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COMPACT SOLUTION OF CIRCULAR ORBIT RELATIVE MOTION
IN CURVILINEAR COORDINATES

Claudio Bombardelli*, Juan Luis Gonzalo†and Javier Roa‡

A compact approximate solution of the highly non-linear relative motion in curvi-
linear coordinates is provided under the assumption of circular orbit for the chief
spacecraft and moderately small inclination and eccentricity for the follower. The
rather compact three-dimensional solution, which employs time as independent
variable, is obtained by algebraic manipulation of the individual Keplerian motions
in curvilinear coordinates and Taylor expansion for small eccentricity of the fol-
lower orbit. Numerical test cases are conducted to show that the approximate solu-
tion can be effectively employed to extend the classical linear Clohessy-Wiltshire
solution to include non-linear relative motion without significant loss of accuracy
up to a limit of 0.4-0.5 in eccentricity and a few degrees in inclination.

INTRODUCTION

The most common representation of relative motion in circular orbit comes from the solution
of the well-known Clohessy-Wiltshire (CW) equations. These equations, easily solvable in closed
analytical form, derive from the linearization of the gravitational acceleration acting on the follower
spacecraft and, as a consequence, are quite accurate when its separation distance from the chief is
a sufficiently small fraction of the orbital radius. When such condition is not fulfilled non-linear
gravitational effects influence the relative dynamics in such a way that the original CW solution
fails to accurately reproduce the relative motion.

Due to the intrinsic instability of orbital motion the chief-follower separation distance can grow in
a secular way even if the initial conditions of relative position and velocity are small. This happens
every time the follower orbit semi-major axis differs from the one of the chief and can represent an
important limitation for the use of CW equations for long time propagation. Fortunately, there is a
simple solution to this problem: by formally replacing the along-track ’y’ Cartesian coordinate with
the curvilinear abscissa describing the follower-chief separation along the chief orbit and the radial
’x’ coordinate with the radial distance between the follower and chief orbit the CW solution can be
“projected” along the curved orbital path providing a quite accurate fully analytical solution even for
relatively large time intervals as long as the distance between the follower and chief orbits remain
small. This fact has been known since decades and widely used especially in the Russian litera-
ture.1 Nevertheless, a mathematical proof of the correspondence between the linearized equations
of relative motion in Cartesian and curvilinear coordinates appeared (to the authors’ knowledge)
only recently.2
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In the most general, fully non-linear case in which the distance between the orbits of the follower
and chief is large compared with the chief orbital radius the linearized curvilinear solution also fails
and more complicated solution strategies are required.

One straightforward approach, also known in the literature, is to vectorially subtract the individual
Keplerian conics therefore obtaining an exact solution to the problem. An elegant vectorial relative
motion formulation has been proposed by Condurache and Martinusi.3

This approach would however still require the numerical solution of Kepler´s equation for one
of the two orbit and would in general be affected by a loss of accuracy for short relative distances
due to the subtraction of nearly equal numbers. An interesting algorithm to overcome the short
separation distance limitation was proposed in 1970 by Lancaster.4

A considerable improvement with respect to the vectorial solution has been proposed by other
authors. Berreen and Crisp5 and Berreen6 in the 70s propose a coordinate transformation of the
known Keplerian orbital motions to curvilinear rotating coordinates. The use of a series expansion
in eccentricity and a change of independent variable from time to eccentric anomaly leads to a rather
compact and insightful analytical expression of the “cycloidal” relative motion that is valid for small
eccentricities of the follower orbit, or, equivalently, for small initial relative velocities. The work
by Berreen and Berreen and Crisp is limited by the fact that it only deals with coplanar motion
and that it does not provide a time-explicit solution. More recently, Gurfil and Kasdin7 develop an
approximate solution that overcomes these limitations by resorting to a Taylor expansion around a
degenerate set of orbital elements composed by the semi-major axis, eccentricity, inclination and
mean longitude of the follower orbit. The results is a Cartesian coordinate solution separating
periodic and secular terms and offering improved accuracy.

