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Abstract—This paper studies the disruption management prob-
lem of rapid transit rail networks. We consider an integrated
model for the recovery of the timetable and the rolling stock
schedules. We propose a new approach to deal with large-scale dis-
ruptions: we limit the number of simultaneous schedule changes as
much as possible, and we control the length of the recovery period,
in addition to the traditional objective criteria such as service
quality and operational costs. Our new criteria express two goals:
the recovery schedules can easily be implemented in practice, and
the operations quickly return to the originally planned schedules
after the recovery period. We report our computational tests on
realistic problem instances of the Spanish rail operator RENFE
and demonstrate the potential of this approach by solving different
variants of the proposed model.

Index Terms—Passengers, railways, recovery, rolling stock,
schedule.

I. INTRODUCTION

ESIGNING, planning and operating transport systems,
such as railways or public transport systems, is an area
where operations research can help substantially.

Railway transportation starts with an extensive planning
process involving several combinatorial optimization problems
such as line planning, timetabling and rolling stock scheduling.

During the daily operations of a dense passenger railway
network, incidents may cause the traffic to deviate from the
planned operations. Small-scale incidents, such as a delay of
a train by a few minutes, do not require any major intervention
from the operator, the delays gradually disappear thanks to the
slack of the timetable. In this paper we focus on large-scale
incidents, also called disruptions, where significant and non-
trivial adjustment of the timetable and the rolling stock sched-
ules is inevitable. In a typical case, a line segment becomes
unavailable for a few hours due to causes such as weather
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conditions or mechanical failures. We admit that the distinction
between small-scale and large scale incidents is practice driven,
it cannot be easily formalized.

In case of a disruption, the operator needs first to compute a
new timetable. Then, the rolling stock schedules are modified
such that the rolling stock balance between the stations is
restored by the end of the day [2]. To produce recovery plans
is a complex task since the re-planning has to be done in real-
time [15].

Regardless of the cause of a disruption, it has an impact on
the railway system. The impact is generally in the form of a
change in the system settings, a change in resource availability,
or both.

The disruption management process has several objectives.
The first goal is to provide the best possible service quality.
The second goal aims at easing the rescheduling process by
minimizing the differences between the original plan and the
recovery plan. Third, the operators often want to quickly return
to the original plan once the disruption is over.

This paper studies the integrated timetabling and rolling
stock re-scheduling problem in the disruption management of
dense passenger railway networks and places a special empha-
sis on the latter two objectives while providing a high quality
service. Any deviation from the undisrupted timetable or from
the undisrupted rolling stock assignment is called a schedule
change.

We measure the quality of a recovery plan by two metrics:
the smoothness and the controllability. Here smoothness refers
to the number of simultaneous schedule changes; a smoother
recovery plan has fewer schedule changes. Indeed, less smooth
plans are often impractical for the operator. Controllability
refers to the length of the time period after which the schedules
have fully returned to the undisrupted schedule. We call this pe-
riod the recovery period. The main motivation of controllability
is that operators often want to recover before a certain point in
time, e.g., before the peak hours.

This paper is organized as follows. Section II provides a
literature overview and summarizes the contribution of this
paper. Section III describes the problem in detail. Section IV
is devoted to the mathematical model. In Section V we present
our computational experiments. We draw some conclusions in
Section VI

II. STATE OF ART

Reference [14] deals with disruption management in passen-
ger railway transportation. The authors describe the disruption
management process and the roles of the different actors in-
volved in it.
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During rail operations, unforeseen events may cause
timetable perturbations, which ask for the capability of traffic
management systems to reschedule trains and to restore the
timetable feasibility ([9], [10]). The dispatchers try to use
all available rolling stock to transport as many passengers as
possible in the right direction. As a result, the rolling stock
units will not finish their daily duties at the location where they
were planned to. Reference [2] states that in order to prevent
expensive deadheading trips, it is attractive to modify the
rolling stock schedules such that the rolling stock is balanced
before the night. Reference [19] develops a novel approach in
order to reschedule the railway system reducing the current
supply along one transportation line in order to reinforce the
service of another line (managed by the same operator), which
has suffered a disruption. Reference [3] describes a two-stage
optimization model for determining robust rolling stock cir-
culations for passenger trains. Here robustness means that the
rolling stock circulations can better deal with large disruptions
of the railway system. They measure lack of rolling stock
capacity based on a given anticipated passenger demand.

