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Demography-based adaptive network model reproduces the spatial organization
of human linguistic groups
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The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The
distributions of the number of speakers per language and the area each group covers follow log-normal
distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial
contacts between different linguistic groups has been recently characterized, showing atypical properties of the
degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction
of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an
adaptive network model that takes all of them into account and successfully reproduces, using only four model
parameters, not only those features of linguistic groups already described in the literature, but also correlations
between demographic and topological properties uncovered in this work. Besides their relevance when modeling
and understanding processes related to human biogeography, our adaptive network model admits a number of
generalizations that broaden its scope and make it suitable to represent interactions between agents based on
population dynamics and competition for space.
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I. INTRODUCTION

Adaptive networks, where the dynamics of nodes is coupled
to the dynamics of network links, have received considerable
attention in the last decade [1]. This kind of network represents
not only a natural extension of models where either dynamics
on complex networks or the origin of nontrivial topology of
networks itself had been the focus of attention, but is in its own
right a field of interest. Indeed, in many natural systems node
dynamics and network dynamics are intimately coupled, and
their interplay captures important aspects that would be missed
if both processes are not taken simultaneously into account.
Examples are, among many others [2], neural networks,
where neuron activity affects synaptic strength [3], ecological
networks, where population dynamics is coupled to food web
structure [4], catalytic networks, where the appearance of
autocatalytic sets formed by sufficiently abundant chemical
species is essential for the maintenance of the system [5] and
where the explicit introduction of space leads to segregation
of parasitic species that may otherwise disrupt network
structure [6], or generic models, where distinct populations
of nodes separate when connection strength is allowed to vary
[7].

The coupling between node and link dynamics is especially
relevant in social networks, where nodes are individuals,
companies, human groups, or countries, e.g., and links
represent social contacts of various kinds. In many of these
networks, agents can actively change their interactions, thus
causing a systematic modification of network topology. A
well-studied case is that of epidemics, where susceptible
individuals may suppress their links with infected neighbors,
leading to networks assortative in degree and to first-order
transitions between healthy and endemic states [8] and
even to infection suppression [9]. Similar situations hold in

*ja.capitan@upm.es

socioeconomic contexts, where adaptive networks display an
interesting phenomenology that includes phase transitions
and hysteresis between dissimilar states of agents [10] and
self-organization leading to broad wealth distributions [11]. In
a broader scenario, it has been shown that changes in the
state of nodes coupled to rewiring of links systematically
causes network fragmentation [12]. This fact seems to be
enhanced by the spatial embedding of many social networks,
which constraints interactions [13] and may induce the spatial
separation of different socioeconomic classes [14].

In this work we address the relationship between the
demographic dynamics of human linguistic groups in the
last millennium and the topology of their networks of spatial
contacts. We present a model for an adaptive spatial network
where neighboring relationships are determined by the growth
of groups and their concomitant attempt to modify the total
area they occupy. The model is based on two previous and
independent observations regarding the organization of human
groups. In Ref. [15], a mean-field model was introduced
to reproduce the population-area relationship observed in
human languages; the spatial structure of groups did not
play any essential role in explaining that observation, and
thus was disregarded. As a consequence, that model cannot
describe the complex topology of the network of contacts
that was later uncovered [16]. Networks of contacts between
linguistic groups reflect their spatial embedding and display
a set of properties previously unseen in spatial networks.
Among others, those networks have high intervality, a property
shared with food webs [17,18]. Inspired by this latter system,
and in niche models, which had successfully captured that
property, a nichelike algorithm was proposed and shown
to recover most topological features of language networks
[16].

Human demographic dynamics and the spread of popula-
tions on space, which determines their intergroup contacts,
are two coupled processes. As we report in this paper, their
mutual dependence is behind observed correlations between
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the population of a group and the number of spatial neighbors
it has, and is needed to explain the appearance of assortative
properties in empirical language networks. Results from an
adaptive network model that we here introduce are compared
with several world regions and to the topology of the network
of linguistic contacts in each of them. The paper is structured
as follows. In Sec. II we introduce the adaptive model for
language networks. Previous relevant results are summarized
for the sake of completeness and clarity. Section III reviews
data on human linguistic groups as used in this study,
particularly emphasizing the meaning of model parameters.
In Sec. IV, we fit the model to empirical data and show how
the adaptive model qualitatively and quantitatively, in most
cases, reproduces the population-area relationship, the degree
and shortest-path distributions of empirical language networks
(in addition to other topological features), and nontrivial
correlations between demography and topology. The paper
finishes with an overall discussion and some proposals for
model extensions and future research.

II. ADAPTIVE MODEL FOR LANGUAGE NETWORKS

The adaptive network model yields a dynamic network of
interactions among groups arising from explicit demographic
dynamics and competition for space. As the size of groups
varies, their neighboring relationships are modified and pos-
sible conflicts with different groups sharing boundaries may
ensue. The precise example used is the development of human
linguistic groups in the last thousand years. First, we define
demographic dynamics following current knowledge on the
world population growth and suitable rules for intergroup
contacts and conflicts. Second, the network of contacts
between groups is updated in the light of changes in the areas
they occupy.

A. Demography and conflict rules

The modeling of demographic dynamics is based on
Ref. [15]. Dynamics relies on a stochastic multiplicative
process of the form Pi(t + i) = αi(t)Pi(t) for the size of each
population Pi , where the distribution of αi values is estimated
from empirical data. This process describes the growth of
linguistic groups [19] and reproduces the observation of a
log-normal distribution of the number of speakers per language
[20]. Subsequently, demographic changes are coupled to
variations in the area over which groups are spread. That model
was devised with the goal of explaining the population-area
(P -A) relationship observed in human linguistic groups, which
follows A ∝ P z [15].

