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If two species live on a single resource, the one with a slight advantage will 
out-compete the other: complete competitors cannot coexist. This is known 
as the competitive exclusion principle. If no extinction occurs, it is because 
evolutionary adaptation to slightly different niches takes place. Therefore, 
it is widely accepted that ecological communities are assembled by evolution­
ary differentiation and progressive adaptation of species to different niches. 
However, sorne ecologists have recently challenged this classic paradigm 
highlighting the importance of chance and stochasticity. Using a synthetic 
framework far community dynamics, here we show that, while deterministic 
descriptors predict coexistence, species similarity is limited in a more restric­
tive way in the presence of stochasticity. We analyse the stochastic extinction 
phenomenon, showing that extinction occurs as competitive overlap increases 
above a certain threshold well below its deterministic counterpart. We also 
prove that the extinction threshold cannot be ascribed only to demographic 
fluctuations around small population sizes. The more restrictive limit to 
species similarity is, therefore, a consequence of the complex interplay between 
competitive interactions and ecological drift. As a practical implication, 
we show that the existence of a stochastic limit to similarity has important 
consequences in the recovery of fragmented habitats. 

1. lntroduction 
The main goal of community ecology is to understand the underlying forces 
that determine the identity and number of species and their relative abundances 
in any given set of geographical locations across space and time. Ecological 
communities result from a number of processes occurring at different spatio­
temporal scales. New species arise vía speciation and immigration. Species 
abundances are shaped by drift and selection, as well as ongoing dispersal. 
Therefore, selection, speciation, dispersal and ecological drift (understood as 
changes in discrete species abundances caused by the stochastic processes at 
play) can be considered the four fundamental pillars of community ecology [1]. 

Classically, if two species compete far the same resource, the one with a 
slight advantage will out-compete the other. This is known as the competitive 
exclusion principle-or Gause's law [2]. In cases where no extinction occurs, 
this is because adaptation to slightly different niches takes place. Accordingly, 
ecological communities are assembled by species evolutionary differentiation 
and progressive adaptation to different niches. Core ideas in community 
ecology, such as adaptation, niche differentiation and limiting similarity, all 
rely on this principle. 

The theoretical and experimental developments studying the coexistence of 
similar species in the last century led to the competitive exclusion principle 
stated as 'complete competitors occupying identical niches cannot coexist'. [3] 
However, a large number of species seemingly coexist on few resources in natu­
ral communities. Far instance, phytoplankton diversity may reach high values 
despite the limited range of resources (e.g. light, nitrate, phosphate, silicic acid, 
iron) that microscopic algae compete far. In addition, classical coexistence 
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Figure 1. The ratio p between ínter- and intraspecific competition can be recast in terms of species overlaps in their use of shared resources. Here we show a simple 
example with two species consuming a single resource represented by a continuous variable x with probability density p(x). The probability p(x)dx that a species 
consumes resources over the resource interval [x, x + dx) is illustrated with a Gaussian density function with mean m and deviation s. (a) A situation where the 
overlap in resource use is moderate. (b) Depicts a scenario of large resource overlap (shaded areas). Following [5], the probability that individuals of species 1 and 2 
encounter themselves and compete for the same amount of resource is p,(x)pi(x)dx. Hence p can be measured as the probability of co-occurrence of both species 
relative to the probability that two individua Is of the same species encounter each other, p =.f p1 (x) p2 (x )dx /f p; (x )dx. The larger the resource overlap (as in b), 
the closer to 1 the value of competitive overlap (p) will be. Therefore, a limit to competition compatible with species coexistence finds its counterpart in a limit to 
species similarity in the use of shared resources. (Online version in colour.) 

theory implicitly assumes that the strength of competition 
correlates positively with the degree of similarity between 
competing species [4] (figure 1). As contemporary coexistence 
theory suggests [6,7], MacArthur's assumption should be 
qualified in order to explain the empirical observation that 
similar species may coexist in the natural world. 

Beyond experimental approaches, mathematical modelling 
has permitted ecologists to address Hutchinson's paradox [8] 
with remarkable success and key results have been established, 
such as the limiting values to species similarity that permit 
coexistence [5], the promotion of competitive coexistence 
because of interspecific differences [9,10], trait-based mediated 
coexistence in phytoplankton communities [11,12], the role of 
mutualism at enhancing diversity [13] or the role of spatial 
structure and dispersal limitation in favouring coexistence of 
competitors [14,15]. 

