sight to the total station (see Fig. 1).  

The robot is controlled by an embedded computer, equipped with i3-Quadcore proces-

sor with 3.3 GHz, 4 GB RAM and SSD Hard drive. For energy supply, two 12V/48Ah 

batteries are providing an operating time of around 4-5 h, depending on the load torque, 

task and additional weight of equipment placed on the robot platform. The total station 

data was sent to a Yuma 2 Rugged Tablet Computer (Trimble, Sunnyvale, USA); this 

tablet is equipped with an Intel Atom CPU N2600 dual-core processor with 1.6 GHz, 4 

GB RAM, SSD Hard drive, and a self-sufficient battery. Connectivity to the SPS930 

total station is provided by an internal 100mW radio antenna at the 2.4 GHz (IEEE 

802.11) range. The Yuma 2 Rugged Tablet Computer was connected to the robot com-

puter via serial RS232 interface for continuous data exchange.  

 

  

 

Fig. 1. Robot platform, equipped with the sensors and the reference prism 

 

 

2.2  Software 

 

The robot computer runs by Ubuntu 14.04 and use the Robot Operating System (ROS-

Indigo) middleware for the data recording. The software components had been pro-

grammed in a combination of C++ and Python programming languages. 

The Trimble Yuma 2 Tablet was running under Windows 7 Professional and executed 

the Trimble SCS900 Site Controller Software Version 3.4.0. The Trimble software in-

cludes an easy-to-use graphical interface for fast calibration and point measurement. It 

also has the option to export the actual prism position via serial RS232 interface. The 

tablet was placed on the robot and the serial output was directly used by the ROS system 

to refer the robot position to the total station coordinate frame. The prism position data 

was time stamped, according to the computer system time, together with the sensor 

data. The data flow diagram can be seen in Fig. 2. 
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Fig. 2. Data flow diagram of the robot sensor setup 

 

 

2.3 Referencing & Data Acquisition 

 

To create a relative coordinate frame in the greenhouse, five fixed attachments for the 

MT1000 Prism had been placed on predefined positions. The accurate position of these 

five points could be located by just screwing the prism on the attachments for every 

new field test. The absolute point distances were stored during the first setup. Before 

every subsequent data acquisition, these points were measured once again by the total 

station in order to recalibrate the system to the first total station position with the orig-

inal Cartesian coordinate frame. After every test, the inaccuracy in the static measure-

ment was evaluated by reassessing each of these fixed points. The shift between the 

first reference points and the actual measurement was evaluated by the Trimble SPS 

software and was in all tests below 4 mm for all three dimensions. The total station was 

always placed almost at the same position inside the greenhouse, which lies around the 

zero point of the coordinate frame. 

After plant emergence, the stem position was measured with the aid of pendulum hang-

ing from a tripod; the MT1000 Prism was attached at the center of the tripod. It was 

assumed that the center of each plant stem’s position will not change during the period 

of growth. Consequently, each of these points was used as the reference position of 

each individual plant.  

Due to the robot rigid body frame that was carrying the sensors, a static transformation 

between the prism and the sensor positions was performed. The three-dimensional ori-

entation of the robot in space was evaluated by the IMU, which was placed at the center 

of the robot and on the same axis as the prism. As the orientation of the prism could not 

be evaluated by the total station, the position of the prism was fused with the IMU data 

to transform the laser scans to the greenhouse frame.  



This procedure allowed to directly transform the recorded sensor data into the same 

coordinate frame, and even to assign them to single plant positions. In Fig. 3a the test 

environment with the moving robot is presented and in Fig. 3b the corresponding sensor 

value visualization of all attached sensors in the ROS environment is illustrated. The 

blue points correspond to the horizontal laser scanner data. 

(a) (b) 

 

Fig. 3. (a) the greenhouse environment and (b) a visualisation of the transformed sensor data in 

the ROS visualisation environment 

 

The sensor files were separated at a size of 4 GB. The timestamp was according to the 

robot embedded computer system time, with a resolution of one millisecond. The 

LIDAR data was collected with an average of 25 Hz and a resolution of 0.5 degree. The 

total station updated the data with 15 Hz. The IMU data was transmitted with 40 Hz. 