Relevant model parameters have been derived from world
population estimations, as follows. There were about P0 =
3.1 × 108 humans in year 1000 [21], while in year 2000 the
world population reached PT = 5.7 × 109 [22]. Assuming an
exponential growth in the last ten centuries, an average annual
growth rate α � 1.0029 is obtained, and a dispersion σα =
0.096 can be associated to the process [19,23]. The simplest
distribution for the stochastic growth rate αi is a uniform distri-
bution of average α and mean-square dispersion σα [15,19]. A
constant number of languages in this time interval, equal to the
current estimated linguistic diversity (6900 languages) [22], is

considered. Though some languages may have appeared in the
last millennium, and many others have disappeared, in this
model we disregard language birth or extinction for the sake
of simplicity. In a previous model that constitutes the basis
for the demographic dynamics here implemented, it has been
numerically shown that those two processes did not affect the
statistical results [19]. As initial condition, we take uniform
populations [Pi(0) = 3.1 × 108/6900], and areas Ai = 1, in
arbitrary units. Numerical simulations show that changes in
the initial condition do not affect in a significant way the final
distribution of group sizes (see also Ref. [23]). Dynamics are
run for 1000 time steps to compare with current available data.
In the scenario described, population dynamics are defined so
as to agree with empirical observations. Therefore, parameters
α and σα implicitly contain information on all processes that
may have potentially affected demographic changes in the last
millennium (that is births and deaths, but also casualties due
to wars or pandemic diseases, for example). This is also the
reason to couple in a directed fashion population dynamics to
areas. Notice that the units of area remain undetermined to a
multiplicative factor.

The log-normal distributions of language sizes Pi [19,20]
and areas Ai [15] imply that the log-transformed variables
pi = ln Pi and ai = ln Ai for each linguistic group i follow
Gaussian distributions. As a result, the stochastic multiplica-
tive process in the original variables can be cast in the form of
a stochastic additive process in pi and ai [15]. The logarithmic
number of individuals in a group therefore follows

pi(t + 1) = pi(t) + βi(t), (1)

where t is measured in years, and βi is randomly drawn at each
time step from a uniform distribution �(β; ε,η) in the interval
(ε − η,ε + η),

�(β; ε,η) = 1

2η
{�[β − (ε − η)] − �[(ε + η) − β]}, (2)

where �(x) is the Heaviside step function, and mean value
ε = −0.00186 and half width η = 0.169 are obtained when
the original multiplicative process is mapped to an additive
one [15,24]. Similarly, the logarithmic area ai is assumed to
obey

ai(t + 1) = ai(t) + ξi(t). (3)

The evolution of pi and ai is coupled following two rules:
(i) The area covered by a group shrinks when its population

decreases: if βi(t) < 0, then ξi(t) is randomly drawn from a
uniform interval [−r|βi(t)|,0].

(ii) Increases in the population size lead to conflict between
group i and one of its neighbors on the network of contacts
between groups (see below). A neighbor j of node i is chosen
at random; if its growth rate is smaller than that of i, the area
of i grows, and vice versa. Specifically:

(a) If βj (t) < βi(t), ξi(t) is drawn from [0,wβi(t)];
(b) If βj (t) � βi(t), ξi(t) is drawn from [−wβi(t),0].

The spontaneous retreat parameter r measures to what extent
log-areas spontaneously shrink when populations decrease.
The outcome of conflicts is weighted through w, which
determines the associated benefit for the population with the
faster growth and is, in general, different from r . Actually,
mean-field fits to actual values of pi and ai at present have
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revealed a sublinear relationship between population decrease
and area reduction and a larger increase in areas as a result
of conflicts, yielding w > 1 > r for the six world regions
analyzed in Ref. [15]. It remains to be seen whether this
constraint remains in other world regions here analyzed, and
whether the values of w and r in the current adaptive network
model significantly deviate from mean-field results.

B. Network dynamics

Space is effectively introduced in the form of a network of
neighbors that coevolves with the demographic dynamics just
described. Although networks of contacts between linguistic
groups are embedded in a two-dimensional space, their clus-
tering coefficient is close to that of one-dimensional regular
networks [16]. In addition, they exhibit a significant degree
of intervality [16], which implies that a few fundamental
variables can account for their structure. Thus, most of the
structural properties of language networks are captured by
using a single variable in a one-dimensional space. Therefore,
the construction of the network is inspired in a static algorithm
that used a given distribution of areas and contained the
rules to construct a network of contacts between groups [16].
Now, instead, the network is continuously updated taking into
consideration the area associated to each node, as obtained in
the previous step. Neighboring relationships between nodes
arise from an assumption on perimeter contact. Based on
geometric constraints, it can be assumed that the perimeter of
node i is comparable to the sum of perimeters of its potential
neighbors up to a multiplicative factor,

A
1/2
i � fi

∑
j∈nn(i)

A
1/2
j , (4)

where the perimeter overlap fi > 0 measures the average
fraction of perimeter of each neighbor that is shared with node
i. In general, fi—as defined in Eq. (4)—is a node-dependent
quantity, but for simplicity we assume an effective value all
across the network, such that fi will be substituted by its
network average f = N−1 ∑

i fi , where N is the number of
nodes (languages) in the network.

The network of contacts is generated in two steps:
(i) Directed network generation. Given the (arbitrarily

ordered) set of areas {A1(t),A2(t), . . . ,AN (t)} at time step
t , where Ai(t) = eai (t), we draw directed links between each
node i and nodes at positions i ± 1,i ± 2, . . . , until the upper
bound of the right-hand side of Eq. (4) is first exceeded.
The first neighbor j0 is either i + 1 or i − 1 with equal
probability, and subsequent nodes are chosen following the
rules

j2n+1 =
{
i − n − 1, j0 = i + 1,

i + n + 1, j0 = i − 1,
(5)

and

j2n =
{
i + n + 1, j0 = i + 1,

i − n − 1, j0 = i − 1,
(6)

for n = 0,1,2, . . . . Periodic boundary conditions have been
assumed when jn < 0 or jn > N .

(ii) Transformation to an undirected network. Since spatial
neighboring relationships are undirected, the previous network

should be transformed to an undirected one. Links may be
added or removed so as to guarantee the symmetry of the adja-
cency matrix. For this purpose we introduce a symmetrization
parameter 0 � q � 1. If a directed link i → j does not have
a reverse counterpart, j �→ i, we draw a uniformly distributed
random number x in (0,1) and add the missing link j → i

to the network if x < q. If x � q, the original link i → j is
removed. In any case, the relationship between i and j has been
symmetrized after the process. Note that this process affects
neighboring relationships as defined in Eq. (4), so it will be
important to assess its eventual effect in the demographic and
topological properties we aim at reproducing.