Although further theoretical elaborations of these central 
ideas still use essentially deterministic approaches, important 
conceptual advances have been made to assess the distinc­
tive roles of the four essential processes in the construction 
of ecological communities. For instance, seminal work by 
MacArthur studies the interplay between competition and 
stochastic extinction and concludes that even modest compe­
tition could significantly elevate extinction risk [16]. Tilman 
[17] focuses on the role of stochasticity and competition 
for resources at conditioning coexistence. Hubbell [18] 
develops a theory to study how communities can result 

only from speciation, ecological drift and dispersal limitation. 
Despite disregarding selection, one of the merits of Hubbell's 
neutral theory is to consider the interplay of speciation, 
dispersal and ecological drift in a unifying framework for 
the first time [19]. 

However, community ecology still lacks a body of unifying 
theory that considers how selection forces interact with the 
other fundamental processes. Selection forces are at the base 
of niche theories while stochasticity plays a central role in 
neutral, dispersal-assembly theories. Random and selection 
processes have been re-framed in terms of stabilizing mechan­
isms (niches) versus fitness equivalence (neutrality) [14,20], 
but, to our knowledge, the first attempt to present a common 
quantitative framework for niche and neutral theories was 
Haegeman & Loreau's (HL) work [21]. Although these authors 
disregarded speciation, their synthesis shows how typical com­
munity pattems emerge from an underlying stochastic 
dynamics that makes particular assumptions about how local 
competition occurs (see also [22]). 

Here we show that HL stochastic competitive dynamics 
introduces a natural limit to the strength of competition compa­
tible with stable coexistence. This threshold is significantly 
smaller than its deterministic counterpart. In ecological com­
munities where niche differences are a relevant driver of 
competitive interactions, the threshold in competition translates 
into a reduction of species limiting similarity in the presence of 
ecological drift. This means that the stochastic and deterministic 



predictions far the composition of a competing ecological com­
munity are utterly different. As a consequence, stochasticity can 
impose severe limits to similarity in arder to sustain stable 
species coexistence. We also show that the extinction threshold 
persists far large population sizes, and the phenomenon 
here described is not caused by demographic fluctuations of 
small-sized populations. We fully characterize the exclusion 
phenomenon, showing that our conclusions are recovered 
under distinct theoretical assumptions. This leads to a re­
definition of the competitive exclusion principle that applies 
under rather robust and realistic conditions. As a practical 
implication in current biodiversity research, our results can be 
relevant when it comes to assessing how competition-induced 
extinction limits local diversity in natural settings. 

2. Models 
2.1. Deterministic competitive dynamics 
Classical coexistence theory is based on deterministic models 
under the common assumption of Lotka - Volterra (LV) 
dynamics. Most of the theoretical studies on species coexis­
tence still rely on LV dynamics [13,23]. Using LV equations, 
mathematical conditions far the exclusion of competing species 
can be derived as inequalities relating carrying capacities and 
competition strengths (see [24-26] and the electronic sup­
plementary material). These conditions state that coexistence 
is stable when intraspecific competitive interactions overcome 
interspecific ones [ 6]. In situations where competition arises 
through species overlaps in their use of shared resources 
(niche differences), the ratio p between ínter- versus intraspeci­
fic competition measures species similarity, the larger the ratio 
the stronger the similarity (figure 1). Therefore, in a framework 
acknowledging the importance of stabilizing niche differences 
far the coexistence of similar species [ 6], the limiting similarity 
condition is expressed as p < l. 

This condition arises under a purely deterministic frame­
work. It can be recovered, in particular, under the assumption 
of species equivalence. To keep things simple we consider the 
fully symmetric version of the LV competitive model with 
immigration (at rate µ,), 

. 1 J#l 

( 

X¡ +pI:;x¡) 
x; = rx; - __ K __ _ + µ,, i = 1, ... , s. (2.1) 

Here r is the intrinsic growth rate (uniform far all species), K 
the carrying capacity, p measures the strength of interspecific 
competition relative to intraspecific competition and S is the 
potential species richness of the community. Although immi­

gration has been explicitly included to evaluate the impact of 
dispersal processes, we will focus in what follows on the low 
immigration regime. 