Linear interpolation was used to fuse robot position and the sensor data before trans-

forming it to the global coordinates of the greenhouse frame. 

 

2.4 RANSAC Algorithm 

 

The RANSAC is a commonly used algorithm for evaluating plane parameters in noisy 

point cloud data [12], [13]. But also for row or line estimation in image analysis [1], 

and 2D-LIDAR data [14], [15]. To evaluate the general algorithm behavior, the 

RANSAC was chosen due to its previously mentioned robustness against outliers. The 

implemented RANSAC algorithm is part of the Point Cloud Library [16] and was inte-

grated in the ROS environment, for direct analysis of the published scans. To get always 

precise reference of the extracted lines, the LIDAR data was first transformed to the 

robot body frame and then to the overall greenhouse frame.  

As the distance between maize crop rows is 0.75 m, this parameter was used to filter 

roughly the row area with the known robot position with a rectangle. The resulting point 

cloud was separated to have for each crop row an individual point cloud. This was done 

by using the known robot position and robot direction. The RANSAC was then applied 

to each distinct point cloud. The maximum iteration limit was set to the input point 



number and the maximal distance range for the line to 0.5 m. These parameters were 

fixed for all performed line fittings.  

3. Experiments 

Five rows of maize were planted with a length of 5.2 m each. The row spacing was 

defined according to common agricultural practice to 0.75 m, with 41 plants per row. 

The maize was planted in a greenhouse to be independent of external weather condi-

tions. The measured positions of the plants, total station and reference points can be 

found in Fig. 4. After every data acquisition, the height, stem width and leaf numbers 

of each single plant had been measured. This was done manually with a measuring tape 

and a sliding caliper. 

 

 
 

Fig. 4. Manually measured plant positions, reference points and total station position 

 

The ideal line parameters were evaluated by the plant germination positions, measured 

with the total station. Because this line has no outliers, the least square algorithm can 

result in the most accurate line fitting. As reference, a 2D line in the XY-plane was 

estimated using the equation 𝑓(𝑥) = 𝑎𝑥 + 𝑏. The residual 𝑟 of every data 

point 𝑃𝑖(𝑥𝑖, 𝑦𝑖) can be described with:  

 𝑟𝑖 = 𝑓(𝑥𝑖) − 𝑎 ∗ 𝑥𝑖 − 𝑏 (1)     

Using the least square estimation the best line fit can be estimated as: 
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This was adapted to the emerging points of the plants, resulting in the line parameters 

presented in Table 1. 

Table 1: Listing of the line parameters 

line number line equation in [m] intersection point with last row 

in [m] 

1 𝑓(𝑥) =  −0.0062𝑥 +  0.4441 - 

2 𝑓(𝑥)  =  −0.0079𝑥 +  1.1913 𝑃 (439.53, −2.28) 

3 𝑓(𝑥)  =  −0.0085𝑥 +  1.9414 𝑃 (1250.17, 8.69) 

4 𝑓(𝑥)  =  −0.0068𝑥 +  2.7186 𝑃 (−457.18, 5.83) 

5 𝑓(𝑥)  =  −0.0101𝑥 +  3.4811 𝑃 (231.06, 1.15) 

 

As it can be seen in the intersection points, shown in table 1, the row with the smallest 

angle difference between the lines is the path between crop row 2 and 3; here, the in-

tersection point had the longest distance to the row center. The best performance was 

expected from the most parallel lines for evaluating the row detection algorithm. So 

crop row line 2 and 3 were selected. The sensor data recording took place from 23.04.15 

until 1.06.15 in Stuttgart Hohenheim. In total 7 tests were performed. In every test, the 

robot was driven by a remote joystick with a constant speed through the crop rows. The 

average speed was around 0.05 m/s in order to acquire a high data density. Both rows 

were recorded twice, once for each travel direction. For all 7 test days, each travel di-

rection was evaluated, resulting in a total of 14 recorded and analyzed datasets. The 

laser scanner data was used, when the robot reference prism was in an area between 2 

to 5 m in the x direction. For filtering purposes, the scans were first transformed to 

Cartesian coordinates and then to the greenhouse coordinate frame. The reflected points 

of the robot vehicle were removed and the point cloud was separated as described 

above. By doing this, the RANSAC could be performed for each crop line separately. 

