
Software Project 
Management 

Learning from Our Mistakes 

Pedro Silva, Ana M. Moreno, and Lawrence Peters 

IN THE JANUARY/FEBRUARY 2014 

IEEE Software, the Voice of Evidence 
article, "Looking for the Holy Grail 
of Software Development," reviewed 
the main practices that software proj
ect managers should engage in to make 
success more likely.1 A complementary 
question is, what practices should they 
avoid to make success more likely? An
swering this question will help current 
and future software project managers 
prevent, or at least mitigate, problematic 
scenarios that, if unresolved, will lead to 
additional project failures. 

Antipatterns come into play for for
mally describing dysfunctional ap
proaches to problem solving and offer
ing refactored solutions for successfully 
overcoming dysfunctions.2 In software 
development, antipatterns are related 
to different activities including software 
project management. What are these an
tipatterns, and to what software project 
management issues are they related? 

Software Project Management 
Antipatterns 
We performed an extensive literature 
search according to a systematic-map
ping-studies protocol, 3 looking for in
formation about software project man
agement antipatterns in journals and 
conference publications over the last 10 

years. We searched five major databases: 
IEEE Xplore, the ACM Portal, the Web 
of Knowledge, Google Scholar, and the 

Directory of Open Access Journals. The 
search string was 

(anti-pattern OR antipattern OR 
anti pattern OR malpractice OR bad 
practice) 

AND (software project management 
OR project management OR 
management) 

We looked for not just simple prose 
descriptions of errors but also well
reported software project management 
antipatterns: 

A properly documented antipattern 
describes a general form; the primary 
causes which led to the general form; 
symptoms describing how to recognize 
the general form; the consequences 
of the general form; and a re-factored 
solution describing how to change the 
antipattern into a healthier situation. 4 

Additionally, we looked for antipat
terns related to the five software project 
management activities identified in clas
sical software project management lit
erature:5·6 planning, scheduling, control
ling, staffing, and motivating. Details of 
the literature review appear elsewhere.7 

Surprisingly, our search didn't pro
vide significant results. We then searched 
for books and other sources. We found 
three books4•8•9 and a few websites, 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148685643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A consolidated list of software project management antipatterns. 

- Antipattern name 

Absentee Manager 

2 All You Have Is a 
Hammer 

3 Appointed Team 

4 The Brawl 

5 Detailitis Plan 

6 The Domino Effect 

7 Dry Waterhole 

8 Fire Drill 

9 Glass Case Plan 

10 Inflexible Plan 

11 Irrational Management 

12 Leader Not Manager 

13 Micromanagement 

14 Mushroom Management 

15 Myopic Delivery 

16 Process Disintegration 

17 Project Mismanagement 

18 Proletariat Hero 

19 Rising Upstart 

20 Road to Nowhere 

21 Size Isn't Everything 

22 Ultimate Weapon 

mostly related to the antipatterns de
tailed in those books. To complement 
the books' information, we used the 
Portland Pattern Repository.1 o 

Table 1 shows our consolidated 
list of antipatterns, which resulted 

Description 

A manager who engages in avoidance behavior or is invisible for long time periods 9 

One-dimensional management that uses the same techniques on all subordinates 9 
in all situations 

The false assumption that a management-selected group of people will 10 
immediately become a team 

A project manager with no leadership or management experience 8 

Excessive planning leading to complex schedules with a high level of detail, giving 4 
the false perception that the project is fully under control 

Moving critical resources between projects, blurring project boundaries 8 

Specifying stringent requirements for a job when this isn't strictly necessary, 10 
resulting in a limited pool of available talent 

Months of boredom followed by demands for immediate delivery 4 

Lack of tracking and updating of initial plans, assuming the plan is enough 4 

Lack of flexible plans and processes 8 

Irrational management decisions, habitual indecisiveness, and other negative 4,9 
management practices 

A manager with a vision (a leader) but no plan or management methodology 9 

Excessive management involvement in tasks beyond their responsibility 8 

Isolating developers from end users, under the mistaken assumption that the 4,9 
requirements are stable and well understood by both the software team and end 
users at project inception 

Management insisting on the original delivery date even when reducing staff or 8 
funding 

Failing processes due to a decline in overall cooperation and morale 8 

Lack of proper software project monitoring and control 4 

The false assumption that coercion is an efficient way to increase productivity 9 

Superstars who can't wait their time and want to skip learning phases 9 

Lack of planning 9 

Assuming developers are interchangeable and that the number of people working 4,8,9 
on a problem is inversely proportional to the development time 

Relying heavily on a superstar on the team 9 

from a detailed scrutiny of the litera
ture we found.7 

the previous antipatterns by dealing 
with the following questions: 

Antipattern Categories 
We thought it would be interest
ing to go deeper into the analysis of 

• Which of the five software proj
ect management activities are 
the antipatterns related to? 