The deterministic dynamics (2.1) presents a single equili­

brium point whose densities are strictly positive. Moreover, 
when µ, « rK the equilibrium point is globally stable far 

p < 1 (see the electronic supplementary material). Hence, as 
long as interspecific interactions are weaker than intraspecific 
ones, the symmetric, deterministic model permits the packing 

of an arbitrary number of species, even in the presence of low 
immigration. Once the deterministic threshold p¿ = 1 is 
crossed over, stable coexistence is impossible and competitive 

exclusion takes place. 

2.2. Stochastic framework for competition 
Most ecological interactions are driven by processes that are 
purely stochastic [27]. Individuals are discrete entities. The 
arrival of new individuals (dispersal limitation) or the succes­
sion of local births and deaths (ecological drift) are events 
that inherently occur at random instants. Thus, the intrinsic 
discrete nature and randomness of ecological processes 
must be taken into account to have a reliable picture of co­
existence. Far that purpose we use HL stochastic model of 
competitive communities [21], whose deterministic limit is 
precisely given by the LV dynamics (2.1). 

HL model implements local dynamics as a birth-death 
stochastic process. It can be recast in terms of the 'mainland­

island' paradigm [18,28], which assumes that diversity in 
an island stems from a balance between two stochastic 
processes: local extinction and the arrival of new species 
from the mainland. The interplay between in situ local compe­
tition within system boundaries and ongoing dispersal across 
boundaries from a regional species pool (metacommunity) is 
an important driver of community dynamics. In the high immi­
gration limit, regional processes trivially determine local 
community properties through random sampling from the 
pool [29,30]. Local competition should become more important 
as the immigration rate decreases. 

At any time t, the state of a local community is described by 
a vector n = (n11 ... , n5), where n; represents the population 
size of species i, S being the metacommunity diversity. 
Changes in the population size of species i occur through 
four elementary processes: (i) Intrinsic (local) birth and death 
processes, which are density-independent and occur at per 
capita rates r+ and r-, respectively. (ii) Externa/ immigration 
(at rate µ,) of new individuals from the metacommunity. 
(iii) Intraspecific competition takes place at a per capita rate 
rn;/ K, where K is interpreted as a carrying capacity and r = 

r+ - r-. (iv) Interspecific competition comes about at a per 
capita rate pr I:;;.,. ¡n¡I K, where p quantifies interspecific compe­
tition (relative to intraspecific competition) far every pair of 
species at the metacommunity level. The model is fully 
symmetric, as model parameters are uniform across all species. 

The stochastic process is mathematically described by 
the probability P(n, t) of observing a population-size vector 
n at time t. A simple probability balance yields the master 
equation far P(n, t), 

oP~n, t) = t {q{(n - e;)P(n - e;, t) 
vt i=l 

+ q¡(n + e;)P(n+ e;, t) - [q{(n) + q¡(n)]P(n, t)}, 

(2.2) 

where q{(n) = r+n; + µ, is the overall birth probability per 

unit time far species i, q¡(n)=r-n;+rn;(n;+pI:;¡.¡,;n¡)/K 
the overall death rate and e;= (O, ... ,1, ... ,O) the vector 

whose entries are 1 in the ith position and zero otherwise. 
The probability of visiting state n at time t increases at rate 
q{(n - e;) far the transition n - e;____, n, where a new individ­

ual of species i has arrived either by immigration or by 
an intrinsic birth, and also increases through the transition 
n +e;____, n at rate q¡(n +e;), when an individual of species 

i is removed either by intrinsic death or by competition 
with individuals present in the community. The negative 
terms in the right-hand side of (2.2) simply balance the tran­
sitions from n to any other state, which force a decrease in the 
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Figure 2. Surface plot of the stationary joint distribution for 5 = 2 potential species, P(n,, n2), for different values of p. (a-d) The values are 0.05, 0.4, 0.6 and 
0.95. Remaining model parameters are r+ = 50, ,- = 0.1, µ, = 1 and K = 50. (Online version in colour.) 

probability P(n, t). In this work, we facus on time-indepen­
dent (steady-state) solutions of the master equation, which 

satisfy oP(n, t) /ot =O. 
In mathematical terms, even far modest values of the 

immigration rate µ, > O there is a non-zero probability that 
an individual of any species arrives at the community, so com­
plete extinction never occurs on average in the steady state. On 
the other hand, when µ, = O the birth rate is linear in popu­
lation sizes and the death rate is quadratic. This implies that 
the complete extinction state n* = (O, ... , O) is the unique 
absorbing state of the process, hence complete extinction will 
occur with probability one. Therefare, to understand the inter­
play between ecological drift and competition in a non-trivial 
steady-state regime, we consider here positive but small 
immigration rates. Although the probability of observing 
individuals of a given species is always positive, it can be 
negligible. We will associate such small probability with a 
scenario where the species is, as a matter of fact, extinct. In 
addition, as we describe in the next section, we are interested 
in characterizing the strength of stochastic competitive exclu­
sion as the average fraction of species that coexist together in 
a local community. 