The use of a one-dimensional array of areas to construct the
network is analogous to the procedure used in ecological niche
models, where a single variable suffices to reproduce most
topological properties of food webs and where the explicit
consideration of population dynamics is not essential. In the
case of networks of contacts between linguistic groups, their
local structure was shown to be equivalent to that of almost
regular, one-dimensional networks, with the area playing the
role of the niche variable [16].

Figure 1 illustrates some important properties of the
model just described. Figure 1(a) exemplifies the dynamics
of logarithmic areas ai and populations pi , as well as the
number of neighbors of group i—its degree ki—for 500 years.
At the end of the simulation [Fig. 1(b)], for t = 1000, the
degree distribution p(k) is calculated. It presents a well-defined
average value and a significant tail to large k values. Finally,
in Fig. 1(c) we illustrate one of the quantities that could not
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FIG. 1. Model dynamics. (a) Time series corresponding to a
realization of the model showing the dynamics of the natural
logarithm of area and population size for a single linguistic group, and
the number of neighboring languages it has. (b) Degree distribution
obtained at the end of the realization for a system with 1000
interacting groups. (c) Relationship between the number of neighbors
k and the total area or population for the same ensemble. Parameters
are r = 1, w = 1.5, f = 0.2, and q = 0.3, and averages over 100
and 500 independent realizations have been performed in (b) and (c),
respectively.
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be reproduced by models based only on demography [15]
or on a nichelike algorithm to construct the network [16],
namely, the relationship between population or area and degree
of a linguistic group. Among others, these quantities will
be compared to those measured in current linguistic groups
with the purpose of establishing whether the dynamical niche
model is able to reproduce the observations and of determining
the value of the model parameters that best fits the latter.
Summarizing, the dynamical niche model is characterized
by four parameters: the spontaneous retreat r , the outcome
of conflicts w, the average perimeter overlap f , and the
symmetrization parameter q.

III. DATA ON HUMAN LINGUISTIC GROUPS

Data on linguistic groups stems from a collection by
SIL International (http://www.ethnologue.com/) and a map
developed by Global Mapping International (World Language
Mapping System, http://www.gmi.org/wlms/index.htm). A
detailed description of the database appears in the Ethnologue
[22], from which information on 6900 extant languages,
including their spatial distribution and number of speakers, can
be found. Each language is characterized by a centroid, which
is a point in latitude-longitude coordinates that represents its
average location. Centroids are the nodes of linguistic groups.
Two nodes are linked if the groups they represent share spatial
borders in any of the domains where a language is spoken
(note that the speakers of a language may occupy discon-
nected domains, a situation that is relatively frequent). The
interested reader can find details on network construction in
Ref. [16].

In the present study, we are not taking into account
languages that are widespread as a result of colonization.
Languages such as English, Spanish, or Portuguese in the
Americas, or Mandarin Chinese in Asia, are in several senses
outsiders: they percolate across continental regions and act
as hubs in networks of contacts between linguistic groups,
enhancing the formation of large connected components
in language networks [16]. The number of neighbors of
widespread languages (that is, their degree ki) is severalfold
higher than that of other languages in the same network, thus
significantly deviating from the bulk degree distribution. In this
sense, widespread languages can be considered the “dragon
kings” of languages [25], and the dynamical processes that
underlie their spread are different from the basic demographic
dynamics implemented in our model. Widespread languages
constitute a small fraction of world languages. The 50 largest
languages (with 24 × 106 or more speakers) represent only
about 0.7% of the data points here considered. The elimination
of widespread languages causes the fragmentation of otherwise
connected networks in some world regions, remarkably in
continental North America. This effect is not seen if, for
instance, the largest languages are eliminated in the network
corresponding to continental Africa, whose largest connected
component remains essentially unchanged.

The main properties of 12 networks of linguistic groups
selected for the current study are reported in Table I. They
correspond to five continental regions (Africa, Asia, Europe,
and North and South America), though in the case of North
America no large connected component can be identified:

TABLE I. Largest connected components of networks of contacts
between linguistic groups obtained for each continent. The number
of nodes N and the number of links L are shown. Relevant quantities
that the model intends to reproduce are the exponent z, the correlation
ρ, and the average perimeter overlap f . The deviation of the
distribution of fi values in each network is σf . CC: Connected
component; C Africa: continental Africa; C Asia: continental Asia;
New Guinea, Sulawesi, and Luzon are islands. C Europe: continental
Europe; Mex1: Mexico (1); Yucatan: Yucatan peninsula; Mex2:
Mexico (2); CS America: continental South America; ABP: ABP
borders.

CC N L z ρ f σf

C Africa 2126 6154 0.87 0.63 0.13 0.11

C Asia 1370 3967 0.65 0.72 0.10 0.10
New Guinea 663 1543 0.62 0.42 0.22 0.16
Australia 99 176 0.72 0.52 0.28 0.15
Sulawesi 64 121 0.66 0.77 0.25 0.19
Luzon 56 140 0.44 0.79 0.13 0.08

C Europe 231 547 0.60 0.65 0.13 0.31

Mex1 68 120 0.82 0.59 0.32 0.24
Yucatan 50 111 1.22 0.61 0.27 0.57
Mex2 39 71 0.67 0.73 0.32 0.24

CS America 234 399 0.40 0.56 0.28 0.17
ABP 33 59 0.66 0.76 0.37 0.42

the three largest networks are found in or around Mexico,
and named Mex1, Mex2, and Yucatan. In addition, we
study the networks of Australia, New Guinea, Sulawesi and
Luzon islands, as well as an additional small network found
in the borders shared by Argentina, Bolivia, and Paraguay
(ABP).

