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A B S T R A C T 

In this paper we study the numerical resolution of a reinforced random walk model arising 
in haptotaxis and the stabilization of solutions. The model consists of a system of two 
differential equations, one parabolic equation with a second order non-linear term 
(haptotaxis term) coupled to an ODE in a bounded two dimensional domain. We assume 
radial symmetry of the solutions. The scheme of resolution is based on the application of 
the characteristics method together with a finite element one. We present some numerical 
simulations which ¡Ilústrate some features of the numerical stabilization of solutions. 

1. Introduction 

A characteristic feature of living organisms is that they respond to the environment in search of food and a reproductive 
mate, which is called taxis. Corresponding to the type of the external stimulus, various types of taxis are defined, such as 
haptotaxis, chemotaxis and others. 

Chemotaxis is a process whereby living organisms respond to chemical substance by moving toward higher or lower con-
centrations of the chemical substance, or by aggregating or dispersing. Haptotaxis is closely related to chemotaxis, as it is the 
directional motility or growth of cells following gradient of cellular adhesión sites or substrate-bound chemoattractants. The 
gradient of the chemical signal in this case is expressed or bound on a surface, in contrast to the classical model of chemo­
taxis, in which gradient develops in a soluble fluid. These gradients are naturally present in the extracellular matrix of the 
body during process such as angiogenesis. 

In the majority of the theoretical analysis the signal is transported by diffusion, convection or by some other means. The 
classical chemotaxis equation was introduced by [11], after [15], as the first model to describe the aggregation of slime mold 
amoebae due to an attractive chemical substance. The model involves the density distribution of the bacteria u and the 
chemical concentration v in a coupled system of pardal differential equations 

ut = Au - div(ux(v)Vv), 

vt- Av = g(u, v), 

where ut = ^ and vt = 4p 
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However, in some chemotaxis phenomena, the diffusion of the chemical attractant is ignorable, the walker seems to mod-
ify the environment in a strictly local manner and there is little or no transport of the chemical substance. 

In an attempt to gain understanding of the mechanisms that causes the aggregation of myxobacteria, which slide over 
slime trails thereby reinforcing the trails, [14] proposed a model based on reinforced random walks. The system of equations 
derived by Othmer and Stevens is the following: 

ut = á\v(DVu-ux(v)Vv), (1) 

vt = g(u,v), (2) 

where D is the diffusion constant and y{v) is the chemotactic sensitivity of the bacteria. Both, y{v) and g(u, v) depend on the 
nature of the interaction between the bacteria and the chemical stimulus. 

[9] studied a reinforced random walk model in haptotaxis. They considered system 1,2 in a bounded domain íl c R" with 
boundary condition: 

D S " U ; ( ( y ) l n ) = 0 ' X€dQ> t>0' (3) 

where |^ and |^ are outward normal derivatives, the random motility D is assumed to be constant and y measures the hapto-
tactic sensitivity. The function g(u, v) is assumed to be of the form 

g(u, v) = h(u, v)<t>{u, v), 

where, for some constants 0 sí u-¡ sí u2, V\ < v2, it is satisfied 

<¡>(U, V) > 0, if Ui < U sí U2, V\ sí V sí V2, 

and h(ui, v-¡) = h(u2, v2). 

This problem describes the evolution of a biological species moving along a gradient of the concentration of a second species. 
Notice that in the case of chemotaxis systems, the second species diffuses in a higher or lower velocity, depending on the 
process, and it is modelized by a parabolic or elliptic equation. 

This kind of equations, containing haptotaxis terms, arise for example in modeling cáncer process, as angiogenesis, see for 
instance [1,12]. These problems also present mathematical challenges whereby several authors have been interested, as the 
literature shows, see for example [9,13,16], and references therein. 

From the mathematical point of view, in [9], it is proved that any stationary state (u*, v*) of 1,2 is asymptotically stable 
provided: 

g=h<t>, (¡>>Q, hP>0, pyhp + hw<0 at (u*,v*). (4) 

If (4) is satisfied, then any solution of 1,2, in a bounded domain with boundary condition (3), and initial valúes near (u*, v*), 
exists for all t > 0 and converges as t —> oo to a nearby stationary solution (u,D). This assertion means that under assumption 
(4), solutions tend to an uniform distribution, provided the initial distribution is nearly uniform. 