Each of the line fittings was addressed directly to one single point cloud set without 

using any prior knowledge about the last dataset or the robot position. Scans with less 

than three points in the line area were ignored. In total 10277 different laser scans were 

evaluated. In Table 2 the number of analyzed scans per line are presented.  

Table 2: Numbers of analyzed scans per line 

Test Num-

ber: 

Date Days after 

seeding 

Analyzed scans 

line 3 

Analyzed scan 

line 2 

1 23.04.2015 28       67  688 

2 27.04.2015 32 601  990 

3 30.04.2015 35 910 1041 

4 05.05.2015 40 897   941 

5 13.05.2015 48 754   763 

6 18.05.2015 53 653   652 

7 01.06.2015 67 660   660 



The difference between ideal line and the algorithm solved line, was evaluated with the 

help of the Root Mean Square Error (RMSE), defined by the following equation: 

 

𝑹𝑴𝑺𝑬 = √
∑ (𝛿 − 𝛽𝒊)

𝒏
𝒊=𝟏 ²

𝒏
 (3)         

 

With 𝛿 as ideal line parameters and 𝛽𝑖 as the resolved algorithm parameters at the 

scan 𝑖. 

 4 Results and Discussion 

As the greenhouse soil was not homogeneous, there was a huge diversity in growth 

status. For tracking the crop development, the highest point of each plant was measured 

and the mean value was evaluated for each crop row. The variability is expressed by 

the standard deviation of all 41 plants heights per crop row. The results are shown in 

Fig. 5. The average height of the plants at line 3 had been lower than at line 2. 48 days 

after seeding, most of the plants reached the level of 0.2 m height. At all tests afterwards 

the number of analyzed scans had been almost the same for both sides (see Table 2). 

As in the first two tests the average plant height of line 3 was below the height of the 

laser scanner, the RANSAC algorithm for line 3 detected points, just when the vehicle 

was turned downwards, because of uneven ground. The absolute mean value for the 

height of the line 3 was 0.47 m while for line 2 the mean value was 0.65 m. The tallest 

plant reached 0.82 m at line 3 and 0.86 m at line 2. For later growth stages the standard 

deviation was increased. Along with the height, the numbers of leaves, covering the 

row, were also increased. This caused limited sight of view for the LIDAR.  

(a) (b) 

  
 

Fig. 5. Mean growth status of the plants for (a) line 3 and (b) line 2 
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For evaluating the change between crop row and RANSAC output, the RMSE for every 

data set was estimated. The results for the row position (Fig. 6a) showed a higher error 

in the first tests for all mean values below 0.2 m. For all other heights, the RMSE value 

fluctuated at a value around 0.1 m. The best matches were after 35 and 67 days at line 

2 with an RMSE value of 0.07 m and 0.06 m, respectively.  

Also the heading error (Fig 6b) had a higher value at the first tests with low mean plant 

height. For both lines a local minima could be detected after a 35 days (see Fig. 6b). As 

it could be seen in Table 2, this was the first test with almost equal number of detected 

lines out of the scans. With the growth of the plants, the precision decreased back again. 

Only the last measurement of line 3 did performed better than the first minima of the 

same line. A reason for this could be the inhomogeneous growth of the crop plants. In 

total the RANSAC performed better at line 2 than in line 3. Reasons for that could be 

the more homogenous growth of the plants, which is expressed by the standard devia-

tion of the two lines (see Fig. 5). Especially line 2 had almost constant RMSE values 

between 35 and 53 days after seeding. 