An example of some model quantities and empirical
properties of the continental Africa network are represented
in Fig. 2. In Fig. 2(a) a part of the whole network is shown,
emphasizing the area Ai of a given linguistic domain i and
its neighboring relationships. As can be seen, the perimeter
overlap depends on each pair of groups in contact. In this
example, language i shares boundaries with eight different
languages, so it has a degree ki = 8. In practice, fi is
calculated from its definition, fi � A

1/2
i /

∑
j∈nn(i) A

1/2
j for

each node, and then averaged over the whole network to
obtain the value f reported in Table I. For completeness,
the last column of Table I summarizes, for each network in
the data set, the standard deviation σf of the distribution of
fi values.

A. Population-area relationship

The relationship between the logarithm of the size of a
linguistic group and the logarithm of the area over which its
speakers are spread follows an allometric relationship that has
a counterpart in ecology, where the abundance of a species
and its home range are similarly related [26,27]. It has been
shown that area a and population p fulfill a = zp + c for the
whole world, where c is a constant, for six large continental
regions, and also for groups of hunter gatherers [15]. Since
language sizes and areas follow log-normal distributions, the
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FIG. 2. (Color online) Properties of African largest connected
component, with 2126 nodes. (a) Detail of the local structure of
contacts between groups. Gray regions represent different domains
where a language is spoken; one language might be spoken in
disconnected domains. The centroid corresponds to the whole of
a language, and therefore might fall even outside a particular domain;
(b) Degree distribution; (c) Dependence of the logarithmic area a

and population p of linguistic groups on the number of neighbors k

in the network of spatial contacts. Error bars stand for the standard
deviation of a and p values at each fixed k.

transformed logarithmic variables a and p are well fitted
by Gaussian distributions, and their joint distribution can be
approximated by a bivariate normal distribution. This joint
distribution is characterized by z, which is the slope of the
major ellipse axis of the scatter plot containing all (pi,ai)
pairs, and a coefficient ρ that quantifies how correlated a and
p are.

Let us define, for each network, the average logarithmic
area 〈a〉 and the average logarithmic population 〈p〉,

〈a〉 = N−1
∑

i

ai, 〈p〉 = N−1
∑

i

pi, (7)

and the corresponding standard deviations

σ 2
a = N−2

∑
i

(ai − 〈a〉)2, σ 2
p = N−2

∑
i

(pi − 〈p〉)2. (8)

The covariance matrix C of a and p is

C =
(

σ 2
a ρσaσp

ρσaσp σ 2
p

)
(9)

with ρσaσp = N−2 ∑
i(ai − 〈a〉)(pi − 〈p〉). The eigenvectors

of matrix C can be written as (1,z), (−z,1), where z

corresponds to the exponent relating both quantities. The value
of ρ determines the degree of correlation between a and p:
The larger ρ, the more correlated the two variables are. Values

of z and ρ obtained through this procedure for the networks
here analyzed are reported in Table I. The interested reader
can find example plots of this relationship for empirical data
in Ref. [15].

B. Topological properties

Networks of contacts between linguistic groups hold a
number of nontrivial topological properties [16]. They are
an example of quasi-interval graphs, a property they share
with food webs [17,18,28]. The dependence between the
clustering coefficient and the linkage density 2L/N reveals
that language networks are akin to one-dimensional regular
networks at the local level [16]. Together with intervality, this
property supports the existence of a configuration space of low
dimensionality, and partly explains the success of a nichelike
algorithm to account for several of the topological properties
of language networks. Two additional properties that we will
analyze and compare with model results are the shortest-path
length and the degree distributions.

A representative example of the degree distribution p(k)
is shown in Fig. 2(b). Most language networks analyzed so
far present degree distributions compatible with log-normal
functions [16]. In this work, one of our goals is to find out how
likely it is that the adaptive network model generates degree
distributions compatible with observations. The same applies
to the distribution of shortest-path lengths p(d). The latter
have a complex shape that depends on the particular network,
as will be shown. We have chosen these two distributions
because of their presumable relevance regarding intergroup
dynamics. For example, the degree distribution is related to
the likelihood of entering into conflict with different linguistic
(or cultural) groups as a result of shared boundaries, but may
also affect linguistic evolution due to frequent contacts with
dissimilar languages. The shortest-path length distribution
may play a role in the dissemination of cultural innovations,
under the reasonable assumption that intragroup spread of
novelties is significantly faster than intergroup spread: the
fewer intermediates, the faster the propagation.

C. Dependence between demographic
and topological variables

Demographic and topological features of language net-
works are not independent. For instance, Fig. 2(c) illustrates
the empirical dependence of the logarithmic area a and
population p on the degree k. This relation is qualitatively
similar to the dependence yielded by the adaptive network
model, see Fig. 1. In forthcoming sections we will make
this relation quantitative by optimizing the values of model
parameters to fit empirical observations. There is a final
observation as yet unexplained, which is the appearance of
population-population, area-area, and degree-degree correla-
tions between neighboring nodes in empirical networks (see
below).

IV. MODEL PARAMETERS: FITS TO EMPIRICAL DATA

With the aim of quantitatively reproducing demographic
and topological features of language groups and networks,
we analyze which values of the model parameters r , w, f , q

best fit each of the 12 empirical networks considered. Specific
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TABLE II. Optimal mean-field parameters (obtained with the
model in Ref. [15]) and adaptive network model parameters r , w

for f � = 0.1 and q� = 0.1.

CC rMF wMF r w

C Africa 0.651 2.23 0.72 ± 0.02 2.31 ± 0.02

C Asia 0.951 1.54 1.00 ± 0.01 1.56 ± 0.01
Australia 0.125 2.20 0.16 ± 0.05 2.27 ± 0.06
Sulawesi 1.27 1.25 1.32 ± 0.07 1.23 ± 0.08
Luzon 1.04 0.735 1.07 ± 0.14 0.70 ± 0.16

C Europe 0.603 1.69 0.64 ± 0.02 1.71 ± 0.02

Mex1 0.422 2.24 0.48 ± 0.07 2.30 ± 0.07
Yucatan 0.695 2.79 0.84 ± 0.12 2.92 ± 0.13
Mex2 1.16 1.16 1.11 ± 0.08 1.49 ± 0.09

CS America 0.195 1.47 0.20 ± 0.01 1.48 ± 0.02
ABP 1.20 1.33 1.27 ± 0.10 1.28 ± 0.11

goals are to reproduce the empirical parameters z and ρ

characterizing the (logarithmic) population-area relationship,
and two topological features: the degree distribution and the
distribution of shortest-path lengths. We will finally evaluate
how the dynamical model with the so-obtained parameters
reproduces the relationship between demographic and topo-
logical variables, as well as the appearance of correlations in
node properties (area, population, and degree).