The question about what the behavior of solutions could be when condition (4) is not satisfied was the motivation for the 
study presented in this paper. 

This paper is involved with the numerical resolutionofa particular case of system 1,2, considered in [9] as an example. To 
precise, we shall consider the following parabolic-ODE system posed in a bounded domain íl c R2, 

ut = div V u - u — V V » , xeCX t > 0, (5) 

vt = u- pLh(v), x e íí, t > 0, (6) 

that is, y{v) = 1¡^v, with ¡i > 0, a > 0 and ¡i > 0, complemented with the boundary condition 

dn a + fív dnj 

and initial data 

u(x, 0) = u0(x), v(x, 0) = v0(x), X€ íl. (8) 

For this particular case, if assumption 

X(v)h(v) < ti(v) for u\ sí u sí u2, V\ sí v sí v2, (9) 

with v2 - V\ small enough, is verified, then assumption (4) is also satisfied (see [9]). 



It is the purpose of this paper to solve numerically the system (5)-(8) in a bounded two dimensional domain when radial 
symmetry of solutions is assumed in order to answer in a way to the question about what could be the behavior of solution 
when (4) is not satisfied. 

Regarding the numerical resolution of chemotaxis or haptotaxis models, it could be said that the finite-volume and finite-
difference methods, or a combination of the two have been widely employed. These methods usually used a second order 
upwind scheme which is positivity preserving. These kind of methods are developed and used for example in [7]. In [10], 
it is used the method of lines to deal with taxis-diffusion-reaction models. 

In Section 2, we describe the scheme of resolution, which is based on a combination of the characteristics method (as an 
alternative to the upwind technique) and the finite element method. The method here employed follows the ideas of [4]. In 
Section 3, we present some numerical results which ¡Ilústrate the stabilization of solutions when (9), and therefore (4), is 
satisfied. We also show the results concerning two cases for which (9) is not satisfied (neither (4)). We shall see one simu-
lation where the stabilization of solutions takes place and other where this does not occur. Finally, in Section 4 we comment 
some conclusions. 

2. Numerical analysis of the radially symmetrical case in 2D 

This section deals with the numerical scheme we have employed to solve numerically the system (5)-(8) when it is 
assumed that solutions are radially symmetric. In this case, the problem reduces to one of only one spatial variable, which 
is the radius r. Without losing generality, we shall assume that r e [0,1]. 

The numerical resolution of the model and subsequence numerical simulations would allow us to study the stabilization 
of solutions. 

To precise, the problem we intent to solve numerically in this section is the following: 

ut = - | - ( V ( u r - u — ^ v r ) ) , (10) 
r dr\ \ a + pv )) ' 

vt = u- fih(v), (11) 

where ur = & and the same for v, complemented with appropriated initial and boundary conditions which will be mentioned 
later. 

Dueto the hyperbolic feature of Eq. (10), weopt for using a scheme which combines the method of characteristics and the 
reformulation of the convection term in (10) in terms of the total derivative with the finite element one (see [4,8] and ref-
erences therein). We shall assume that the variables satisfy some regularity requirements that allow us to develop the 
numerical scheme. This technique has been successfully used in other fields (see for example [2,5,6]). 

Next, we describe the numerical scheme. The equation for u, which in an expanded form is 

Ut = Urr+[ '——)ur^ j Vi - , „ , VT —FTV„, (12) 
\r a + pv) (a + pvf r{a + pv) a + pv y ' 

can be written in the following form, 

ut+Aur = u„+B, (13) 

where 

A = --+ r"' and B = — r " v1 - r~ vr ^^-^n-- (14) 1 ' " ^ » d 8 = - ^ * - - * » - * , 
a + pv (a + pv) r(a + pv) a + pv 

Consider the total derivative ^ defined as follows: 

Du „ „ „ 

-Q- = ut+Aur + uV -A, 

where A, which has been defined in (14), would be an artificial velocity field. Notice that 

y Á=^ 9 (J M V\\= ^r , PV" f * ( 1 5 ) 

rdr\\a + pv rJJ r(i + pv) a + pv (a + pv)2' 

henee, 
— = U,r+B + uV •A = UIT. (16) 

Note that when A is actually the velocity of an incompressible fluid, then V • A is nuil. In this problem, A is an artificial veloc­
ity and V • A is not necessary nuil so we will have to take it into consideration and compute it. Next, we shall follow the nota-
tion and ideas presented in [4]. 