Antipattern categories. 

Category Criteria Antipattern no. (see Table 1) -
Impacted software product 
management activity 

Controlling 1, 4,5, 8, 9, 11, 14, 15, 17 41 

Motivating 1,2,4, 11, 13, 16, 18, 19,22 41 

Planning 10, 12, 20 14 

Scheduling 5, 21 9 

Staffing 3, 7 9 

Impacted role Developer 4,5,6, 7,9, 10, 16, 17,21,22 50 

Manager 5,6, 7,9, 10, 16, 17, 19,21,22 50 

Customer 8, 14, 15, 17 18 

Root cause Ignorance 1,3,4,6,9, 10, 11, 12, 13, 14, 17, 18, 19,21 64 

Sloth 1, 10, 16, 17, 20, 22 27 

Pride 13, 15,22 14 

Avarice 5, 7 9 

Haste 8 5 

Solution type Training 2,3,4,6, 10, 11, 12, 13, 14, 17, 18, 19,21 59 

Process 5, 7,8,9, 10, 15,20 

Role 1, 13, 22 

Technology 16 

• Which general roles in a soft
ware project (developers, manag
ers, or customers) do the antipat
terns impact? 

• Are these antipatterns due to 
ignorance, sloth, pride, avarice 
(ambitious behaviors related to 
not only money but also people, 
project schedules, and delivery 
dates), or haste? 

• What type of solution does each 
antipattern imply? Is the solution 
training-based, process-based, 
role-based (focusing on assigning 
responsibility to an individual or 
group), or technology-based? 

We answered these questions on 
the basis of the literature and our 

experience and knowledge.7 Addi
tionally, two senior software project 
managers at international software 
consulting companies assessed our 
categorizations through a detailed 
discussion with us. The categoriza
tions might vary slightly depending 
on the actors, but our aim is to bring 
to practitioners' attention the main 
factors related to each antipattern. 

You can access and work with the 
categorization results at http://is.ls. 
fi. upm.e s/research/spmantipatterns/ 
home.html. A simple Web tool lets 
you sort the antipatterns according 
to the previous questions and filter 
them according to criteria (for ex
ample, viewing all antipatterns due 
to ignorance). Table 2 summarizes 

32 

14 

5 

this categorization (in some cases, a 
particular antipattern might be re
lated to different criteria in the same 
category, so the percentages for each 
category might exceed 100 percent). 

The software project management 
activities most impacted by antipat
terns were, not surprisingly, those 
that last the longest throughout a 
project: controlling and motivating. 

Investigating the roles most im
pacted by antipatterns led to a para
doxical discovery. In half of the an
tipatterns, the manager experienced 
the greatest impact-managers who, 
in many cases and for various rea
sons, had created the situation they 
were suffering from. This ironic rev
elation should motivate project man-

http://is.ls


agers to avoid malpractices and en
gage in continuous improvement and 
professional development. 

As we expected, antipatterns also 
had a relevant effect on developers 
because they're the main performers 
of the work orchestrated by project 
managers. Additionally, a notewor
thy finding is that several antipat
terns directly impacted customers. 
Although all the antipatterns rep
resent undesirable scenarios, proj
ect managers should particularly 
avoid those that significantly affect 
customers. 

Software project managers often 
identify schedule pressure, a mani
festation of haste, as a cause of proj
ect troubles. However, we found that 
haste was the least common root 
cause of the antipatterns; the most 
common cause was ignorance (at
tributable to the project manager's 
lack of experience or training). This 
result supports the observation that 
staff is sometimes assigned to proj
ect management without being fully 
qualified or trained.11 As Table 2 

shows, project management training 
can solve most of the antipatterns. 
So, the solution shouldn't be to ter
minate underperforming software 
project managers and hire new ones 
with potentially similar limitations. 
A much more powerful and long
lasting solution is to invest in these 
managers, training them to enhance 
their skills and preparing aspiring 
managers for the future. 