All the previous research address the railway re-scheduling
problems in a sequential manner. However, sequential solv-
ing approach has many drawbacks ([1]). Although practical,
the sequential nature of the subproblems leads to sub-optimal
plans, with potentially significant economic losses. The airline
industry has been a leader in the development of integrated
approaches for scheduling and recovering from disruptions.
There has been research in the integration of problems such
as flight schedule and fleet assignment ([6], [17]), fleet
assignment and aircraft routing ([20]), aircraft routing and
crew scheduling ([18]), and scheduling and competitive effects
([8], [21]). All these problems were first developed and solved
in a sequential fashion. However, integration has outperformed
sequential approaches. Reference [22] is among the first ones
to deal with the integration of railway timetabling and re-
source scheduling in disruption management. References [5]
and [7] also demonstrate that integrated models provide better
solutions for problems within the railway industry. Reference
[13] presents a novel weighted train delay based on demand
approach for rescheduling railway systems. Reference [16]
describes a real-time rolling stock rescheduling model for dis-
ruption management which takes dynamic passenger flows into
account. The authors describe a heuristic for solving the model
with dynamic passenger flows and show that the average delay
of the passengers can be reduced significantly.

Rescheduling of airline operations leads to problems compa-
rable to those in railway application. References [11] and [12]
combine vehicle scheduling with a dynamic passenger flows.
The main difference between the airline and railway settings is
that airline passengers are fully controlled by the operator. Our
railway application, on the other hand, features passengers who
can select their paths through the network.

A. Contributions

In this paper we present a new approach to deal with large-
scale disruptions in rapid transit networks. A large-scale disrup-
tion usually requires a large number of simultaneous schedule

changes in order to recover to the original planning once the
disruption has ended. However, it is always difficult to execute
a large number of schedule changes at the same time . Another
challenge is to control the length of the recovery period: once
the disruption has ended the operator wants to recover as fast as
possible to the original planning.

The proposed model, which is based on the paper published
by [7], is focused on the real-time optimization of train re-
scheduling (i.e., timetable and rolling stock) and its interactions
with the passenger demand.

The main difference between the work in this paper and
all the research presented in the literature review is that we
explicitly control the recovery length and the number of si-
multaneous schedule changes to be implemented during the
recovery process while recovering the timetable, rolling stock
and passenger demand altogether.

The main contributions of this paper are summarized as
follows.

* We address the disruption management problem of rail-
way timetable and rolling stock rescheduling with the
main focus on providing pragmatic plans for the operator
but also accounting for the passenger demand.

e We control the length of the recovery period and limit the
number of the simultaneous schedule changes during the
recovery from disruptions.

* We carry out computational experiments on realistic study
cases of the Spanish rail operator RENFE.

* We demonstrate the potential of this novel approach by
solving different variants of the proposed model and
showing smoothness and controllability can be achieved
at a low cost to both the operator and the passenger
demand.

* We perform a multiobjective optimization study in or-
der to study the trade-offs between smoothness and
controllability.

We note that we leave certain aspects out of account: our
approach allows limited timetable changes, and we model pas-
senger behavior in a heuristic way. We discuss these limitations
in Section II-C and E.

III. PROBLEM DESCRIPTION

In this section, the recovery problem in rapid transit networks
is described. First, disruption characteristics are presented.
Then, the railway infrastructure is introduced. Next, we de-
scribe train services and shunting in rapid transit networks.
Finally, we explain how we treat the passenger demand in case
of disturbances.

A. Disruption

The railway network is composed of stations and arcs; the
arcs consist of one or two pairs of rails; the latter case allows
simultaneous traffic in both directions.

