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Abstract

The railway routing problem determines specific paths for each individual train, given its type and composition and considering
possible maintenance locations and durations. The objective is to minimize operating costs and penalties related to waiting times
and maintenance all while considering train scheduling and maintenance constraints. The model is solved using Branch and
Bound and Column Generation approaches. In the paper the different approaches are compared for different planning horizons
and model parameter settings. The computational tests have been run in a real RENFE network.
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1. Introduction

Before solving the rolling stock routing problem, network design, line service, timetable and rolling stock
assignment have been addressed. Designing a rail network is vital to reduce traffic congestion, passenger travel time
and pollution in any major city. The main goal of this design is to decide the least costly station locations that
provide maximum coverage of the demand for the new network.

The next logical step is train scheduling. Traditionally, train scheduling has been decomposed into sequential
steps. The first one is line planning, at tactical planning, in which planners determine the appropriate service
frequency for each line, such that all travel demands are satisfied and certain objectives are met, e.g. maximization
of quality of service for passengers and minimization of operating costs of the railway system. The second one is
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timetable development, in which planners place the purposed train services throughout the day, subject to network
considerations and other constraints. The result of timetable development is a series of train trips, which will be
determined by the departure and arrival times from/at depot stations. Next, in the Rolling Stock (RS) assignment
problem, train types and compositions of a given fleet are assigned to these trips ensuring that train capacity matches
closely with demand and fleet cost is minimized.

This paper deals with the next step, where the railway network is redefined according to the previously
established rolling stock assignment. Each train trip has a particular type and composition assigned to it; the goal of
this step is to assign individual rolling stock units (trains) to those trips. This assignment is performed considering
capacity, cost and maintenance requirements.

This problem determines the actual routes taken by the individual rolling stock units. It is usually called Rolling
Stock Routing or, when maintenance is taken into account, Rolling Stock Maintenance Routing or simply,
Maintenance Routing (MR). At this level, maintenance is key, as its requirements (and of course, network flow
constraints) usually predominate over the rest of the constraints when defining the optimal route for each train. In
this routing process, operating and maintenance costs are minimized, while each scheduled trip must be covered by
exactly one train. Also, train flow conservation and depot capacity constraints must be satisfied at each network
node. As a result, the final route performed by each train is composed by trips, storage at depots and maintenance
checks, in a way that all the aforementioned requirements are met.

1.1. State of the Art

The paper of Cordeau et al. (1998) is an excellent survey of existing locomotive planning models and algorithms
for the Train Scheduling. Cadarso and Marin (2010) study robust RS and routing of rapid transit rolling stock, but
they do not consider maintenance restrictions. A comprehensive locomotive planning model is due to Ahuja et al.
(2005).

Mellouli (2001) studies the routing and maintenance of trains and aircraft including the vehicle and crew
scheduling. Maréti and Kroon (2005) consider the problem of routing locomotive units that require maintenance in
the next one to three days and propose a “transition” multi-commodity flow model to solve this problem. The same
authors develop the interchange model in Mardéti and Kroon (2007) dedicated to regular maintenance routing of a
few days, but considering preventive maintenance of about a month. However, small and frequent maintenance
checks of only one or two days are not considered. They try to avoid empty trains forced by urgent maintenance
tasks and are mainly interested in feasible solutions, given that in practice plans must be consulted with the local
shunting crew. Other authors, Hong et al (2009), consider maintenance routing of uniform trains within a weekly
train timetable in the High-Speed Railway (HSR) of Korea, covering the timetable with the minimum number of
trains. As a second objective, the total working days of the train fleet is minimized. Typically, the MR is formulated
in the literature as a multicommodity network flow problem or a set partitioning problem (Klabjan, 2005). The
multicommodity flow network has a polynomial space complexity tractable by commercial solvers. The set
partitioning formulation yields a tighter representation but involves an implicit enumeration of exponentially many
paths and thus requires more complex solution techniques.

The idea behind this initial paper is developing a model suitable for the integration of maintenance routing with
previous planning steps, consisting of timetable planning and rolling stock assignment. This future integrated model,
with the necessary adaptations, can be used in a recovery planning scheme. In this way, some interesting reports may
be mentioned: Borndorfer et al. (2012a, 2012b), Giacco et al. (2014), Wagenaar et al. (2015). The same ideas are
being developed by Haahr et al. (2015) considering the integration to study the rescheduling during disruptions.