Quantitative values of z and ρ obtained with the adaptive
network model fixing values of f � and q� do not differ
substantially from those obtained in the mean-field approxi-
mation used in Ref. [15], see Table II. The mean-field coupled
dynamics of growth and conflict cannot be fitted to New
Guinea island, contrary to what was observed in Ref. [15].
Such discrepancy is due to the fact that we are only considering
here connected networks, disregarding isolated languages that
were taken into account in Ref. [15] when calculating the
empirical values of z and ρ. Additionally, in that reference
the mean-field dynamics could not be fitted to the pooled set
of North American languages, for which the correlation value
was sensibly smaller than the rest (ρ = 0.40). Here the same
phenomenon occurs for New Guinean connected languages
(ρ = 0.42, see Table I). Consequently, the adaptive network
model cannot be fitted to New Guinea network; hence, from
now on, we will reduce our analysis to the remaining 11
networks.

The relative difference between the surfaces z(r,w,f �,q�)
and ρ(r,w,f �,q�) and their mean-field counterparts zMF(r,w)
and ρMF(r,w) has been measured as

nz = max
i,j

∣∣∣∣z(ri,wj ,f
�,q�) − zMF(ri,wj )

zMF(ri,wj )

∣∣∣∣ (10)

and

nρ = max
i,j

∣∣∣∣ρ(ri,wj ,f
�,q�) − ρMF(ri,wj )

ρMF(ri,wj )

∣∣∣∣ (11)

for discretizations (ri,wj ) of the (r,w) parameter subspace,
with ri ∈ (0,1.5), wj ∈ (0.5,3), f � = 0.1 and q� = 0.1 [29].
Comparison with mean-field values yields nz = 0.12 and
nρ = 0.019, which implies that maximum relative differences
are around 12% and 2% for z and ρ, respectively, when

network dynamics is explicitly considered. Since the mean-
field model does not depend on f and q, this result suggests a
weak dependence of the population-area relationship (through
variables z and ρ) on the latter parameters. Deeper numerical
explorations show that ρ is almost independent of f and q,
whereas z varies moderately in the region q ≈ 0, becoming
almost constant for q > 0.3.

Assuming that the parameter subspace (r,w) is mostly
uncoupled to the subspace (f,q), our fits will be performed
in two steps. First, we fit (r,w) to empirical values of z and ρ,
keeping f � = 0.1 and q� = 0.1 fixed (see Table I).

Second, we obtain estimates for f and q by imposing
that simulated degree and shortest-path length distributions
keep close (in a precise sense to be defined) to empirical
distributions. Finally, we check that the estimates of z and
ρ still reproduce empirical values for the f and q obtained.

A. Fitting r and w to data

As initial guesses for (r,w), we use the mean-field values
(rMF,wMF) reported in Table II. Subsequently, the adaptive
network model is simulated in square neighborhoods of
(rMF,wMF), keeping f � = 0.1 and q� = 0.1 fixed. We use
model networks with the same sizes of empirical ones and
average over 1000 model realizations. For each point (ri,wj )
of the grid, each model network can be used to estimate
the parameters z(ri,wj ) and ρ(ri,wj ) that characterize the
population-area relationship. Then we estimate the averages
over realizations zij = 〈z〉(ri,wj ) and ρij = 〈ρ〉(ri,wj ), as
well as the corresponding standard deviations σ z

ij and σ
ρ

ij .
Let us define y = (z,ρ)T and x = (r,w)T. In a local neigh-

borhood of each point of the grid we expect an approximate
(two-dimensional) linear dependence between y and x,

y ≈ Mx + b (12)

for a constant 2 × 2 (Jacobian) matrix M = (mij ) and a vector
b = (b1,b2)T to be determined. We estimate the required
coefficients by means of a two-dimensional, weighted least-
squares fit to simulated data, i.e.,

zij = m11ri + m12wj + b1,

ρij = m21ri + m22wj + b2.
(13)

Fit’s weights are chosen in the usual way, as 1/σ 2
ij , provided

that standard deviations for z and ρ are known. Note that the
least-squares method provides estimates for standard errors of
mij and bi .

Finally, r and w estimates come from

x = M−1(y − b), (14)

where y = (ze,ρe)T is the pair of empirical values that
characterize the population-area relationship (see Table I). The
errors of r and w have been calculated using standard error
propagation according to Eq. (14). Results are listed in Table II,
where they can be compared to mean-field estimates. There
are some quantitative differences regarding previous results
in different world regions [15]. The value of the spontaneous
retreat r is not always below 1, implying that the reduction
in area caused by a decrease in the population size is not
sublinear in all cases. The four exceptions coincide with the
smallest networks in our data set (Sulawesi, Luzon, Mex2,
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and ABP), so it cannot be discarded that this effect reflects a
limited statistical power. The relationship r < w holds in most
cases, with the exception of Sulawesi and Luzon islands.

B. Fitting f and q to data

Now we proceed with the fit of f and q to topologi-
cal quantities. For each network’s size, we simulate 2000
model realizations keeping r and w fixed and equal to the
estimates previously obtained. The estimation of f and q

proceeds through two different approaches: (i) minimizing
the separation between the empirical and the simulated degree
distributions; (ii) jointly adjusting the degree and the shortest-
path length distributions.