In this paper, we focus on distuptions that have signifi-
cant negative disruptive impacts in the transportation system.
We make special emphasis on the common type of disrup-
tions when a line segment between two neighboring stations



becomes fully or partially blocked for a certain time period.
Both blockages may have tremendous negative impacts on the
system because many services will have to be canceled. But
the partial blockage is particularly interesting in that two-way
traffic may be scheduled on a single pair of rails. A completely
new train schedule is needed because the planned operations are
infeasible in the new scenario. However, these negative impacts
will not only be limited to the operator but they will also cause
passenger demand deviations because some passengers will not
be able to realize their travel as it was planned.

Whenever a disruption occurs, the operator will have to
recover from it by applying schedule changes such as train
delays, train cancellations, and changes of the rolling stock
schedules. These types of operations are always difficult to be
operated and they are avoided if possible; moreover, the more
schedule changes the more human resources are needed.

The two main objectives are the controllability and the
smoothness of the recovery plan. These criteria are clearly
contradicting: smooth plans need to divide the necessary sched-
ule changes over a longer time period. We are interested in
the trade-off between controllability and smoothness. At the
same time, we do not want the controllability and smoothness
considerations to compromise the operational costs (e.g., the
carriage kilometers) and the service quality for passengers.

B. Railway Infrastructure

The railway network consists of tracks and stations. There
exist two different types of stations: passenger and depot sta-
tions. The former are stations where passengers get in/off the
trains. The latter are the locations where trains are parked or
shunted.

We model the infrastructure as a graph with nodes, and with
directed arcs. The existing infrastructure between stations is
represented by arcs. Between two stations, two different arcs
exist, one for each direction of movement,

Rapid transit railway networks usually compete with other
transportation modes for passengers (i.e., metro, buses, taxi,
etc.). Therefore, we will consider the existence of the Metro
network. This Metro network has several stations in common
with the rapid transit railway network. However, they are inde-
pendent, they use different infrastructure and they are operated
by different operators. Passengers may find an attractive path
using both, the railway and Metro network.

The planning time is discretized into time periods, ¢ € T'.
Due to the high train frequencies, the duration of one time
period is set to one minute. The existing physical network is
replicated once for each time period existing in the planning
period (e.g., 20 hours).

C. Timetable

Timetable information (i.e., departure times and frequencies)
is fixed and publicly available for non-disrupted situations.
Hence, passengers know when the trains depart and plan their
travel accordingly.

Departure times are usually very inflexible because the time
slots are negotiated with the infrastructure manager since it may

be shared among different operators and lines. However, for
disrupted situations there is some freedom to schedule trains
with different timetables.

In this research, the timetable consists of three types of train
services: the planned train services, emergency services and
empty services. Planned train services are the trains scheduled
for a normal (undisrupted) situation and they may be canceled
due to constraints imposed by some disruption. Emergency
services are inserted to the schedule during the disruption in
order to alleviate its negative impacts on passengers. Due to the
high frequencies, an emergency service may (and mostly does)
require the cancellation of a planned service, taking over its
timetable slot. Empty services can help satisfy both capacity and
rolling stock material availability in depot stations (they do not
carry passengers). For every infrastructure element, headway
times must be maintained between all the train services which
come through.

Our model assumes that the departure and arrival times of a
planned service cannot be changed whenever it is not cancelled.
This limitation may exclude solutions that would be possible
in practice; we need it due to the difficulties that arise when
simultaneously handling variable departure and arrival times
and the complex rolling stock decisions. We are not aware of
any approach that could solve our real-world problem subject to
variable event times in reasonable time. In our case study, the
effects of this limitation are mitigated by the fact that, during
the rush hours, the rapid transport network we study operates
close to its maximum capacity.

D. Rolling Stock and Shunting

There are self-propelled train units of type m € M; they all
have a driver seat at both ends. Train units can be attached
to each other to form trains compositions. A composition c €
C of train units is a sequence of elements of M (note that,
due to technical limitations, not all sequences of M are valid
compositions). Each train unit type has a given capacity; this
value includes both seated and standing passengers.