In the limit of negligible fluctuations, the master equation 

reduces to the fully symmetric version of the deterministic 
LV competitive model with immigration far S species (2.1), 
see the electronic supplementary material. However, reliable 
limits to coexistence in the presence of stochasticity should be 

derived from the solutions of the master equation. 

3. Results 
We first fully characterize the competitive exclusion phenom­
enon that the HL model predicts, and compare it with the 

deterministic condition far coexistence. The explicit consider­
ation of stochasticity introduces a threshold in competition, 
well below the deterministic one, above which the stable co­

existence of all the species in the metacommunity is 

impossible. Therefare, in ecological communities where simi­
larity (niche) differences drive competitive interactions, 
stochastic variability in population sizes can induce severe 

limits to species similarity. In other words, the limit to species 
similarity is more restrictive when competitive interactions 
are recast in stochastic terms. After proving that the threshold 
cannot be explained by fluctuations of small population sizes, 
we assess the implications of a smaller bound in species simi­
larity on the conservation and recovery of natural communities. 

3.1. Stochastic thresholds 
We begin by showing that, far a community farmed by two 
potential species, there is a threshold in competition Ps at 
which the probability of coexistence starts decreasing, and a 
second threshold Pe above which coexistence is no longer 
possible. Both thresholds are smaller than that of the 

deterministic model-i.e. Ps < Pe < Pd = l. 
Figure 2 depicts the joint probability distribution P(n11 n2 ) 

that the two species have population sizes n1 and n2 at the 
steady state as competition increases. The steady-state joint 
probability distribution P(n11 n2 ) can be calculated numerically 
using the embedded Markov chain associated with the 
continuous-time stochastic birth-death process, see details in 
the electronic supplementary material. When p = O the 
distribution exhibits a single maximum, associated with coexis­
tence. At sorne Ps < 1 two new maxima emerge symmetrically 
with coordinates (n, O) and (O, n). Far p > Ps up to a certain value 
Pe< 1 the system exhibits a bistable situation in which it may 
change between a two-species coexistence state and a state 
where only one species survives. Finally, the coexistence peak 
disappears when competition reaches p0 a value strictly lower 
than the threshold p¿ = 1 portrayed by the deterministic 
model (2.1). Above Pe only communities with one or two extinct 
species can be faund. Therefare, the shape of the joint prob­
ability distribution reveals three coexistence regimes separated 
by two threshold values in competition: (i) if O <'.'. p <'.'. p5 , the 
coexistence of the two species in a local community is stochas­
tically stable; (ii) if Ps <'.'. p <'.'. p0 competitive exclusion starts and 
the system altemates between communities farmed by two or 
one species; and (iii) if Pe<'.'. p <'.'. 1, only a single species (or 
none) persists in local communities. 

These three regimes can be more clearly pictured when the 
joint probability distribution is aggregated over convenient 
regions of the (n 11n2) space to represent coexistence or the extinc­
tion of 1 or 2 species (figure 3a). As shown in figure 3, in the 
intermediate region Ps <'.'. p <'.'. p0 local communities may have 
O, 1 or 2 species interchangeably. When fluctuations are 
accounted far, not only competitive exclusion starts to operate 
when interspecific competition is still lower than intraspecific 
competition, but also both states-coexistence and exclusion­
altemate within a range of p. Once the limit Pe has been crossed 
over, maximal (two species) coexistence is impossible. 