1. Optimization based on the degree distribution

We determine f and q as the values that minimize the
Hellinger distance between the empirical degree distribution
and the simulated degree distribution. For two arbitrary
discrete distributions g = (gi) and h = (hi), the Hellinger
distance [30] is defined as

dH(g,h) = 1√
2

∑
i

(
√

gi −
√

hi)
2 = 1√

2
‖√g −

√
h ‖2 ,

(15)
i.e., dH is proportional to the Euclidean norm of the difference
of square-root vectors. We have used the Hellinger distance
because it measures the similarity between two probability
distributions. For discrete distributions it can be shown that

d2
H(g,h) � 1

2 ‖g − h‖1�
√

2dH(g,h), (16)

which implies that minimizing the Hellinger distance is
tantamount to minimizing the 1-norm of the difference of
distributions. We choose the pair (f,q) that minimizes dH

for all networks here considered, where gk = pe(k) is the
empirical degree distribution, and hk = ps(k) is the simulated
degree distribution.

Minimization has been carried out in two steps: first we
perform a parameter screening in f ∈ [0.05,1] and q ∈ [0,1].
This yields an estimate of the pair (f,q) that minimizes dH.
Second, we use the estimation as initial guess for a standard
algorithm of numerical minimization.

For large values of f and small values of q, the adaptive
network model yields disconnected graphs. This is due to the
fact that large f values imply a small number of neighbors
(therefore a low connectivity), while small q values tend to
eliminate all unpaired links. Therefore, the number of nodes
of the giant component can be well below the size of the
empirical network. Since we fix the network size to simulate
model networks, we have to restrict the range of feasible f

and q in the minimization procedure in a way that avoids
small connected components and the sizes of empirical and
model networks significantly match. In order for the sizes of
empirical and model networks to be comparable, the range of
f and q values is restricted by the requirement

〈N〉 � 0.9Ne, (17)

Ne being the empirical network size. Parameter values yielding
network sizes outside of this region are not taken into account
during minimization. This process yields the estimates listed

TABLE III. Fitted model parameters f and q obtained through
minimization of the distance between simulated and empirical degree
distributions.

CC f q dH (degree) dH (path)

C Africa 0.14 ± 0.01 0.30 ± 0.01 0.09 0.16

C Asia 0.15 ± 0.01 0.30 ± 0.01 0.12 0.56
Australia 0.12 ± 0.01 0.05 ± 0.01 0.08 0.17
Sulawesi 0.20 ± 0.01 0.20 ± 0.01 0.14 0.17
Luzon 0.11 ± 0.01 0.00 ± 0.01 0.13 0.44

C Europe 0.15 ± 0.01 0.18 ± 0.02 0.15 0.25

Mex1 0.14 ± 0.01 0.07 ± 0.01 0.15 0.37
Yucatan 0.46 ± 0.01 0.71 ± 0.01 0.21 0.23
Mex2 0.49 ± 0.02 0.84 ± 0.03 0.24 0.19

CS America 0.17 ± 0.01 0.13 ± 0.01 0.12 0.16
ABP 0.15 ± 0.01 0.12 ± 0.01 0.14 0.10

in Table III for f and q, and Hellinger’s distance for the degree
and the shortest-path length distributions.

2. Optimization based on the degree and
shortest-path length distributions

We now apply a joint minimization of Hellinger’s distance
to the degree and shortest-path length distributions. The sum
of both distances is used as the objective function to minimize,

s(f,q) = dH(d,e) + dH(g,h), (18)

where d = (pe(d)) is the empirical distribution of shortest-
path length and e = (ps(d)) is its simulated counterpart, and
similarly for the empirical and simulated degree distributions
g = (pe(k)) and h = (ps(k)). Results are listed in Table IV.
The restriction given by Eq. (17) also applies here.

Note that too large values of f or too small values of q

might cause a transition from a large connected component to
a mostly disconnected ensemble of small networks when the
network dynamics step is applied. The effect of decreasing f

and/or increasing q from sufficiently low values (where nodes
are disconnected) eventually causes a percolation transition
comparable to that described in the standard Erdős-Renyi
model [31] as the number of links increases. The fitted values

TABLE IV. Fitted model parameters f and q using the joint
minimization scheme.

CC f q dH (degree) dH (path)

C Africa 0.11 ± 0.01 0.14 ± 0.01 0.13 0.11

C Asia 0.09 ± 0.01 0.25 ± 0.01 0.28 0.06
Australia 0.11 ± 0.01 0.01 ± 0.01 0.10 0.07
Sulawesi 0.21 ± 0.01 0.20 ± 0.02 0.15 0.14
Luzon 0.13 ± 0.01 0.29 ± 0.06 0.31 0.15

C Europe 0.11 ± 0.01 0.12 ± 0.01 0.19 0.04

Mex1 0.67 ± 0.03 0.85 ± 0.03 0.18 0.19
Yucatan 0.11 ± 0.03 0.06 ± 0.04 0.26 0.08
Mex2 0.61 ± 0.01 0.97 ± 0.01 0.26 0.15

CS America 0.16 ± 0.01 0.12 ± 0.02 0.13 0.11
ABP 0.16 ± 0.01 0.11 ± 0.01 0.15 0.06
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we have obtained seem to balance such that the resulting
networks are connected. For example, in Table III we observe
that low f values correspond to mostly low q values (as in
Luzon, Australia, continental Africa, and Mex1), while high
f values are associated to high q values (as in Yucatan and
Mex2). This association is also observed in Table IV, with
interesting, consistent inversions of the correspondence seen
in Mex1 and Yucatan.

C. Performance of the model

1. Degree distributions

Figure 3 shows the comparison between empirical and
simulated degree distributions. Results in Fig. 3(a) have
been obtained through minimization of Hellinger’s distance
between degree distributions, whereas in Fig. 3(b) the result of
the joint minimization procedure is shown. In the former case,
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FIG. 3. Empirical degree distributions (open circles) vs simulated
distributions (linked squares) averaged over 2000 model realizations.
Error bars correspond to standard deviations of model-simulated de-
gree distributions. (a) Minimization based on the degree distribution.
(b) Joint minimization. Ranges of axes are the same in all plots.

the agreement with empirical data is very good, even when the
statistics of the original data (i.e., the network size, see Table I)
is poor. The Hellinger distances for the degree distribution
obtained with the joint minimization procedure (cf. Table IV)
are, as expected, larger than the minimum values reported in
Table III.