Shunting refers to train operations inside a station. In this
paper, shunting is limited to composition changes where the
length of an inbound composition is adjusted before its subse-
quent departure as an outbound train. The adjustments are either
disaggregations of a composition into single, or aggregations of
a composition from single units. Composition changes, which
are only performed in depot stations, enable the operator to have
smaller fleet sizes. Composition changes complicate network
operation because their processing times are on the same order
as the service frequency times. Further complications arise from
the necessity of human resources and from the possibility of a
mechanical failure during the process. In our case, the operator
wishes to restrict the number of composition changes initiated
each period to at most one (per depot).

E. Passengers

Once a disruption has occurred, the network topology
changes and passengers will have to use different paths to
reach their destination. First, they will have to find a path in



the modified network, then wait for a train service and finally
enter the train if enough capacity is available. We impose a
technical assumption that each passenger has a deadline: the
last time instant when he is willing to board a train. If he
cannot find a seat in any train till his deadline, he is supposed
to leave the system, and seek for an alternative mode of
transport.

The demand is defined by an origin, a destination and a
departure time, that is a passenger group w € W. The size
of the passenger group is denoted by g,,. The network con-
tains different paths p € P through which the demand will
be realized. Each passenger group w € W will be able to
choose a path p € P, where P, C P denotes the set of paths
attending w € W. Each path is characterized by its origin,
destination and its expected travel time. Due to the fact that
several paths with identical origin and destination may exist,
passenger groups are assumed to be splittable. Moreover, due
to the nature of the transportation system under study, where
different modes of transportation exist, different paths coming
through different modes of transportation are also taken into
account.

Passengers make their trip decisions based on both the
timetable and the rolling stock schedule; in addition, rolling
stock scheduling needs information about the demand for
each trip, which is not available for a disrupted situation.
Reference [7] proposes a way to anticipate passenger demand
before computing the resource schedules; the anticipated de-
mand is used to guide an integrated optimization model for
the timetabling and rolling stock scheduling. This approach is
heuristic in that it ignores the dynamic interaction between de-
mand and supplied capacity. This heuristic approach employs a
multinomial logit model to represent the passengers’ behavior,
where the utility of a path is a function of the attributes of the
path itself and of the decision-maker.

We will consider the passengers’ flows in arcs only, instead of
passengers’ flows in paths. The per-path demand is transformed
into per-arc demand as follows. Let a be an arc in the network,
and let 7 be a time period in which the demand is to be
measured. Then, the per-arc demand is computed by pf, - =
Swew Spep, 0P P(p | w) - gu,  where 02 € {0,1}
expresses whether or not passenger group w using path p is
coming through arc a during time period 7 and P(p | w) is the
probability of choosing a given itinerary p among the set P,
by the demand w (see [7]). That is, we assume that each group
splits according to the probabilities, and we sum up these split
passenger groups on each arc. The values pf, - express the
demand for the integrated smooth and controlled re-scheduling
model.

The proposed model for the passenger demand is valid as
long as each passenger is accommodated in the trains. However,
if a passenger cannot take a train (due to insufficient capacity),
his/her presence as demand on later trips becomes meaningless.
Our optimization model cannot cope with this issue, but [7]
justifies this heuristic demand treatment by using an iterative
framework where the demand of the next iteration is computed
from the optimized timetable of the current iteration. The
authors demonstrate that the heuristic approach captures prop-
erly the overwhelming majority of the passengers.

IV. INTEGRATED SMOOTH AND CONTROLLED
RE-SCHEDULING MODEL

The Integrated Smooth and Controlled Re-Scheduling Model
(ISCREM) aims at computing the timetable and the rolling
stock schedule for a disrupted rapid transit network. The
ISCREM has its foundations on the models already described
in [5] and [7]. These models are in turn extensions of the model
described by [4].