In our particular problem we shall consider the total derivative oíju, given by 



^ , ( r , t )=¿ [ / ( r , t ;T ) U (X( r , t ;T ) ,T )U , 

where J is the Jacobian associated with the change of coordinates from Eulerian to Lagrangian coordinates. The Jacobian 
J(r, t; x) of the change of coordinates is defined as follows 

J{r,t; T ) : = 1 - í V •A{X{r,t;x),x)dx. (17) 

Note that the presence of J arises from the application of the characteristics method when one considers the conservative 
form for the convection term. We shall denote the characteristics X by X(r, t;x), as r and t are parameters for the solution 
Xof 

M = A(X(r,r;T),T) 

X(r, t;t)=r 

which means that X(r, t; •) should be the particle path that passes at r at time t. The system (18) is backward in time but when 
A is regular enough, say Lipschitz continuous, it has a unique solution. 

Then, we obtain that 

- ^ = [/T" +](urXz + uT)]I=t = ut + V(uA), 

whereJT = J¿ and the same forX and u. Therefore, the problem we have to solve numerically for the variable u turns out to be: 

L¡^ = urr, 0<tí:T, r e (0,1), (19) 

u(r,0) = u0(r), r e [0,1], (20) 

where the initial condition u0(r) is assumed to be a regular function. Due to the diffusion term in (19) we need to prescribe 
boundary conditions. In this case, we consider the following boundary condition ur(0, t) = u r(l, t) = 0 , 0 < t sg T. The prob­
lem for the variable v is given by (11) complemented with the initial condition 

v{r,0) = v0{r), r e [0,1], 

with v0{r) alsoa regular function. Inaddition we shall assume that vr{0, t) = vr{\,t) = 0,0 < t sg I, in thecomputationofthe 
characteristics and J, which is in accordance with Eq. (11) and the boundary condition (7) of the original problem. 

In order to solve (19) complemented with the corresponding initial data and boundary conditions, we shall use a time 
marching scheme. Henee, let P > 1, be a natural number and let At = T/P be the fixed time step of discretization. To discret-
ize in time, we used the following formula for each rn+1 = (n + l)At, with n = 0,. . . ,P - 1: 

[/"+1(r)u(X(r,t"+1;t"+1),t"+1)-f (r)u(X(r,t"+1;t"),t")]/At, (21) 

where f(r) =J(r,rn+1;tn) and;n+1(r) =J(r,rn+1;rn+1). Note that if we consider t = rn+1 in (17), (18), we get that 

jn+l = j ( r > t „+ l . t „ + l ) = 1 ^ X ( r > t „+ l . t „ + l ) = r ¡ ( 2 2 ) 

therefore (21) becomes 

^ ( r , t " + 1 ) ~ [u"+1 -;"(r)u"(X"(r))]/At, (23) 

where un(r) = u(r,t") andX"(r) =X(r,tn+1; t") is the solution of (18) that will be in r at time rn+1. 
As a result of the discretization with respect to time, we have that for each step in time rn+1 we have to solve a stationary 

problem. In particular we shall consider the following problem for the unknown un+1(r): 

u"+1 - Atu^1 - f (r)u"(X"(r)) = 0, r e (0,1), (24) 

< + 1 ( 0 ) = < + 1 ( l ) = 0, (25) 

where J"(r) and un(X"(r)) are known as they have been computed in the previous step in time. The variational formulation 
corresponding to the problem (24), (25) is the following 

/ (u"+1w-Afu^+1wr-;"(r)u"(X"(r))w)dr = 0, Vw €H\0,í). 
Jo 

(26) 



In order to discretize the problem (26) with respect to the spatial coordínate r, we use Lagrange linear finite elements. After 
applying some quadrature formula for integration and some algébrale operations, we obtain a linear system of equations for 
theunknowns u"+1 = un+1(r¡), andí = 0,1,2, .JV, being {r¡} thepartitionof thedomain [0,1] considering Ar as the step forthe 
space discretization. The matrix of coefficients associated to the system is a band tri-diagonal one. The system is solved by 
using the Thomas algorithm. 

Finally, once that we have updated the valúes for u, we pass to update the ones for v. In this case, we consider the fol-
lowing finite difference scheme, 

vf 
Ar 

therefore, 

•fih(vf), 

-At(u¡+1 -¡j.h(vf)), for ¡ = 0,1,2,..N. 