The present work is a step forward with respect to the previous references based on a Taylor ex-
pansion with respect to the orbit eccentricity only (retaining the full influence of orbital inclination
in the out-of-plane dynamics) and the use of curvilinear coordinates instead of Cartesian, which pro-
vides a much more robust and compact solution. In addition, it provides key relations between the
relative motion initial state and the resulting orbital elements of the follower in compact analytical
form.

The structure of the article is as follows. First we introduce the curvilinear coordinate parametriza-
tion of the relative motion describing all relevant reference frames and transformations. We then
derive the relations between the relative motion initial state and orbital element. The full equations
of relative motion, already obtained implicitly by Alfriend et al.2 and in explicit form by Geller and
Lovell8 are then derived following a different approach. After reporting the corresponding linearized
solution we move on to the derivation of the exact non-linear solution starting from the individual
Keplerian orbits. With the purpose of obtaining a good approximation, approximate solution with
time as independent variable we perform a Taylor series expansion of the exact solution for small
eccentricity of the follower spacecraft obtaining a compact solution in the form of a Fourier series
and a secular term. Finally, the accuracy of the quasi-planar solution is tested by comparison with
the exact numerical solution.

CURVILINEAR COORDINATES

With reference to Figure 1, let a chief spacecraft be in a circular Keplerian orbit whose radius and
inverse mean motion are employed, throughout this article, as unit of distance and time, respectively.
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Let us introduce a local vertical local horizontal (LVLH) rotating orbital reference frame F attached
to the chief with orthonormal basis {i′, j′, k′} so that the relative position and velocity of a follower
spacecraft relative to F can be written, respectively, as:

r′ = xi′ + yj′ + zk′. (1)

v′ = ẋi′ + ẏj′ + żk′. (2)

Let us define the curvilinear coordinates ρ and θ of the follower as:

ρ = −1 +

√
(x+ 1)2 + y2 (3)

θ = atan2 (y, 1 + x) (4)

such that the in-plane relative Cartesian coordinates of the follower with respect to the chief can
always be obtained as:

x = −1 + (1 + ρ) cos θ (5)

y = (1 + ρ) sin θ (6)

and the derivatives:

ẋ = ρ̇ cos θ − θ̇ (1 + ρ) sin θ (7)

ẏ = ρ̇ sin θ + θ̇ (1 + ρ) cos θ. (8)

It is convenient to introduce the radial and transversal unit vectors uρ, uθ, defined, respectively,
as:

uρ = cos θi′ + sin θj′

uθ = − sin θi′ + cos θj′,

so that the follower position, velocity and acceleration relative to F can also be written as:

r′ = (1 + ρ− cos θ)uρ + sin θuθ + zk′. (9)

v′ = ρ̇uρ + θ̇ (1 + ρ)uθ + żk′. (10)
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Figure 1. Relative motion geometry

a′ =
[
ρ̈− θ̇2 (1 + ρ)

]
uρ +

[
(1 + ρ) θ̈ + 2θ̇ρ̇

]
uθ + z̈k′. (11)

Orbital elements

The inertial position and velocity vectors of the follower using curvilinear variables (ρ, θ) can be
obtained from the corresponding position (Eq. 1) and velocity (Eq. 2) with respect to the F frame
as (see also Figure 1):

r = rC + r′ (12)

v = v′ + vC + ωC × r′ (13)

where rC ,vC and ωC are, respectively the inertial position and velocity of the chief and the angular
rate of F and yield:

rC = i′ = cos θuρ − sin θuθ,

vC = j′ = sin θuρ + cos θuθ,

ωC = k′. (14)

By taking into account the preceding relations and Eqs. (1,2) one readily obtains:

r = rρuρ + rzk
′ (15)

v = vρuρ + vθuθ + vzk
′ (16)
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with:

rρ = 1 + ρ, rz = z,

vρ = ρ̇, vθ = (1 + ρ)
(

1 + θ̇
)
, vz = ż.