Remarkably, figure 3 shows that, far small values of the 
carrying capacity K and large death rates r-, coexistence is 
not the only possible state even at p = O. This puts a practical 
limit on the maximum number of coexisting species which 
does not have a deterministic counterpart-recall that the 
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Figure 3. (a) The saddle points (marked as white circles) of the joint distribution P(n1, n2) can be used to partition the configuration space into three regio ns associated 
with where coexistence is the most probable state (the square that contains the coexistence peak), orto the extinction of either one species (the two rectangles containing 
the boundary maxima) or two species (the small square close to the origin). Saddle points have been calculated numerically extending the discrete distribution P(n1, n2) to 
be real-valued through cubic-spline interpolation in both axes. We then solve numerically the critica! point condition, oP(n1, n2)/on1 = oP(n1, n2)/on2 = O and use the 
Hessian matrix to single out saddle points. We finally aggregate the probabilities P(n1, n2) to calculate the curves represented in b and c. Aggregated coexisten ce probability 
is defined as the sum of P(n1, n2) over the square that contains the coexistence peak. Aggregated one-species extinction probability is obtained by summing over the two 
rectangles that contain the boundary maxima around (n, 0) and (O, n). The rest of the configuration space represents the probability of total extinction. Model parameters 
are the same as in figure 2. (b) Aggregated probabilities as a function of p for r+ = 50, , - = 0.1, µ, = 1 and K = 50. A vertical, dashed line shows the value p, at 
which maximal coexistence (two species in a local community) is impossible. The threshold Ps at which the aggregated probability of coexistence starts declining is marked 
with arrows. The inset depicts the same curves for r+ = 0.11, ,- = 0.1 , µ, = 1 and K = 500. We observe that increasing the carrying capacity brings the threshold 
closer to 1. (e) Same as (b) for r - = 27 and K = 23. (Online version in colour.) 

deterministic model permits the packing of an arbitrary 
number of species for O S p < l. 

3.2. Multispecies competitive communities 
In order to investigate the stochastic extinction transition for 
realistic metacommunity sizes, we simulate numerically the 
continuous-time process using a standard Gillespie stochastic 
simulation algorithm (see [31] and the electronic supplemen­
tary material). This method generates a trajectory n(t) in the 
space of population sizes through elementary changes in 
the number of individuals at each step. The species abundance 
distribution is calculated as the fraction P(n) of species that 
have n individuals once the steady state has been reached. 
The probability of coexistence is then given by 1 - P(O), and 
the average local community richness is S[l - P(O)]. The 
threshold in competition p, at which the system starts being 
stochastically unstable cannot be calculated using the multi­
variate distribution, which is difficult to sample. Far large 
metacommunity sizes we define Ps as the overlap value at 
which, on average, one of the S species is extinct in local 
communities-equivalently, as the value of p for which coexis­
tence probability equals 1 - 1/S. This is an operational, 
reasonable way to estimate numerically the threshold p., 

aimed at representing configurations close to full coexistence 
(see the electronic supplementary material). 

Figure 4a shows the decline in biodiversity upon increases 
of the competitive overlap p, for different values of metacom­
munity diversity S. We observe that species diversity remains 
constant--€qual to S-up to the threshold p,. From that point 
on it steadily decreases and the coexistence of the S species in 
local communities is p recluded . The same pattem found for 
two and three species holds for multispecies communities: 
demographic fluctuations limit average species richness, so 
that if competitive overlap increases beyond a threshold sorne 
species go extinct, the more extinctions the larger the overlap. 
Far p ~ 1 this effect can reduce local diversity well below S. 

Figure 4a also shows that a given local diversity can be 
compatible with severa! values of metacommunity diversity 
(S) and competition. If S is small, then competition must 
be low. Hence, assuming that competition arises via niche 
differences [6], large species differences (leading to small 
competition) underlie long-term coexistence. If, on the con­
trary, S is large, the same leve! of diversity is reached with 
a larger competitive overlap (smaller niche differences). In 
other words, the most diverse regions in the world, such as 
the tropics, may host local communities characterized by 
higher (nearly neutral) competitive overlaps between species. 

3.3. Model strudural robustness 
A natural question that arises from our analysis is to what extent 
the conclusions we draw depend on the symmetry assump­
tion. To answer this question we have introduced variability 
in competition. In realistic scenarios, pair-wise competitive 
interactions p;¡ emerge from underlying ecological processes, 
such as interference competition, or explicit competition for 
resources. Thus, the symmetric competition overlap p that we 
have used until now has to be replaced by a competition 
matrix (p;¡), where p;¡ measures the competitive overlap between 
species i # j. Here we assume that functional ecological equiv­
alence precludes the competition matrix (p;¡) from reaching a 
well-defined structure [32] but rather pair-wise interactions 
show a random pattem for all species in the metacommunity. 
As similarity measures, the entries of the competition matrix 
are symmetric, p;¡ = p¡; for i # j . Then, the S( S - 1) / 2 indepen­
dent, off-diagonal matrix entries are drawn from a truncated 
normal distribution of mean p and variance d¡,. Truncation 
ensures O S p;¡ S 1 but implies that the average (p) across off­
diagonal matrix entries is different from p. Accordingly, we 
have represented in figure 4b the probability of coexistence as 
a function of the average (p). This figure illustrates that the 
effect of variability in competition is to lower the threshold at 
which diversity starts declining. 
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Figure 4. Stochastic competitive exclusion and limiting similarity. (a) Average community richness far different metacommunity diversities (5) as a function of species 
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deviation uP). lnset: immigration rates are proportional to species abundances in the metacommunity, ¡..i; = 0.1N; (lag-series parameter a= 0.22). The dashed line 
corresponds to the symmetric case (u P = O, constant ¡..i). (Online version in colour.) 