(27) 

(28) 
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Fig. 1. Results obtained with u0(r) = v0(r) = 1 + 0.005e_r3, x{v) = i ¿ . h{v) = v and /¿ = 1, that is vt = u - v. In this case assumption (9) is satisfied. 



3. Numerical simulations in the radially symmetric case 

In this section we shall present some numerical simulations obtained with the scheme of resolution described in the pre-
vious section in order to ¡Ilústrate the numerical stabilization of solutions for different h{v). It is the purpose of these sim­
ulations to show the well performance of the method as we are able to reproduce the expected behavior of solutions to the 
problem considered in [9], Example 1, when assumption (9) is satisfied, and on the other side to bring some insight about 
possible behaviors of solutions when it is not. In this occasion we are not mainly concerned with the obtention of biologically 
meaningful solutions not with modeling considerations. However, we want to highlight that the algorithm can be used in 
more general scenarios regarding the choices for the expressions of % and g(u, v) and therefore, it could provide an effective 
way of selecting expressions leading to desirable profiles for the solutions from the biomedical point of view. 

The problem has been solved in the interval r e [0,1]. The steps in time and space used in the simulations presented in 
Figs. 1, 3 and 4 are At = 1CT4 and Ar = 1CT2. It has been performed a great number of numerical simulations, regarding initial 
data and expressions for % and g(u, v), but for the sake of brevity we only present some of them concerned with the stabil­
ization problem considered in this paper. We have chosen three cases based on the choice of h{v). One case, presented in 
Fig. 1, illustrates how the stabilization of the solution takes place as expected when assumption (9) is satisfied. A second case, 
presented in Fig. 3, shows how stabilization of solutions is possible despite of the fact that assumption (9) is not satisfied. 
And finally, a third case, presented in Fig. 4, in which assumption (9) is not satisfied and the stabilization of the solution does 
not take place. 

Regarding the initial data, we consider in all the simulations shown here the same u0 and v0, to precise 

"o(r) = v0{r) = \+0.005e , - r 3 
(29) 

but a number of simulations with different profiles for the initial data u0 and v0 have been performed. According to our 
numerical results we could conjecture that it is the expression of h{v) the one which plays a determinant role in order to 
obtain the stabilization of solutions or not. 

In Fig. 1, we present the numerical results obtained with %{v) = y^ , fi = 1 and h{ v) = v. With this choice, assumption (9) 
is satisfied. One can observe that the stabilization of solution takes place, and therefore we obtain that after a certain 
time T that u=v = C (=1.005270584662) for t > T. We associate to each time t an error defined in this case by 
e{t,r) = u(t,r) - v{t,r) in order to know how far we are from the constant stationary valúes. 

In order to ¡Ilústrate the well performance of the numerical scheme we present the results obtained for u and v in the case 
considered in Fig. 1 for different steps in time and space for t = 0.1 at r = 0 and r = 1 in Table 1 and 2, respectively. Notice 
that the solution is decreasing so the valúes are between the ones in r = 0 and r = 1. 

Note also that the stability of the numerical scheme depends onA (related to the convection term) whose valúes depend 
at the same time on the step of the discretization in space. The valúes of A(t, r) do not change significantly with respect to 
time for fixed steps in time and space as it can be observed in Fig. 2 (left). 

In Fig. 3, we present the numerical results obtained with the same initial data considered in Fig. 1, the same expression for 
%,\i=\ and h{v) = v + 1. In this case, assumption (9) is not satisfied, however the solution stabilizes to constant valúes 
which satisfy u = v + 1, in particular these valúes are u = 0 and v = —1. The variable error mentioned in the graphics is 
defined by e(t,r) =u(t,r) - (v(t,r) + 1). 

In Fig. 4, we present the numerical results obtained with the same initial data and % considered in Figs. 1 and 3, just to 
show that the stabilization phenomenon mainly depends on the expression of h{ v). In this third case, h{ v) = e^r so assump­
tion (9) is not satisfied, and we obtain the solution does not stabilize to constant valúes and even there is a time t„ such that 
the numerical solution seems to present a kind of numerical blow up. 
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satisfied. 

4. Discussion and conclusions 

In this paper we study the numerical resolution of a system of two differential equations, one parabolic equation with 
second order non-linear terms (haptotaxis) and an ODE. The problem describes the evolution of a biological species moving 
along a gradient of the concentration of a second species. The system is closely related with chemotaxis systems, where the 
second species diffuses in a higher or lower velocity depending on the process and it is modelized by parabolic or elliptic 
equations. 