The novelty of the current paper lies in Section IV-C2
and C3:

e varying penalties for a schedule change based on the
time the change is initiated (see the objective function in
Section IV-C4);

« the length of the recovery period is controlled (controlled
recovery plan) (see Section IV-C2);

e and the number of simultaneous schedule changes is
limited (smooth recovery plan) (see Section IV-C3).

The following sections give an overview of the sets and of
the decision variables employed in the ISCREM.

A, Sets

» S is the set of stations and SC C S is the set of depot
stations.

» A is the set of arcs.

» L is the set of train services; LF C L is the set of planned
train services; L? C L is the set of empty train services;
and L° C L is the set of emergency train services.

e T'is the set of time intervals and 7D, C T'is the set of
time intervals through which the demand is counted in
each arc a.

* M is the train unit type set.

» (' is the set of compositions and C,, is the set of compo-
sitions made of train units type m.

» L, is the set of train services £ coming through station
s and during the set of time periods [¢, ¢ + k], where h is
the headway time.

* Lq - is the set of train services £ coming through arc a
during time period 7.

B. Variables

* 24 € {0,1} determines whether composition ¢ € C' is
scheduled for service £ € L. Note that z¢ . € LP U L® are
the only variables that link the timetabling and passenger-
related constraints to the rolling stock constraints.

* o}, € Z" represents the number of schedule changes that
started during time period ¢’ and that are being performed
during time period ¢.

o I'; € {0, 1} controls the length of the recovery period. It
takes value 1 if the recovery period is active during time
period ; 0, otherwise. The recovery period is defined to be
active until the latest time period after which no schedule
change starts.

* yo € {0,1} determines whether service ¢¢& LP is
canceled.



* ys, €Z" gives the number of compositions ¢ € C at
station s € S att € T period.

 dp, € Z" is the number of denied passengers due to
insufficient capacity in each arc a,7 defined for a €
A,TeTD,.

zscjtc/ € {0, 1} represents whether a composition change
starts during ¢ € T' in depot s € SC' from composition
c e C to composition ¢’ € C. Recall that at most one
composition change can start in each time period.

For the sake of clarity we declared all variables to be integral.
We note that the nature of the constraints allows us to relax the
integrality of o}, dp, - and Ys i

C. Model Formulation

Given the above definitions, the model that is used for
rescheduling the timetable and the rolling stock for a disrupted
rapid transit network can be described as follows:

min ZOF(:E7 Z Y, dp7 U7F) - C(£E7 2, Y, dp) + 7”(0'7 F) (1)

subject to (2)—(10)
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The objective function (1) is explained in detail in
Section IV-C4 below. Constraints (2) enforce the headway re-
quirements. The constraints state that, during each time interval
of length A (the headway time), each station can accommodate

at most one departing service at non-zero amount of rolling
stock. Constraints (3) link the allocated capacity to the number
of passengers p f, ~. The constraints say that for each arca € A
and each time interval 7 € T'D,,, the combined capacity of the
trains on the arc during the time interval is enough to accommo-
date the passenger demand minus the denied passengers. Here
pfa,r is the passenger demand in each arc a, 7 obtained from
the multinomial logit model, while cap, is the capacity in com-
position c. Constraints (4) state that each planned service is ei-
ther canceled or it gets exactly one composition. Constraints (5)
express that emergency and empty services get at most one
composition. Composition conservation constraints (6) ensure
the train units’ flow balance; the model does not decide the
sequence of services that are to be carried out by a train unit,
the non-negative inventories make sure that such sequences
can indeed be created. The schedule is given by cy s ;, which
takes the value 1, —1 or O, if train service ¢ arrives, leaves or
stays in station s at period ¢, respectively. When performing a
(dis)aggregation from compositions ¢ to compositions ¢, 'yéc/

is the number of needed compositions ¢, and ’ch,c/ is the number
of produced compositions ¢’. The shunting time ad indicates
the time needed to perform an aggregation or disaggregation.
Fleet capacity constraints (7) ensure that the number of train
units used at time ¢ € T is limited by the size of the fleet
Xm and depot capacity constraints (8) ensure that the total
capacity cap, ; is not exceeded. tu, is the number of train units
in composition c. Each train service ¢ time duration is given
by Be:, which takes value 1, if train service £ is rolling at
period ¢; 0, otherwise. s 4 ¢ gives similar information about
performance time of composition changes, which started at s
during ¢. Constraints (9) and (10) denote that the inventory dur-
ing the initial ¢; and final ¢ period must be equal to the sched-
uled one during those time periods (y; o and y; ., ), respectively.