The follower angular momentum can now be computed as:

h = r× v = (hρ cos θ + hθ sin θ) i′ + (hρ sin θ − hθ cos θ) j′ + hzk
′

with:

hρ = −z (1 + ρ)
(

1 + θ̇
)
,

hθ = zρ̇− ż (1 + ρ) .

hz = (1 + ρ)2
(

1 + θ̇
)
,

from which the right ascension of the ascending node, referred to an inertial frame parallel to the F
frame at τ = 0, can be obtained as:

Ω = atan2

(
−h·i′

|h|
,
h · j′

|h|

)
+ τ = θ + α+ τ,

with:

α = atan2 (hρ,−hθ) ,

while the inclination obeys:

cos i =
hz
h
,

with:

h =
√
h2ρ + h2θ + h2z.

The semi-major axis follows from the vis-viva equation as:

a =
r

2− rv2
,

where:

r =

√
(1 + ρ)2 + z2
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v =

√
(1 + ρ)2

(
1 + θ̇

)2
+ ρ̇2 + ż2.

The eccentricity vector can be computed as:

e = v × h− r

r
= eρuρ + eθuθ + ezk

′,

with:

eρ = (1 + ρ)3
(

1 + θ̇
)2
− żzρ̇+ (1 + ρ) ż 2 − 1 + ρ

r
,

eθ = − (1 + ρ)
(

1 + θ̇
)

[(1 + ρ) ρ̇+ zż] ,

ez = ρ̇2z − ρ̇ż (1 + ρ) + z (1 + ρ)2
(

1 + θ̇
)2
− z

r
,

so that the eccentricity yields:

e2 = e2ρ + e2θ + e2z.

The argument of pericenter ω can now be derived as:

ω = atan2

(
(n× e) · h
|h| |e|

,
n · e
|e|

)
,

where n is the node line unit vector:

n = cos (Ω − τ) i′ + sin (Ω − τ) j′ = cosαuρ + sinαuθ

so that:

ω = atan2

(
sinα (ezhρ − hzeρ)− cosα (ezhθ − hzeθ)

he
,
eρ cosα+ eθ sinα

e

)
.

The true anomaly reads:

ν = atan2

(
(n× r) · h
|h| |r|

,
n · r
|r|

)
− ω = −α− ω.

From a reference value ν0 of the true anomaly at epoch one can obtain the corresponding eccentric
anomaly as:

E0 = atan2
(√

1− e2 sin ν0, e+ cos ν0

)
,
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so that the time evolution of the follower mean anomaly reads:

M = M0 + nτ = E0 − e sinE0 +
τ

a3/2
.

Equations of motion

The exact equations of relative motion obey:

a′ = −ωC ×
(
ωC × r′

)
− 2ωC × v′ − aC −

r

r3
, (17)

where:

aC = −i′ = − cos θuρ + sin θuθ (18)

is the chief inertial acceleration.

By substituting Eqs. (9,10,14,15,18) into Eqs. (17) one obtains the exact relative motion equa-
tions in curvilinear coordinates (see8 for an alternative derivation):

ρ̈− 2θ̇ − 3ρ = aiρ + agρ
θ̈ + 2ρ̇ = aiθ
z̈ + z = agz

(19)

where the four right hand side terms contain the non-linear contributions of the generalized inertial
(aiρ,aiθ) and gravitational (agρ,agz) accelerations and read:

aiρ = θ̇2 (1 + ρ) + 2θ̇ρ (20)

agρ = −2ρ+ 1− (1 + ρ)[
(1 + ρ)2 + z2

]3/2 (21)

aiθ =
2ρ̇
(
ρ− θ̇

)
1 + ρ

(22)

agz = z − z[
(1 + ρ)2 + z2

]3/2 (23)

Linearized solution

As noted by other authors,8 when
(
ρ0, θ0, z0, ρ̇0, θ̇0, ż0

)
� 1 all non-linear perturbing terms

can be neglected and the equations of relative motion become linear with the same structure of the
Clohessy-Wiltshire equations.