In this paper a detailed maintenance routing model is defined to deal with rapid transit network problems. The
model approach is adapted to solve those problems, but considering the integration of the maintenance routing
problem train scheduling planning stages. The paper is focused on maintenance routing but the intention to use it in
an integrated recovery scheme, with the necessary adaptations. In contrast to the flow-based approaches to the same
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problems, our approach is based in the solution of the maintenance routing by an efficient Bellman-Ford’s multilevel
algorithm for each train type, in the context of a Branch and Price decomposition. In order to ease integration with
the rolling stock assignment problem, we use a service based network where stations are nodes that connect services
in order to satisfy flow conservation constraints.

The paper is organized as follows: In Section 2 the maintenance routing problem is introduced. In Section 3 the
maintenance routing model is defined. In Section 4 the methodology used is described. In Section 5 some
computational tests are described. The conclusions and extensions may be read in the last Section 6.

2. Problem description

Given a rail network with a defined schedule, a railway operator wishes to determine the rolling stock routing
which covers all the scheduled trips and minimizes the operating costs, considering the regulation on maximum
travelling time and distance before maintenance checks. Other considerations include maintenance depot capacity
constraints, along with train trip coverage, or the use of soft or hard maintenance time windows, or the use of
planning horizon to include in the planning period, which will permit flexibility to include the maintenance levels.

Considering that each train trip has been assigned an optimal type and composition to maximize demand coverage
in the RS assignment problem, the Maintenance Routing problem seeks to determine the individual route taken by
each train, over a certain planning period, such that the aforementioned maintenance constraints are checked.

2.1. Maintenance

We assume that every train must undergo maintenance checks after a certain number of hours or kilometers of
travelling time or distance. Maintenance procedures are divided depending on their level, defined by the maximum
times and distances established by the regulations. For high level maintenance procedures (taking place every
several months or years), trains are unavailable for routing purposes. This maintenance procedures are usually
performed at dedicated maintenance workshops, separated from the network.

For lower level maintenance checks (every several days or weeks), maintenance checks usually take place at the
corresponding depots which have maintenance facilities within the network. According to this criterion, depots are
classified into storage and maintenance depots and storage-only depots.

Low level maintenance may be performed at maintenance depots during a predefined maintenance time window
(MTW). The MTW of each level of maintenance limits on how much time and/or distance a train can operate before
the next mandatory maintenance. These MTW may be considered as soft or hard level. In the model formulation
they are considered in its hard version.

The maintenance levels are the followings: daily inspection (DI), monthly inspection (MI), large inspection (LI),
and overhaul inspection (OI). The first two are low-level maintenance, and the last two are the high-level
maintenance. Low-level maintenance is composed by DI and MI. A train must go through a MI after operating for
two or three weeks (Time MI, TMI) or for several thousand km (Distance MI, DMI) before it can circulate again. A
train must go through DI after operating for two/three days. The inspections have an average duration of 1 or 2 hours
for the DI and of 4-6 hours for the MI and they are performed at the specific maintenance depots. Therefore,
planners have to keep track of the accumulative operating time and distance since the last maintenance check for
each maintenance type and individual train. The specific values above are MR parameters and they may be easily
changed for each specific problem (different railway regulations).

High-level maintenance, such as LI and OI, is scheduled ahead of time for each train unit during the maintenance
planning process since they require longer inspection times compared to DI and MI and the main workshops have
limited capacity. Therefore, we will only consider low-level maintenance (DI and MI) in the tests conducted for this
model, although higher level maintenance could be included very easily with no modifications to the model. In
addition, the maintenance procedures of a higher level include all the maintenance procedures in lower level
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maintenance. Therefore, after conducting one class of maintenance process, all accumulative operating times and
kilometers associated with that class and the corresponding lower-level classes of maintenance will be set to zero.

The MR is treated in this paper considering a planning horizon that is extended over the planning period. Lai et
al. (2013). The planning period is defined as the period in which the model solution is applied, whereas the planning
horizon covers a more extended time window considered in the model. This essentially means that the solution for
one particular day is calculated taking into account an extended period of two or three days after the day we intend to
plan the routing for. We study the effect that this kind of approach has on the routing solutions for rapid transit
networks and compare it with a more standard approach (taking into account just the planning period.