(a) (b) 

  

Fig. 6. RMSE of (a) position and (b) heading of row line 2 (▲) and line 3 (●). 

 

To better understand the evaluated error of the real line parameters, the direct RANSAC 

output is shown in Fig. 7. For evaluating the values, two tests after 35 days and two 

tests after 67 days are visualized. For both test days, the robot moved through the row 

in each direction once. 200 measurements were evaluated and compared in the follow-

ing graph (see Fig. 7). The RANSAC heading output after 35 days is shown in Fig 7a 

and the output after 67 days can be seen in Fig 7b.  The inclination parameter of line 2 

is -0.0079, which under ideal conditions should be the same like the computed 

RANSAC parameter. The nearest heading to this theoretical value can be seen at 35 

days after seeding (see Fig 6b). After 67 days, the computed values increased and pro-

duced out of these a bigger shift to the reference value. At the end of the row a higher 
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shift can be noticed. A reason for this could be, the lower number of points, detectable 

at the end of a row, to balance the outliers. After 67 days this performance was worse 

compared to the values after 35 days as illustrated in Fig. 7b. First this could be rea-

soned, by the high amount of leaves hanging into the laser scan area. These leaves 

blocked the detection of the stem positions that were necessary to evaluate the line 

orientation. 

For every direction the robot moved, a static shift of the heading was observed (see Fig. 

7). This can be explained by some reflections of leaves, which caused a shift of the 

detected line to the middle of the row. This effect was stronger after 67 days and caused 

a narrow detection of the plant stems. The minimal reached RMSE was 0.05 rad for the 

line detection with the RANSAC after 37 days. After 67 days this value increased.  

In worst cases the noise could be much higher than 5 degrees (0.1 rad) compared to the 

real value. This can cause problems on line following, especially when there is not 

enough space between the vehicle and the rows. The failure rate could be seen in many 

cases of the evaluated data. A part of the analyzed error could also be resulted by the 

inaccuracy of the LIDAR measurements.  

For getting a RANSAC algorithm robust for navigation, this heading uncertainty must 

be compensated. Higher algorithm robustness could be accomplished using a Kalman 

filter. When the growth status is known, the heading error could also be decreased by a 

static offset, which must be evaluated before starting the line following.  Filtering for 

outliers or mean filter methods could also bring better results.  

(a) (b) 

  

 

Fig. 7. Heading values of the RANSAC for (a) line 2, 35 days after seeding and (b) 67 days after 

seeding. Robot movement in positive x direction (orange triangles) and in negative x direction 

(blue dots). 

 

The results of the RANSAC showed a high variability in the dataset, with different 

outcomes of the algorithm. So it could be assumed, that the variability in the dataset 

brings additional options for testing the robustness of line following algorithms for dif-

ferent growth states. The experimental setup allowed to detect a heading offset, which 
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is dependent on the growth status of the crop plants. It could be shown that this offset 

is dependent on the sensor position and the movement of the robot. Also the best height 

for the line detection with the given laser position could be evaluated. This was at a 

mean height of 0.265 m of the plants. 

5 Conclusions 

The results of the collected data set showed high precision and good referenced sensor 

data for all measured growth stages. The application of a RANSAC algorithm for line 

detection to the horizontal laser data showed high diversity in heading and positioning. 

The smallest heading error was detected 35 days after seeding and at an average plant 

height of 0.268 m. After that, the error increased and brought a higher RMSE value to 

the detection. Also a drift dependent on the travel direction of the robot was observed, 

which was caused by leaves inside the row. This effect increased with the growth of the 

plants. In many cases of the given data set, the deviation of the line heading was higher 

than 5 degrees. This would cause problems for precise row navigation. The position 

error was for most cases acceptable. For line following applications in maize with a 

RANSAC algorithm, robust filtering of the laser data and algorithm results should be 

considered. In total the approach was helpful in order to evaluate some basic problems 

of outdoor line detection with LIDARs and a RANSAC algorithm. Aside of that, the 

accurate reference of the heading difference could be evaluated. 
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