ρ̈l − 2θ̇l − 3ρl = 0

θ̈l + 2ρ̇l = 0
z̈l + zl = 0
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whose solution is:

ρl

θl

zl

ρ̇l

θ̇l

żl


=



4− 3Cτ 0 0 Sτ 2− 2Cτ 0

−6τ + 6Sτ 1 0 −2 + 2Cτ −3τ + 4Sτ 0

0 0 Cτ 0 0 Sτ

3Sτ 0 0 Cτ 2Sτ 0

−6 + 6Cτ 0 0 −2Sτ −3 + 4Cτ 0

0 0 −Sτ 0 0 Cτ





ρ0

θ0

z0

ρ̇0

θ̇0

ż0


, (24)

where Sτ = sin τ, Cτ = cos τ .

The corresponding Cartesian coordinate solution can then be obtained through Eqs. (5,6) and
reduces to the Clohessy-Wiltshire solution for θl � 1.

EXACT SOLUTION

Eqs. (19) cannot be solved analytically. However, a solution can be found by indirectly looking
at the individual Keplerian orbits of the chief and the follower. Although this approach is certainly
not new and similar solutions are available in the literature we report here the derivation for com-
pleteness.

The relative position of the follower with respect to the chief projected onto the chief-centered
orbital frame can be expressed in Cartesian coordinates as:

x = (Xf −Xc) cos τ + (Yf − Yc) sin τ
y = − (Xf −Xc) sin τ + (Yf − Yc) cos τ
z = Zf − Zc

, (25)

where the planetocentric inertial position of the chief and the follower obey, respectively:

 Xc

Yc
Zc

 =

 cos τ
sin τ

0

 , (26)

 Xf

Yf
Zf

 = a

 CΩ −SΩ 0
SΩ CΩ 0
0 0 1

 1 0 0
0 Ci −Si
0 Si Ci

 Cω −Sω 0
Sω Cω 0
0 0 1

 cosE − e√
1− e2 sinE

0

 .
(27)

From Eqs. (26,27,3,4) one can obtain the exact relative motion in cylindrical coordinates:


ρ =

√
X2
f + Y 2

f − 1,

θ = −τ + atan2 (Yf ,Xf)
z = Zf

(28)
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Although exact, the solutions (25,28) cannot provide a fully analytical description of relative
motion in time. This is because the time evolution of E needs to be obtained numerically through
the solution of Kepler´s equation. For this reason and given their complex structure, they do not
provide any particular insight into the kinematic structure of the problem as noted by other authors
(see for instance5).

LOW-ECCENTRICITY, LOW-INCLINATION SOLUTION

When the follower eccentricity is not too large one can find an approximated analytical solution
for Kepler´s equation. The expansion of cosE and sinE using Bessel function of the first kind Jk
obeys (see Battin9):

cosE = −e
2

+

∞∑
k=1

2

k2
dJk (ke)

de
cos kM,

sinE =
2

e

∞∑
k=1

1

k
Jk (ke) sin kM.

After substituting the preceding relations into Eqs.(28) , expanding for small eccentricities and
setting i = 0 one obtains the compact expressions (here displayed up to the third order in eccentric-
ity):

ρ ' −1 + a

[
1 +

e2

2
+

(
−e+

3e3

8

)
cosM+

−e
2

2
cos 2M − 3e3

8
cos 3M

] (29)

θ ' Ω + ω +M0 + τ (n− 1) +

(
2e− e3

4

)
sinM+

+
5

4
e2 sin 2M +

13

12
e3 sin 3M.

(30)

where the orbital parameter e ,M , ω and Ω can be obtained from the initial relative motion condi-
tions using the expressions derived in the first section of the article.