2.2. Network definition

The MR problem is usually modelled within the framework of an aggregated space-time network in which each
node is a depot station, with an associated time corresponding to the time when a train arrives or departs from said
depot station. Incoming trains are only connected to outgoing trains if the connection time is sufficient.

The arcs in the network represent train trips, storage at the depot or maintenance checks. All the arcs are directed,
and the only arcs that allow travelling between depots are the train trip arcs. Storage arcs are defined between every
two adjacent nodes belonging to the same depot. Lastly, maintenance arcs are defined within the time window
corresponding to each maintenance depot, and connect every node in the window with the last one that also belongs
to the window and allows for a maintenance check of the specified time. Defining maintenance arcs of this way
allows that each node in the window has a maximum of one reaching maintenance arc. The maintenance routes are
defined by the service and empty route assignment (RS output).

3. Maintenance routing model

The MR model has as input the fleet assignment solution of the RS assignment problem, where train passenger
capacity, fleet size, and other constraints have been considered. In the MR model, the operative routing, storage and
maintenance costs are minimized, subject to train trip coverage, flow conservation, and maintenance time and
distance constraints. The MR outputs are the paths of each individual train during the considered planning period.
The MR model is defined by the following items:

Sets:

K: node set, indexed by k. Each defined by a depot and a departure/arrival time.

M: maintenance type set, indexed by m.

R: route train trip set, indexed by .

R¢: routes used by train t.

P : train type set, indexed by p.

T : train set, indexed by t.

T, : train subset for type p.

m

" route subset using the depot k for maintenance m.
:e” “"route subset departing (dep) or arriving (arr) to the depot k for maintenance m.

S: service set, indexed by s, output of RS assignment model.
Parameters

cf, : operating cost for route train trip r and train t.
mc,i - train maintenance cost of train t at node k with maintenance facilities of type m.
w,: storage cost at node k.

[]d ,ud ] : travel maintenance time window of a maintenance session of type m.
m m
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[llm R ulm ]: length maintenance time window of a maintenance session of type m.
P capacity of trains in maintenance m depot k.

/)’Sp = 1, if the train type p was assigned to service s, output of the RS model.

Variables
0,’( =1, if train t starts its route at station k.

X! =1,if train t covers train trip r, = 0 otherwise

yL’m =1, if train t uses the maintenance facilities m at depot k, = 0 otherwise

g,t( =1, if train t is stored at depot k, = 0 otherwise.

d/’(,m > (): time travelled by train t at node k since the last maintenance session of type m was performed.
[ ,» = 0: length travelled by train t at node k since the last maintenance session of type m was performed.

k,
Objective function:

t .t t t t
1€l rER, [ meM 1

The first term is the operative cost, the second the wait cost and the third the maintenance cost.

Trip coverage constraints:

EExﬁ=ﬁf,VSES,VpEP (u) (1)

ek T,

, where [usp is the Lagrange multiplier of the constraints (1). Every service s is covered by a train type t.

Train flow conservation constraints

o, + E xXi+g, + E View = 2 X +g, + E Vim> VKEK tET )
R et Rt el

Trains originating in k plus trains arriving at node k plus trains waiting from node k-1 plus trains in maintenance
from node k-1 must be equal to trains departing from node k plus trains waiting at k plus trains in maintenance at k.

Maintenance windows:

d;, €lid, ud, |, NkEK Nt ET NmEM (3)
I €[, ul, | VkEK NtET,YmEM 4)

The constraints (3) assure the travel time maintenance limitation; meanwhile the constraints (4) assure the length
maintenance limitation, for each train t, depot k and maintenance type m, by the accumulated travelling time and
distance in maintenance time windows.

Depot capacity constraints
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Ey’t”" =cp, .. VkEK,NmEM (nz0) (5)

t
, where 77, is the Lagrange multiplier of the constraints (5). Trains in maintenance inventories must not exceed

maximum capacity at each depot k of maintenance type m.
4. Column generation

The assignment of train types and compositions to the trips is known as output of the RS plan. The MR model has
been formulated as a set partitioning model with side maintenance constraints. The MR can be solved as an
independent problem for each train type if the train coverage and depot capacity constraints are relaxed. This
approach, also called Branch-and-Price (B&P), has found wide application in solving vehicle routing and crew
scheduling problems. In order to be successful, we need to generate efficiently columns and also to devise an
efficient branching scheme: this is an ongoing work.