S 
oftware project managers 
are in a unique pos1t10n to 
identify and avoid antipat

terns. Here's how. 
First, identify specific principles 

and practices to tackle for the anti
patterns, according to your develop
ment process. For example, in agile 

project management, creating a gen
eral release plan will help prevent 
Detailitist Plan, and the continuous 
delivery of working software will 
help prevent Fire Drill. 

Second, at regularly scheduled 
points during a project, meet with 
your team and, as a group, identify 
what is and isn't going well. Honesty 
and openness are essential. No one 
should be defensive. Avoid criticism. 

Third, try to map the issues 
you've identified to the antipatterns 
in Table 1, keeping in mind that you 
might have identified new antipat
terns. The antipatterns in Table 1 

might be only the tip of the iceberg. 
Fourth, on the next project, avoid 

the antipatterns you've identified 
and repeat this process throughout 
the project and at its conclusion. 

Finally, software project manag
ers should receive training before 
they assume this role and during 
their tenure. In less than a decade, 
the knowledge about motivation, 
productivity, and team development 
has grown by leaps and bounds.12 
Keeping the software project man
ager up to date will have benefits to
day and for years to come.

References 
1. P. Ghazi, A.M. Moreno, and L.J. Peters, 

"Looking for the Holy Grail of Software 
Development," IEEE Software, vol. 31, no. 
1,2014,pp. 92-96. 

2. A. Koenig, "Patterns and Antipatterns," ]. 
Object-Oriented Programming, vol. 8, no. 
1, 1995, pp. 46-48. 

3. K. Petersen et al., "Systematic Mapping 
Studies in Software Engineering," Proc. 
12th Int'! Con(. Evaluation and Assess
ment in Software Eng. (EASE 08), 2008, 
pp. 68-77. 

4. W.J. Brown et al., AntiPatterns: Refactor
ing Software, Architecture, and Projects in 
Cr isis, John Wiley & Sons, 1998. 

5. L.J. Peters, Getting Results from Software 
Development Teams, Microsoft Press, 
2008. 

6. H.R. Kerzner, Project Management: A 
Systems Approach to Planning, Schedul
ing, and Controlling, 11th ed., John Wiley 
& Sons, 2013. 

7. P. Silva, "Categorization of Anti-Patterns 
in Software Project Management," 
master's thesis, Universidad Politi§cnica de 
Madrid, 2014; http://oa.upm.es/32705. 

8. W.J. Brown, H.W. McCormick, and S.W. 
T homas, AntiPatterns in Project Manage
ment, John Wiley & Sons, 2000. 

9. P.A. Laplante and C.J. Neill, Antipatterns: 
Identification, Refactoring, and Manage
ment, Taylor & Francis, 2005. 

10. "Management Anti Pattern Roadmap," 
Portland Pattern Repository, 2014; http:// 
c2.com/cgi/wiki?ManagementAntiPattern 
RoadMap. 

11. R. Katz, "Motivating Technical Profession
als Today," IEEE Eng. Management Rev., 
vol. 41, no. 1, 2013, pp. 28-38. 

12. L.J. Peters, "Managing Software Projects: 
On the Edge of Chaos, from Antipatterns 
to Success," Kindle ebook, Software Con
sultants Int'!, 2015. 

PEDRO SILVA is an embedded-software 
engineer and a recent master's graduate at 
Universidad Politecnica de Madrid. Contact him 
at pedro.pdesilva@gmail.com 

ANA M. MORENO is a full professor at Uni
versidad Politecnica de Madrid. Contact her at 
ammoreno@fi.upm.es. 

LAWRENCE PETERS is a project manager, 
consultant, and part-time lecturer at Univer
sidad Politecnica de Madrid. Contact him at 
ljpeters42@gmail.com 

http://oa.upm.es/32705
http://
mailto:pedro.pdesilva@gmail.com
mailto:ammoreno@f.upm.es
mailto:ljpeters42@gmail.com