An approximate expression for the out-of-plane motion can be obtained in a similar way but
without eliminating the inclination:

z ' a sin i

8

{
sinω

[
−12e+

(
8− 3e2

)
cosM +

(
4e− 8

3
e3
)

cos 2M + 3e2 cos 3M

]
+

cosω

[(
8− 5e2

)
sinM +

(
4e− 10

3
e3
)

sin 2M + 3e2 sin 3M

]}
(31)
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Figure 2. Comparison of different relative motion formulations. The follower initial
conditions are set to ρ0 = −0.3, ρ̇0 = 0, θ0 = 0, θ̇0 = 0.8667, z0 = 0, ż0 = 0.0456 ,
providing eccentricity and inclination of 0.2 and 2 deg, respectively.
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Figure 3. Comparison of different relative motion formulations. The follower initial
conditions are set to ρ0 = −0.003, ρ̇0 = 0.1, θ0 = 0, θ̇0 = 0.0051, z0 = 0, ż0 = 0.035 ,
providing eccentricity and inclination of 0.1 and 2 deg, respectively.

RESULTS

Figures 2 and 3 display two test cases in which the proposed compact non-linear solution (Eqs.(29-
31)) is compared to its linear counterparts (Eqs(24)) and to the exact solution obtained by numerical
integration of Eqs.(19) . As it can be seen the linearized solution struggles to reproduce the real
motion as the initial conditions grow. The improvement of the proposed non-linear solution is re-
markable.

CONCLUSIONS

A new approximate solution for the relative motion with respect to a satellite in circular orbit has
been developed based on the use of curvilinear coordinates together with a Taylor expansion for
small eccentricity. The solution greatly improves its linearized counterpart and can be employed
to study the relative motion in the presence of nonlinearities up to moderately small values of the
eccentricity and inclination of the follower orbit. Useful relations between the relative motion curvi-
linear coordinates and the follower orbital elements have also been provided in compact form.

10



ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of Economy and Competitiveness within
the framework of the research project “Dynamical Analysis, Advanced Orbital Propagation, and
Simulation of Complex Space Systems” (ESP2013-41634-P). The authors also want to thank the
funding received from the European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement N 607457 (LEOSWEEP).

REFERENCES

[1] V. Il’in and G. Kuzmak, “Optimal’nye perelety kosmicheskikh apparatov (Optimal Flights of Space-

craft),” 1976.

[2] K. Alfriend, S. R. Vadali, P. Gurfil, J. How, and L. Breger, Spacecraft formation flying: Dynamics, control

and navigation, Vol. 2. Butterworth-Heinemann, 2009.

[3] D. Condurache and V. Martinusi, “Quaternionic Exact Solution to the Relative Orbital Motion Problem,”

Journal of guidance, control, and dynamics, Vol. 33, No. 4, 2010, pp. 1035–1047.

[4] E. Lancaster, “Relative motion of two particles in elliptic orbits,” AIAA Journal, Vol. 8, No. 10, 1970,

pp. 1878–1879.

[5] T. Berreen and J. Crisp, “An exact and a new first-order solution for the relative trajectories of a probe

ejected from a space station,” Celestial mechanics, Vol. 13, No. 1, 1976, pp. 75–88.

[6] T. Berreen, “The trajectories of a spaceprobe ejected from a space station in circular orbit,” Celestial

mechanics, Vol. 20, No. 4, 1979, pp. 405–431.

[7] P. Gurfil and N. J. Kasdin, “Nonlinear modelling of spacecraft relative motion in the configuration space,”

Journal of Guidance, Control, and Dynamics, Vol. 27, No. 1, 2004, pp. 154–157.

[8] D. K. Geller and T. A. Lovell, “Relative Orbital Motion and Angles-Only Relative State Observability

in Cylindrical Coordinates,” AAS/AIAA Space Flight Mechanics Meeting, American Astronomical Soc.

Washington, DC, 2014, pp. 133–148.

[9] R. Battin, An introduction to the mathematics and methods of astrodynamics. Aiaa, 1999.

11