Column Generation (CQG) is based on the interchange of prices (Lagrange multipliers) between a relaxed master
model with the difficult constraints and the primal solutions of a linear model with the easy constraints of the
original model (Barnhart et al., 1998). The CG approach decomposes the MR model in a linear submodel (SM) with
the network structure and the maintenance constraints (2-4) and a relaxed master model (RMM) defined by the
capacity constraints, the train trip coverage constraints (1, 5) and the convex hull of a subset of the extreme points
generated by the SM, assuming that the SM feasible set is bounded and nonempty. The RMM elaborates the dual
variables (prices) of the difficult constraints, to be used by the SM to generate new extreme points. The CG
converges to an integer relaxed MR optimal solution in a finite number of iterations with absence of degeneracy and
assuming feasibility and some concrete assumptions (Marin, 1995; Garcia et al., 2003 and 2011).

The SM with the train conservation and maintenance constraints is separable by trains and it is solved considering
the updated reduced cost. This model generates feasible paths considering the maintenance constraints as resource
constraints in a shortest path algorithm. Feasible train paths with negative reduced costs are returned to the RMM as
new columns. The convex hull of the active columns generated is included in the RMM objective function with the
set partitioning and maintenance depot capacity constraints.

In the MR model only maintenance of low level constraints have been considered. The maintenance depots have
a given capacity that must be kept, these maintenance capacity limitations are considered in the MR. The train
rolling stock together with the maintenance inventory of the trains at the start of the planning horizon determines the
number of trains at each depot station. Concretely, applying CG to the MR model, we can easily identify one block
of coupling constraints (1 and 5), and |T| independent blocks of constraints (corresponding with constraints 2-4).
Therefore, we can reformulate our problem for CG dividing it into a RMM and |T| submodels.

If we solve the train routing problem for a strategic horizon, we can choose how far the optimization model will
look ahead during the process. If we have the RS information on all the trains for a week, the actual train routing
will be consider for one first week days. To obtain a complete week train routing will take several iterations, where
the solutions of the first days are the input for the next week days. The SM is mentioned as a pricing model where
try to find a sequence of trains satisfying the maintenance constraints considering the number of hours and
kilometers permitted between maintenance checks, and price out the negative reduced costs. The pricing is solved
by a Resource-constrained Shortest Path Algorithm (SPA) considering the reduced cost of each arc, so the length of
each arc correspond to the reduced cost of the train sequence represents. Only trains that not violate some rules may
be considered. The SPA algorithm used is an ad hoc Bellman-Ford-Moore (Ford and Fulkerson, 1962) multilevel for
arbitrary arc weights and levels with maintenance time and distance accumulates.

The reduced cost of each route and train for each iteration 1 is defined as follow:
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ol =(c - 2; B, + ;K ;M (MG =)V + ;K W, g, 0F

, where § r"”’ ,0 r" are arc-route indicators, equallif node k or maintenance m are contained in route r, and 0, otherwise.

The SM(I) optimal solution for each train t at iteration I, and the optimal SM(]) objective function at iteration | are:
t,l t,l t,l opt,| 1 A Jd A
{xr ’gk ’yk,m} S/\IYIr =fSM (X: ’g/:t ’yl'c,m)

The SM (1) solution is defined as a sequence of operations (train trips, waits and maintenance checks) performed by
a train from their route origin to destination. These paths are fully determined by optimal variables. The SM(I)
optimal objective function is a Lower Bound (LB) at each iteration of MR.

The RMM is defined by the cover and capacity constraints and the convex hull of the extreme points J(1)
generated and active at iteration 1. The RMM objective function is a convex combination of the extreme points:

S (@) = min ; a,;@c:xfwgkwkgzu ;;chz,my,i:{n );a,,- =0,V €J(); ; a,=1> joint to the convex
JeI i Lz J&I )

hull of the cover assignment and station capacity constraints define the RMM at iteration 1. The optimal solution of
RMM(]) is ai_ and the optimal objective function f, IéM » (aj )is an MR upper bound at iteration 1, UB'.

Starting with an initial subset of extreme points given by the number of the cover and capacity constraints plus
one, the CG algorithm determines a set of optimal RMM dual values. These dual values are used to price out; that is,
to compute reduced costs of “nonbasic” variables. In a minimization, a SM solution with a negative reduced cost
may improve the solution and therefore should be added to the RMM. Adding and removing columns to the
constraint matrix is referred to as column generation.