2. Shortest-path distributions

Figure 4 shows the results of the minimization of
Hellinger’s distance for the degree distribution [Fig. 4(a)] and
for the degree and shortest-path distribution jointly [Fig. 4(b)].
In the former case, the agreement between empirical and
simulated distributions is poor in several cases (and espe-
cially in continental Asia), but there are some exceptions
where the empirical distribution is reasonably reproduced,
for example in ABP borders, continental South America (the
third largest network), or Sulawesi island. The likelihood of
the null hypothesis that the model can generate networks
whose average shortest-path length 〈d〉 is compatible with
the empirical value 〈de〉 has been statistically tested using
minimization of Hellinger’s distance based only on degree
distributions. We have calculated the p values of the null
hypothesis, Pr(〈d〉 � 〈de〉), which are listed in Table V. At
a 99% confidence level, the null hypothesis is rejected only
for continental Asia, Luzon, and Mex1. Therefore, even if the
distribution of shortest-path lengths is not explicitly considered
to estimate model parameters, the adaptive network model is
not statistically rejected to reproduce average path lengths in
most empirical networks.

The joint minimization significantly improves the fit to
empirical shortest-path length distributions, yielding low
values of Hellinger’s distance in most cases, see Table IV.
Though the joint fit to the degree and the shortest-path length
distributions worsens the performance of the fit regarding
the degree distribution, the overall fit to both distributions is
significantly improved, as can be seen by comparing the sum
dH (degree) + dH (path) in Tables III and IV.

3. Consistency check

Parameters r and w were obtained at constant values of
the perimeter overlap f and the symmetrization value q,
namely (f �,q�) = (0.1,0.1). To test the consistency of our
estimation procedure, we check now whether the use of final
estimated values in Tables III and IV substantially modify
the performance of the model regarding z and ρ. Additional
simulations for each (r,w,f,q) set of parameter values have
been carried out, and averages for exponent z and correlation ρ

have been calculated. The results are summarized in Table VI,
and should be compared with empirical data in Table I. As
can be seen, all empirical values lie within the error bars, thus
validating a posteriori the methodology used.

4. Demographic and topological variables

Figures 5 and 6 depict the correlation between averaged
logarithmic areas and averaged logarithmic populations, re-
spectively, and degree k. Simulation data have been produced
with the set of parameters obtained under both minimization
schemes. For visualization purposes, model results have been
displaced in the vertical axis through the addition of an
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FIG. 4. Empirical shortest-path length distributions (open circles) vs simulated distributions (linked squares) averaged over 2000 model
realizations. Error bars correspond to standard deviations of model-simulated shortest-path length distributions. (a) Minimization based on the
degree distribution. (b) Joint minimization. Ranges of axes are the same in all plots.

arbitrary constant (recall that area and population units are
defined up to a constant). Except for the ABP network (which
is the smallest one, with N = 33 nodes and therefore a poor
statistical power), empirical logarithmic areas and populations
monotonically increase with k. Though these functions are not
explicitly considered to obtain model parameters, simulations
reproduce with remarkable accuracy the empirical observa-
tions.

The coupling between the stochastic process that deter-
mines population and areas and the update of the network
of contacts under the perimeter overlap rule leads to the
emergence of correlations between the area, population, and
degree of neighboring nodes. These autocorrelations over the
network are measured as

τi = 1

2

N∑
j=1

vj

nj,i

∑
|k−j |=i

vk, (19)

TABLE V. Empirical average path lengths for language networks
and p values of the null hypothesis corresponding to the adaptive
network model with minimization of Hellinger’s distance on degree
distributions.

CC 〈de〉 p value

C Africa 12.9 0.46

C Asia 9.5 <10−2

Australia 6.1 0.02
Sulawesi 5.2 0.13
Luzon 2.6 <10−2

C Europe 5.0 0.13

Mex1 7.2 <10−2

Yucatan 3.7 0.14
Mex2 4.8 0.18

CS America 11.9 0.33
ABP 3.4 0.17

where vj stands for any of the node properties aj , pj , or kj ,
and the second sum runs over the nodes that are at distance
i from node j (vj are normalized to satisfy

∑
j vj = 1 so

that autocorrelations for different variables are independent of
their natural scales and can be mutually compared). Distances
are measured as shortest-path lengths between nodes. We
normalize the product vjvk by nj,i , that is by the number
of nodes that are at distance i from node j . The 1/2 factor
takes into account that all links are double counted, since the
sum runs over the whole network.

Autocorrelations over the network have been plotted in
Fig. 7. Correlations decay as the separation between nodes
increases, demonstrating that the network is assortative re-
garding area, population and node degree. These correla-
tions cannot be observed if demography and topology are

TABLE VI. For each parameter set obtained through degree
distribution minimization, 2000 model realizations yield the estimates
zs and ρs, and similarly for the joint minimization. Subindex s stands
for simulation results; upper-index j indicates joint minimization.
Both estimates compare well with the empirical values reported in
Table I.

CC zs ρs zj
s ρj

s

C Africa 0.91 ± 0.03 0.63 ± 0.01 0.88 ± 0.02 0.63 ± 0.01

C Asia 0.66 ± 0.02 0.72 ± 0.01 0.67 ± 0.02 0.72 ± 0.01

Australia 0.67 ± 0.12 0.52 ± 0.08 0.66 ± 0.13 0.52 ± 0.08
Sulawesi 0.63 ± 0.07 0.75 ± 0.06 0.63 ± 0.07 0.75 ± 0.06
Luzon 0.43 ± 0.05 0.78 ± 0.05 0.44 ± 0.05 0.79 ± 0.05

C Europe 0.59 ± 0.05 0.66 ± 0.04 0.60 ± 0.05 0.65 ± 0.04

Mex1 0.75 ± 0.14 0.58 ± 0.08 0.87 ± 0.15 0.60 ± 0.08
Yucatan 1.34 ± 0.27 0.63 ± 0.09 1.16 ± 0.26 0.60 ± 0.09
Mex2 0.69 ± 0.11 0.74 ± 0.08 0.69 ± 0.11 0.73 ± 0.08