1) Disruption Constraints: In this section we add constraints
to the basic rolling stock rescheduling model in order to express
the limitations of the disruption. We focus on the common type
of disruptions when a line segment between two neighboring
stations becomes fully or partially blocked for a certain time
period. Due to this disruption’s nature we need the following
additional variables:

* 0,0, € {0, 1} indicate which of the two riding directions
is opened in the line segment between two neighboring
stations in period t € I'T. If 5, =1 or 6; = 1 then one
of the riding directions is opened during ¢ € I'T and the
opposite direction is closed. I'T C T is the set of time
periods during which the disruption is active

me <n VYaelINO,telTl,
ceC

(e Ly digs, () <t <atg,, (£) (11)
> @ <6, VaelSO,tell,
ceC

(€ Ly dlgs, () <t < algs, (0) (12)

Constraints (11) and (12) make sure that services can use the
disrupted arc only at those time periods when the arc is open



for their riding direction. INO, ISO C A are the sets of arcs
affected by the disruption. The first set contains the arcs with a
riding direction which is the opposite one to the riding direction
in the second set in an undisturbed situation. L, C L is the set
of train services that use arc a € A. at,s_ (£) is the arrival time
of service ¢ to the arrival station as, of arc a and dty,_ (¢) is
the departure time of service ¢ from the departure station ds,, of
arc a. Constraints (13) express the infrastructure limitation to
one direction at a time (ain; = 1) or to no traffic at all (ain; =
0). The value ain; = 2 indicates no infrastructure limitation in
time period ¢.

2) Recovery Period Constraints: In order to control the
recovery period length the following constraints are introduced:

iy 21y vte RT (14)
wep—dpo <y VeLceCteDI,nRT (15
Gop—w0o <y VeLceCteDI,nRT  (16)
20f — 227 <y VseSC,e,d eCite RT  (17)
208 200 <y VseSCed €Cite RT (18)
Yor, —Yop, <MLy, VseSCcel (19)
L,=0 Vvté¢ RIT. (20)

Constraints (14) ensure that the recovery period is active during
time period ¢ if and only if it is active during the immediately
predecessor time period ¢ — 1; here, RT is the set of time
periods that are allowed by the operator to be within the
recovery period. Recall that the recovery period is considered
active until the latest time period when a schedule change starts.
Constraints (15)—(18) ensure that schedule changes related to
a train and a composition change can occur if the recovery
period is active; here, DT, represents the departure time of
train service €. & ., szf and ¢, indicate the rolling stock
assignment, the composftion changes and the train inventory on
a normal day. In essence, these four constraints say that, with
a slight abuse of notation, if [' = 0 then = z and z = 2 hold.
Constraints (19) feature a sufficiently large value M., and they
state that if I corresponding to the end of the day is zero then
each station’s end-of-day inventory is at most the originally
planned inventory value. Observe that >0,y = >0 Us ;-
Thus constraints (19) say that I';, = 0 implies y, =95,
for each composition set ¢ and for each station s. Finally,
constraints (20) ensure that the recovery period is not active
for all the time periods not contained in RT'.

3) Schedule Changes Constraints: Finally, the amount of
schedule changes during the recovery period is limited by the
following constraints:

ol = Z Zﬁl,t |ze,c — Ze,cl

£el, ccC

> e |20 — 200
seSC c,c’eC

+ 33T fue, -0, VLt eRTt>t Q1)
seSC ceC
Z ol, <v VteRT. (22)

t'eRT:t>t’

Constraints (21) count the number of schedule changes
which began during time period ¢’ and are being performed
during time period ¢. These constraints count schedule changes
related to train, emergency and empty services, composition
changes and train inventory at depot stations; Ly is the subset
of train services which depart at ¢ and (5{ is 1if ¢ is equal to
t'. Constraints (22) limit the number of schedule changes to be
operated during every time period ¢ to a maximum value v.