In addition, until now we have assumed that immigration 
rates are uniform for all species. When immigrants enter at 
the local community proportionally to their abundances 
in the metacommunity, the extinction threshold persists 
(figure 4b, inset). The immigration rate for invader i has 
been taken as µ,¡ = KN; in each realization, N ; being the 
(regional) abundance of species i in the metacommunity. 
According to most observations [18], regional abundances 
(N;) are drawn from a lag-series distribution. We conclude 
that the qualitative picture, i.e. the existence of a more 
restrictive threshold for species similarity in the presence of 
ecological drift, remains unchanged. 

3.4. Threshold persistence for large population sizes 
It is well known that demographic stochasticity has negative 
effects on community persistence when population sizes are 
small [33]. However, the existence of a stochastic limit to 
species similarity Ps is by no means a consequence of small 
population sizes. We have computed the average population 
size in local communities, 

00 

(n) = L nP(n) (3.1) 
n=O 

and its variance 

00 

~ = (n2) - (n)2 = ¿ n2P(n) - (n)2, (3.2) 
n=O 

at the threshold Ps for increasing carrying capacity K and 
metacommunity richness S, keeping the ratio K/S fixed 
(figure 5). We maintain K/S fixed because increasing K at 
constant S will trivially displace the threshold towards l. 

It can be proved (cf. the electronic supplementary material) 
that fluctuations in population sizes calculated at Ps scale as 
CTn ~ K 112, whereas average population sizes are expected to 
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Figure 5. Fluctuations in population sizes (u"' circles) compared with their 
averages ((n), squares) far increasing K and 5 while K/S = 2. lnset: extinction 
threshold p, (defined as the value of competition at which on average one of 
the 5 species is extinct) as a function of 5. Power law fits to data satisfying 
102 ::::; K ::::; 103 (50 ::::; 5 ::::; 500) are shown. (Online version in colour.) 

scale as (n) ~ KY as long as the extinction threshold decays as 
Ps ~ 5 - r. We observe in figure 5 that those scalings are well 
reproduced numerically, with y~ 0.6. Therefore, the fluctua­
tions of the population size relative to its average scale as 
un/(n) ~ K112- r and tend to zero as K, S » l. At the same 
time, the threshold value p, that limits species similarity 
decreases. Por large K, fluctuations are negligible compared 
w ith population sizes and the threshold persists, so extinctions 
cannot be ascribed to large fluctuations around small-sized 
populations. On the contrary, the threshold on species similarity 
may well be even more restrictive for large population sizes. 

3.5. Habitat fragmentation and recovery 
We have shown that ecological drift undermines the coexistence 
of an assemblage of species by lowering the threshold at which 
competitive exclusion starts to operate. This drift-induced, more 
restrictive threshold can be interpreted as a smaller limit to 
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Figure 6. (a) Temporal evolution of the coexistence probability as competi­
tive overlap varies as shown in the profile (dashed lines). Dark-shaded areas 
mark intervals where competition increases or decreases. There is an 
additional time (light-shaded areas) to recover initial diversity levels after 
the period of niche destruction (increasing competitive overlap). Remaining 
parameters are S = 50, r + = 50, r - = 0.1, K = 50 and /.L = 1. Averages 
have been calculated using 400 model realizations. T ransient dynamics from 
the initial condition to steady state is not shown. (b) lncreases (respectively 
decreases) in competitive overlap occur at regular time intervals ílt. As the 
steady state is not necessarily attained, the initial state is not necessarily 
recovered in the restoration pathway. In the limit ílt----+ oo, the fragmenta­
tion and restoration curves coincide. Here 5 = 50, r+ = 50, ,- = 0.1, 
/.L = 1 and K = 50. (e) Same as (b) but showing the effect of changing 
carrying capacity (here p = 0.1 and other parameters remain unchanged 
as K varies). (Online version in colour.) 