Similar systems, containing haptotaxis terms, are used to describe cáncer processes, as angiogenesis (see for example 
[1,12]). The problem also presents mathematical challenges whereby several authors have been interested, as the literature 
shows, see for instance [9,13,16], and references therein. 

In [9], the system (l)-(3) is studied under assumption (4), and it is established that any stationary state (u*, v*) is asymp-
totically stable. If (4) is satisfied, then any solution of (l)-(3) in a bounded domain, with initial valúes near (if, v*), exists for 
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Table 1 
Results obtained for ti and v with Uo(r) = v0(r) = 1 +0.005e- '3, 
X(v) = rb ' Hv) = v a n d /* = 1, for different steps in time At and space 
Ar for t = 0.1 at r = 0. 

t = 0.1,r = 0 u V 

At = le- 04,Ar = = le--2 1.0049263207 1.0049956217 
At = le- 06,Ar = = 5e--3 1.0049274942 1.0049957621 
At = le- 06,Ar = = 2e--3 1.0049274269 1.0049957564 
At = le- 06,Ar = = le--3 1.0049272392 1.0049957383 

Table 2 
Results obtained for u and K with ti0(r) = v0(r) = 1 + 0.005e~rS, x(") = -^ Kv) = v a n d I1 = 1. f° r different 
steps in time At and space Ar for t = 0.1 at r = 1. 

t = 0.1,r = l u V 

At = le-04,Ar = le-2 1.0034998369 1.0019458848 
At = le-06,Ar = 5e-3 1.0035001391 1.0019457786 
At = le-06,Ar = 2e-3 1.0035001888 1.0019457409 
At = le-06,Ar = le-3 1.0035002060 1.0019457284 

all t > 0 and converges as t —> oo to a nearby stationary solution (u, v). Henee, under assumption (4), provided the initial dis-
tribution is nearly uniform, solutions tend to an uniform distribution. 

A natural question is, if assumption (4) is not satisfied, how do the solutions behave? do we expect global existence or 
finite time blow up? is assumption (4) a necessary condition to have stability? Such questions have been the main motiva-
tion of our work. 

As expected, the numerical simulations show the stabilization of solutions to the problem with radial symmetry when the 
assumption (4) is satisfied (in particular, it is satisfied (9), see Fig. 1). If assumption (4) (in particular (9)) is not satisfied 
(Figs. 3 and 4) then the solutions can stabilize or not depending on the expression of h{v) in (11). 

In Fig. 3, the solution stabilize to constant valúes for u and v, so, the numerical simulations shows that assumption (4) is 
not a necessary assumption to obtain stability. Fig. 4 shows "numerical" blow up, which induces to conjecture that for some 
particular profiles of g blow up oceurs. 

The numerical method described in this paper follows the ideas presented in [4] and the algorithm is based on the refor-
mulation of the convection term in (10), the equation for u, in terms of the total derivative and the application of the char-
acteristics method combined with a finite element one. This method is presented as an alternative to spectral methods, 
upwind algorithms and finite volume methods, which prove to be very effective to tackle models of chemotaxis-haptotaxis 
type (see for example [3,7] and references therein). 

We would like to remark that the numerical method described here can be easily generalized and applied to other def-
initions of the haptotactic sensitivity % and other expressions of g(u, v), not included here for the sake of brevity. The method 
proves to be efficient and it reproduces the behavior expected in cases for which analytical results are known. So, the numer­
ical method employed in this paper could be effectively used to obtain some insight about the behavior of solutions to the 
problem considered in [9], Example 1, but also about the behavior of solutions to systems of similar kind. 

This paper can be considered as the starting point of future research involved with the application of generalizations of 
the scheme developed here to the study of fully 2D problems (no radial symmetry assumed) and problems which also 
include chemotaxis terms. Notice that, if one wants to deal with biomedical applications and therefore to obtain biologically 
admissible solutions then a more careful choice of the definitions for g(u, v) and % should be considered. In this occasion, we 
were more concerned with bringing some light to the questions above mentioned and showing that according to the results 
obtained with our numerical scheme, (4) is a sufficient condition but not necessary in order to obtain the stabilization of 
solutions, than with the modeling or biomedical applications. 
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