5. Computational tests

Our preliminary experiments are based on the line C5 drawn from RENFE's regional network in Madrid, Spain.
Line C5 has 23 stations and 4 depot stations. We have considered as data the results of the RS model proposed by
Cadarso and Marin (2010, 2011). The RS output contains the composition assigned to commercial services. It will
be considered as the input of our computational tests with the MR. In Line C5 only one train type is used, and the
trains can be configured in simple (one convoy) or double (two convoys) compositions.

The aim of the following tests is to measure the model’s performance in different maintenance scenarios and
combinations of planning periods and planning horizons. We have also tested the model for solving a real 5 day
scenario. All the following results were obtained using GAMS 23.9.5/CPLEX 12.4.1, in a computer equipped with
Windows 8.1 64-bit version, an Intel Core i5 2500k running at a clock frequency of 4.5 GHz and 8 GB of RAM.
Also, all tests were solved to optimality (0% GAP) using CPLEX’s MIP solver. Performance will be compared
using total CPU time spent in the Branch & Bound algorithm, along with the number of nodes and the total number
of linear programming iterations used in all nodes.

The initial tests were aimed to check the solution quality and the performance in a small, controlled,
environment. We must take into account that there are over 300 train trips between depots per day in line C5, so
maintenance durations and limits were scaled down (see maintenance durations and limits at the table below). With
this scaling, maintenance constraints were allowed have an impact in planning periods of just a few hours. Also,
given this short planning periods used in the initial testing, we only included one maintenance limit, DI:
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Table 1 Initial performance tests

Model Size DI

Model Size . TDI limit DDI limit Number of LP CPU time
(trips) (rows, duration (min) (km) nodes iterations (s)
columns) (min)
10 877, 1023 10 60 48 0 451 0.243
20 1476,2263 20 120 96 0 1074 0.248
50 3118,4898 50 300 240 0 2259 0.868

The initial tests in small scale networks offered very acceptable performance, as we can see in Table 1. In Table 2
we can see a solution sample for 3 trains extracted from the 10- trip model:

Table 2 Solution sample for a 10-trip model

Train Operation Sequence
7 Trip 1 at 5:00 from Depot 3 -> Storage at 5:54 in Depot 2 -> DI +Storage from 6:14 to 6:31 in Depot 2
8 Storage at 5:07 in Depot 2-> Trip 4 at 5:26 from Depot 2-> DI +Storage from 6:25 to 6:45 in Depot 3
19 Storage at 5:00 in Depot 3 -> Trip 3 at 5:15 from Depot 3-> DI +Storage from 6:14 to 6:31 in Depot 2

An analysis on how parameter variation affects the optimal solution and the required computational time was also
performed on a /-day model. The number of train trips for one day is usually around 300 in line C5 In this model the
number of rows and columns ascends to 70291 and 78961, respectively. As expected, modifying trip coverage,
storage and maintenance costs (cﬁ Wi, mc]t(m) resulted in enforcing the least costly action in the solution, with no
measurable change in computational complexity. However, as seen in Table 3, some interesting results arose from
modifying maintenance conditions:

Table 3 Performance variability due to maintenance conditions

DI duration TDI limit DDI limit Number of LP CPU time
(min) (min) (km) nodes iterations (s)
300 1440 1152 2 23784 89.306
120 1440 1152 2 26384 143.037
100 800 640 11 43870 183.495

Decreasing maintenance duration and limits requires additional CPU time to solve an otherwise identical
problem. This is due to the fact that shorter maintenance checks can be scheduled easier at different times during the
day and therefore increase the number of possible maintenance checks. In the case of decreasing maintenance limits,
more checks are required to satisfy the maintenance restrictions, so finding a suitable solution takes more time. The
inclusion of a maintenance window, i.e. a time frame that only allows maintenance checks to be performed within it.

In the following test, we proceeded to solve a problem based on a real 5 day planning for line C5, extending from
Monday to Friday. In this planning scheme, the total number of trips ascends to 1505, while rows and columns are
in the 300000-400000 range for a problem of this size. We included again two maintenance restrictions, representing
daily and monthly inspections. The maintenance limits we used were 24 hours of travelled time and 1152 km of
travelled distance for the DI, and 168 hours and 8064 km for the MI. The durations of the maintenance inspections
were 120 and 300 minutes, respectively.