All the terms on the right hand side of constraints (21) are
non-linear; however, the binary character of the variables x¢ .
and zgf// admits a straightforward linearization; the last term
requires a slightly more complex linearization

t
ol = E E Bi,Te.c
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where €; , are non-negative variables. Note that whenever ol
has a positive coefficient in the objective, any optimal solution
satisfies |y5, — 95 | = €5 .

4) Objective Function: The linear objective function (1) of
the ISCREM consists of two parts: the operator and passenger
related costs ¢z, 2, vy, dp) and the recovery schedule quality re-
lated costs (o, ['). The operator and passenger related costs pe-
nalize the following quantities. (i) Operating costs of planned,
empty and emergency services; here oc, is the operating cost
per kilometer and kmy is the distance in kilometers of service £.
(ii) Composition changes; here ¥, ; is the cost of a composition
change at depot s in time period ¢. (iii) Cancellation of services;
here canc, is the cancellation cost for service £. (iv) Denied
passengers; here dpc, - is the cost per denied passenger due to
insufficient capacity in each arc a during time period 7. That is

clz, z,y, dp) :ZZOCCkngE@c‘FZ Z Z ﬁs,tz;f/

bel ceC seSC teT ¢, /e’
+ § canceye + E E dpcaﬂ'dpaﬂ" (26)
£cLp acATeT

The recovery schedule quality related costs penalize the follow-
ing quantities. (i) Deviation from the planned schedule; every
schedule change has an associated penalty p. which depends on
the time period ¢ it starts. (ii) Every time period during which
the recovery is active has an associated penalty cost;. That is

ts ts ts
r(o, ) = Z Pe Zag + Z cost, [y

C=t; 7= t=t;

@7
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Line C3  AR-ATO 56.5 km
Line C41 PA-VIAL-ATO-COL 58.2 km
Line C42 PA-VIAL-ATO-ALC 47.4 km
Line C5  HU-FU-VIAL-OR-ATO-EM-MO  43.6 km

Left: RENFE’s Rapid Transit Network around Madrid. Right: The network topology while the blockage is active; the dashed arrows indicate the

independently operated Metro line. A cross indicates the disrupted segment between OR and VIAL.

V. COMPUTATIONAL EXPERIMENTS

Our experiments are based on realistic cases drawn from
RENFE’s network in Madrid for 2008 (on the left in Fig. 1). The
whole network is composed of 10 different lines with almost
100 stations, carrying more than one million passengers every
day. The network has double tracks on all segments. In this
section, we study the disruption that has been already analyzed
in [7]; this allows a direct comparison of our results to those
of [7]. We report our results on a case study with the failure of
a particular line segment during a particular time interval. We
did carry out tests on three other cases that concern another line
segment, another time interval, or both. The results on the three
cases are in line with the conclusions of Section V-C, therefore
we omit the details.

We used for our tests a personal computer with an Intel
Core 2 Quad CPU at 2.83 GHz and 8 GB of RAM, running
under Windows 7 64-Bit, and we implemented the models in
GAMS/Cplex 12.1.

A. Case Description

This case study concerns a disruption where one of the
two tracks between two stations is blocked: trains in different
directions must share the remaining track. Also, some trains
that were supposed to pass may turn back instead of entering
the disrupted segment. The disruption starts at 8:00 A.M. and it
lasts 120 minutes.

The disrupted segment is only used by trains belonging to the
C5 line. Passengers of line C5 have multiple traveling options:
they can remain in the line C5 waiting for a direct or indirect
train; they also can make use of lines C3, C41, and C42 as
well as of a line of the Metro network. The Metro line is
considered because it provides a particularly convenient way to
circumvent the blockage. The disruption has no direct effect on
the passengers of lines C3, C41, and C42; they will just stick
to their intended paths. We note that the lines C3, C41, C42,
and C5 belong to RENFE while the Metro network is run by
another operator.