species similarity in stable coexistence. A practical implication 
of the fast diversity decay once the threshold has been crossed 
over concerns habitat destruction and later recovery. In general, 
habitat destruction should translate into a decrease in carry­
ing capacity or an increase in competitive overlap or both, 
which brings about a decrease of local diversity as a result of 
stochastic competitive exclusion. Conversely, a decrease in com­
petition through niche restoration favours species coexistence. 
However, as the immigration rate controls the arrival of new 
species, the recovery of the initial diversity level is a much 
slower process. 

To illustrate this point we have simulated the stochastic 
dynamics when competitive overlap p is linearly increased 
and later decreased in time down to the initial value. The 
time-dependent coexistence probability is shown in figure 6a. 
We can see in this figure that it takes longer for the system to 
recover than to decrease its diversity. Different timescales in 

fragmentation and restoration regimes yield a dynamical 
effect similar to hysteresis (34] when parameter changes occur 
dynamically, befare reaching the steady state. In figure 6b,c we 
have simulated cycles of increase (respectively decrease) and 
later decrease (respectively increase) of competition (figure 6b) 
and carrying capacity (figure 6c). In the simulations, mild vari­
ations in por K take place after regular time intervals ilt in the 
destruction and restoration pathways. For ilt that are small 
enough, the system has not reached the steady state when 
competition or carrying capacity vary, hence the fragmentation 
and restoration trajectories do not necessarily coincide and the 
system may not recover its initial state after a complete cycle . 
Both pathways, however, eventually coincide as ilt---> oo. Note 
the hysteresis exhibited by the coexistence probability, which 
is stronger the faster the change in the parameters. 

4. Discussion 
Our work points to three general conclusions. First, we empha­
size the distinct role of ecological drift in community ecology 
(27). Second, we warn about the dangers of regarding stochas­
tic effects as a slight perturbation of deterministic predictions. 
Due to the discrete nature of ecological interactions, stochastic 
and deterministic predictions may be irreconcilably different. 
Accordingly, coexistence theory should be reformulated in 
stochastic terms. And third, we emphasize the value of unify­
ing theory to consider the interplay between ecological drift, 
dispersa! limitation and selection forces at explaining diversity 
pattems in local communities. In particular, here we have 
explored the role of competition as the selection process at 
work because of its potential leading role to explain how diver­
sity is maintained in the world. However, other interactions 
surely show the same kind of purely stochastic thresholds. 

We have based our analysis on a synthetic theory intro­
duced by HL (21] to bridge the gap between niche and 
neutral theories using a single parameter that encocles niche 
overlap. As this parameter tends to 1, intra- and interspecific 
competition become equal, so competitive interactions 
become neutral at the individual per capita level, and commu­
nity properties at stationarity are the same as those predicted 
by the standard neutral model (21,29,35]. 

Our main result uncovers the existence of a stochastic 
extinction threshold p, < 1 in the transition from full niche 
separation (p =O) to full niche overlap (p = 1). Above this 
threshold, competitive exclusion holds. In situations where 
competition can be interpreted in terms of species similarity, 
this threshold is equivalent to a more restrictive limit on 
similarity than its deterministic counterpart. Ecological drift 
restricts the capacity of the ecosystem to maintain an elevated 
number of coexisting species. Once the threshold has been 
crossed over, species are driven to extinction leading to a 
considerable reduction of local diversity levels. As we have 
proved this phenomenon is intrinsically stochastic and is not 
a trivial consequence of finite population sizes. It is relevant 
to remark that the classical competitive exclusion principle as 
well as previous approaches to species coexistence do not 
account for this extinction phenomenon. Therefore, classical 
coexistence conditions should be recast in stochastic terms. 