In terms of planning horizon and period, this 5-day model was solved considering two additional days in a
extended planning horizon scheme. We considered an initial maintenance travelled time and length for all available
trains, represented by a uniform random variable, ranging from 0 to the maximum time limit for each maintenance
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type. As far as objective function parameters go, we have considered as penalized the storage and the maintenance

performance: W, ; 3Ci , mc,’( m Sci, in order to enforce the utilization of trains instead of having them stored or

being checked frequently. We include a comparison of CPU Time and LP iterations needed to solve the same
routing problem, excluding maintenance restrictions:

Table 4 Main test results. Comparison non-maintenance versus maintenance restricted MR problem

Maintenance restricted O.F Value (%) Required Train Number of CPU Time LP Iterations
Units nodes (s)
Yes 100 28 31 996.42 140987
No 88.25 24 22 49.68 51884

As we can clearly appreciate in Table 4, the inclusion of maintenance restrictions carries the expected cost and
required train units increase, along with a very large increase in the required computing time and LP iterations
required solving the MR problem. In the context of formulating a routing model suitable for integrated approach, the
decomposition method will likely allow for better solution times, thus enabling the model to solve larger problems.

The following testing environment consisted of a /00-movement, approximately 6-hour planning period (10000-
12000 rows/columns), which included the rush hour (8-9 am). The problem was initially solved considering a
coinciding planning period and horizon of 6 hours, then extending the planning horizon to 12 hours and, finally, to
the rest of the day for a total of 18 working hours. The idea behind this test was to measure the effect that the
planning horizon has on solution optimality for rapid transit networks.

Table 5 Main test results. Costs vs. planning horizon variations

Planning horizon O.F Value (%) Number of CPU Time (s) LP Iterations CPU Time (s)
nodes
Coinciding with period 100 0 8.886 1799 8.886
+6 hours (+100% trips) 95 2 64.312 7568 64.312
+12 hours (+200% trips) 92 5 211.892 15759 211.892

We can see that there is indeed an associated cost improvement with the inclusion of an extended horizon period,
but it comes at the cost of a much greater additional computational time. We can expect diminished returns when
extending the horizon period even further, as a 100% extension yields a 5% cost improvement and a 200% extension
yields an 8% cost improvement. Finally, we present preliminary tests for the column generation algorithm
compared with Branch and Bound. In these tests, we iteratively solve a relaxed version of the master model and
generate columns that improve the solution until it cannot longer be improved. As seen in table 6, CG provides
better results when the model approaches the 300 movement mark, so we expect a great improvement in computing
times from a Branch and Price decomposition method in our future integrated model, as the maintenance routing
component is by far the most costly:

Table 6 Column generation tests. Comparison with B&B

Model Size  Number of LP B&B CPU CG CG CPU
(trips) nodes iterations time (s) iterations time (s)
10 0 500 0.266 6 0.96
20 0 958 0.389 6 0.87
50 0 2347 1.365 12 2.50
300 4 15759 211,892 150 103.50*

*We must mention that the solution obtained for the 300 trip model is fractional. This is expected when solving
large problems with Column Generation algorithms. A branching scheme to obtain integer solutions will be
implemented in our future integrated model.
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6. Conclusions and extensions

In this paper, we present a mixed integer linear programming model for the maintenance routing problem. We
assume that the rolling stock assignment is fixed and known. We consider two types of maintenance constraints:
time and length constraints. The maintenance constraints may be adapted to solve different planning horizons. Here
the model is adapted for a maintenance horizon of days or weeks, but with small changes the formulation could be
adapted to study larger maintenance requirements. The model considers the maintenance depot capacities and other
maintenance considerations, e.g. the maintenance procedures of highest levels set zero the lower maintenance levels.

We solve the maintenance routing using Branch and Bound and Column Generation, where we consider a relaxed
master model composed of train cover and workshop maintenance capacity constraints, joint with the convex hull of
the active columns generated. The columns are generated in a sub-model, which receive the prices of the Relaxed
Master Model. The sub-model is separable by train units and solved by resource-constrained shortest path algorithm.

Preliminary computational experiments drawn from RENFE are presented. The model is solved within
reasonable computational times. The results are compared using the mentioned methodologies under different test
cases. Other experiments consist in proving the maintenance parameters and planning horizons. We are planning to
extend the model in the near future by considering the integration of the rolling stock and maintenance routing
problems. Other extensions are also being considered, such as recovery problems.
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