CS America 0.38 ± 0.04 0.56 ± 0.04 0.38 ± 0.04 0.56 ± 0.05
ABP 0.64 ± 0.10 0.76 ± 0.08 0.64 ± 0.10 0.75 ± 0.08
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FIG. 5. Logarithmic area a vs node’s degree k. Black circles
correspond to empirical data; error bars are the standard deviation of
a for each degree. Linked squares are averages over 2000 realizations
of the adaptive network model. (a) Minimization based on the degree
distribution. (b) Joint minimization. Ranges of axes are the same in
all plots.

uncoupled: Demographic dynamics without an underlying
network of contacts correspond to a mean-field model without
spatial structure; a static algorithm that reproduces network
topology is unable to account for correlations in population
sizes, a variable disregarded in the algorithm. Model results
compare only qualitatively with empirical networks (see Fig. 7
for an example). Following an initial rapid decay, real networks
exhibit an intermediate range of node separations where
autocorrelations are roughly constant. For large distances,
however, correlations decay as predicted by the mode.

V. DISCUSSION AND CONCLUSIONS

The coevolution of population demography and spatial
contacts represents an example of an adaptive network in

the social sciences. By means of a model coupling both
processes, we have shown that previous known properties
of this system are robustly reproduced: population-area
relationships and language network topology. Besides, a
number of features relating demography and topology, as
well as certain assortative properties of those networks, are
consistently obtained in the adaptive network approach here
introduced. Assortativity in node population, area, and degree
are byproducts induced by subsequent cycles of population
change and modification of topological neighborhoods, which
cannot be obtained in scenarios where these two processes
are decoupled. Remarkably, the agreement between several
empirical and simulated quantities is obtained through fits of
just four model parameters. We believe this is due to the deep
meaning of model rules, which are by themselves sufficient to
explain the qualitative properties of linguistic groups and their
associated spatial networks. There is an important exception
that cannot be recovered by the model, in particular the
population-area relationship, which fails to be reproduced
already by the mean-field approach [15]: New Guinea Island.
Since this is an often studied example of a region with an
extremely high linguistic diversity, it is worth mentioning that
the demographic and conflict rules we implement do not suffice
to yield the ρ value empirically measured. In general, the
mean-field model is not able to reproduce the set of values
ρ � 0.5 for the area-population correlation. Here, the set of
languages in the giant connected component for New Guinea
(note that this is a subset of the New Guinean languages used in
Ref. [15]) yields ρ = 0.42, which cannot be accounted for with
the proposed dynamical rules. Similarly, the correlation for all
North American languages annotated in the Ethnologue was
not reproduced by the mean-field model proposed in Ref. [15].

The adaptive network model here presented admits a
number of extensions. First, the introduction of additional
factors may make it more realistic. In this study, we have not
considered the appearance of new languages or the death of
existing ones. The origination of new languages can be easily
implemented by splitting an existing language. Following our
rules, a new set of neighbors and an independent evolution
of either population appear in a straight way. Death of
languages can also be considered, for instance, by eliminating
those groups whose population falls below a prescribed level
(one individual, for instance). Quantities such as the average
lifetime of languages could be studied in this scenario. Second,
model rules could be modified to consider factors such as
language attractiveness or frequency of conflicts dependent on
degree or population size [32].

Language attractiveness is an important driver in the
disappearance of minority languages [33], and could be
implemented through a migration of population from one
language to any of its neighbors. In this way, population sizes
would be modified through processes different from stochastic
growth. Extreme versions of migration mechanisms might
account for the growth of widespread languages [34], and
perhaps explain the emergence of dragon kings in linguistic
groups [25]. In the model here used, every group enters into
conflict with a neighbor once per time step. This rule could
be modified to a likely more realistic version where conflict
frequency is proportional to the number of links, and not
to the number of nodes, and the outcome of conflicts could
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also consider the relative population of the involved parties.
Also additional cultural markers, such as political, linguistic or
religious similarities, might modify the frequency and strength
of conflicts. The results of these modifications are difficult to
foresee. Third, the formation of links is now homogeneous
and does not consider the structure of human settlements
in relation to the landscape. The introduction of preferential
attachment depending on stylized landscape features might
help explaining the appearance of a low dimensional niche
space in language networks [16,35].
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FIG. 7. Autocorrelation τd over the network, as defined by
Eq. (19), as a function of the separation d between nodes, measured
in the model for (a) log-area, (c) log-population, and (e) degree.
Model parameters are r = 0.5, w = 2, f = 0.1, and q = 0.1 for
networks with N = 500 nodes. Quantities have been averaged over
500 independent realizations. For the sake of comparison, we depict
the autocorrelations for (b) log-area, (d) log-population, and (f)
degree, obtained for the empirical network of continental Africa.
Note the different range of the vertical axis in (f).

The competition for areas between neighboring populations
is a form of demographic conflict. In the scenario here devised,
these conflicts do not affect population sizes and by definition
occur at a characteristic time scale of the order of one year.
There is a body of literature that has addressed the frequency
and distribution of conflicts with the number of casualties
in terrorist attacks [36], wars [37], or fatal quarrels in general
[38] as the main variable. Those events might have frequencies
measured in days and have been often modeled as processes
of fragmentation and coalescence of groups [39]. It would be
interesting to integrate the dynamical network perspective of
our study with the fast evolution of groups dynamics and its
effect on population sizes of these other conflict analyses with
the goal of devising more complete models for cultural and
political clashes.

Finally, we believe that the model could be applied to other
model systems with analogous node and network dynamics.
One such example is ecology, where an explicit competition
for space of species occupying the same niche is known to
occur. Further, the applicability of the model to that system
is supported by a relationship between population sizes and
ranges of occupation functionally equivalent to the population-
area law followed by human linguistic groups. Demographic
dynamics similar to those used here, perhaps with the addition
of temporal biases to grow or decrease, might represent the
dynamics of agents such as companies or religious groups, for
example. Suitable modifications of how links are established
might shed light on the distribution of group sizes and on the
relevance of competition and intergroup conflicts.
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