A paradigmatic example that seemingly disproves com­
petitive exclusion is the so-called 'paradox of the plankton'. 
Our results seem to contradict the empirical observation 
that realized plankton diversity is larger than expected under 



the deterministic competitive exclusion principle. In the presence 
of drift the expected diversity will become even lower. Other 
mechanisms have been proposed to salve the paradox, far 
example, planktonic species could avoid competition by using 
resources at different windows of time vía oscillating, out-of­

phase trajectories [36]. As suggested by Hutchinson [37], time 
is a relevant component of the niche, so unstable dynamics 
can promote coexistence. One of our assumptions is that 
local communities have reached a steady state, which is not 
necessarily true in natural settings. An important implication 
of out-of-equilibrium scenarios is the emergence of significant 
hysteresis in competition and carrying capacity. Another 
hypothesis of our framework is the assumption of implicit­
space interactions. Spatially explicit settings are known to 
favour coexistence [14,15]. It remains an open question to quan­
tify the extent to which the inclusion of stochasticity in a spatially 
explicit version of the LV deterministic dynamics would change 
deterrninistic predictions either favouring coexistence or not. 
These situations will probably inspire new extensions of our 
modelling approach, the implications of which could be signifi­
cantly important to the contemporary theoretical understanding 
of species coexistence and biodiversity. 

In other contexts, the difference between deterministic and 
stochastic thresholds has long been recognized. Far instance, 
to study the maintenance of an infectious disease in a popu­
lation, the concept of 'critical community size' was introduced 
[38]. Below this critical size, stochastic fluctuations lead to 
disease extinction even though deterrninistic approaches 
predict disease maintenance [39]. Majar dynamical transitions 
in epidemics from regular to irregular cycles can also be better 
explained if stochasticity is accounted far [40]. Here we show 
that stochastic extinction phenomena are not trivially intro­
duced by a finite population size, but they arise through the 
interplay of the processes driving the system: competitive inter­
actions are responsible far the displacement of the threshold in 
sirnilarity when ecological drift is explicitly considered. 

Our results have potential applications in situations where 
agents compete far shared resources. Far example, financial 
markets and banking systems share remarkable analogies 
with ecological systems [41]. Knowledge on the assessment 
of systemic risk has been recently increased thanks to analogies 
with the dynarnics of ecological faod webs and banking sys­
tems [42-44]. In financial markets, banks compete far shared 
resources, and the degree of overlap between entities can be 
deterrninant in the competition-stability trade-off [45]. 
Limits to species sirnilarity in their use of common resources, 
such as the ones faund here, can be potentially applicable to 
'ecosystems' of banks. 

The role of a theory is to provide a framework to interpret 
the real world. Are our theoretical explorations about stochastic 
coexistence in competitive communities able to yield new 
insights to understand variable levels of diversity maintenance 
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in the world? Our results point towards at least two empirically 
testable predictions. We highlight them in arder. 

First, as human general appropriation of the Earth' s ecosys­
tems involves a homogenization of natural habitats, it should 
have the overall effect of increasing species niche overlap. Com­
munity assembly through repeated invasion and species loss 
through stochastic extinction are highly asymmetrical pro­
cesses. The introduction of new species into the local 
community occurs at low pace but, once the extinction 
threshold is overcome, species loss may be very fast. This time­
scale separation implies a significant hysteresis effect in the 
process of biodiversity loss and potential restoration. If niche 
overlap is increased through habitat simplification beyond 
the extinction threshold, niche restoration efforts can take a 
long time to cause any effect as coexistence cannot be restored 

through habitat amelioration unless it goes all the way clown to 
the values where coexistence is the only possible state. 

Second, species evolving under ecological drift should 

become less similar, that is, more ecologically segregated than 
they would be the case if ecological drift was negligible, in 
arder to make coexistence possible. In particular, the model pre­
dicts a negative relationship between realized diversity in a 

local site and the strength of competitive overlap. In terms of 
species similarities, the larger the niche separation the larger 
the probability of stochastic coexistence. As a consequence, 

potential diversity could be inferred from actual diversity and 
the average level of interspecific competition. Conversely, accu­
rate empirical know ledge about the potential species richness of 
a community becomes crucial to assess the relevance of niche 
differences in competing communities (figure 4a). 

In support of our approach, we have used the HL model to 
generate several new predictions, sorne of which could be 
potentially tested against empirical data. These are prelirninary 
explorations to show how a synthetic theoretical framework 
can guide further research and generate new insights into the 
causes and processes controlling local diversity across regions. 
HL initial stochastic synthesis [21] opened the door to study the 
extent to which competitive overlap versus ecological drift 
drive local diversity patterns in a quantitative way. A better 
assessment of the relative importance of the different processes 
that shape ecological communities is crucial to improve our 
ability to map, monitor and control changes in biodiversity 
geographical distributions across the globe. 
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