The travel choices of the passengers can be represented by
a network restricted to the aforementioned lines only. The
restricted network, depicted on the right in Fig. 1, features
46 stations, and about 12000 trips in 760 timetable services.
About 530 000 passengers use the restricted network, 47 000 of
which are directly affected by the disruption. The frequency on
the C5 line is rather high: there is a train service every 3 minutes
in the peak hours and every 10 minutes in the off-peak hours.
Lines C3, C41, and C42 have a slightly lower frequency: trains
in the peak hours run every 6 minutes and every 16 minutes in
the off-peak hours. The considered lines are served by two train
unit types with a capacity of 588 and 757, respectively. Trains
on the Metro line run every 3 minutes and we assume that they
have unlimited capacity.

The integrated timetable and rolling stock rescheduling prob-
lem instances are solved by two approaches: by the model of
[7]; and by the model proposed in this paper (which is an
extension of [7]).

The optimization models can make timetabling decisions in
Line C5: cancellations of existing services or insertions of emer-
gency services. The model selects emergency services from a
pool of potential candidates which depart every minute and go
through the non-blocked area. Also, the model decides on the
rolling stock allocation of the lines C5, C3, C41, and C42. The
undisrupted lines are incorporated in order to adjust the train
capacities to the elevated demand figures. We do forbid, though,
the cancellation of any of the C3, C41, and C42 services.

The objective functions arise as a weighted combination of
different terms; the relative importance of the criteria expresses
different overall managerial goals. In order to compare the two
solution approaches, we use a particular weight setting for the
objective criteria.

B. Recovery Solutions

In this section we describe and compare solutions to the in-
tegrated optimization problem. The complete ISCREM model
(1)—(25) leads to a mixed integer program with about 39 000



TABLE 1
RECOVERY SOLUTIONS

Schedule TSOC EMOC SC DP  DP-est ST
Non-Controlled-Non-Smooth  166338.06  6984.63  5537(64*) 1839 5221 206
Controlled-Non-Smooth 166912.21  7782.05  1659(70*) 1914 5262 278 (116%*)
Controlled-Smooth 167208.37  7798.58  712(59%) 1998 5388 614(201**)
Undisrupted 167937.28  5355.87 - - - 122.5

*Total Number of schedule changes related to services and composition changes. **Computational time

for 1% of relative optimality gap.

discrete variables, about 1390000 continuous variables and
about 487 000 constraints.

Table I summarizes our results by letting each row represent
one of the four schedules. Non-Controlled-Non-Smooth: ob-
tained by solving the disruption without accounting for con-
trollability and smoothness of the recovery. This solution is
directly quoted from [7]. Controlled-Non-Smooth: obtained
by accounting for recovery period constraints Section IV-C2,
but not considering the number of simultaneous schedule
changes (constraints (22)). Controlled-Smooth: obtained by
solving the ISCREM as described in Section IV. In particular,
we do use constraints (22); the upper bound in (22) is defined
as 75% of the number of simultaneous schedule changes in the
solution Controlled-Non-Smooth. Undisrupted: refers to the
schedule of an undisrupted day; this schedule comes from
the optimization model proposed by [4].

Table I shows six characteristics of the solutions. Columns
TSOC and EMOC give the total operational costs for passenger
train services and empty movements, respectively. Note that the
first term in (26) is equal to the sum of TSOC and EMOC.
Column SC, the total number schedule changes, is a measure
to estimate how easy it is for the operator to implement the
recovery plan; SC accounts for train service changes, composi-
tion changes and train inventory changes. Column DP gives the
number of denied passengers calculated in a post-processing
step, while column DP-est is the number of denied passengers
as estimated by the optimization model. Finally, column ST
gives the solution time in seconds.

We note that the distinction between DP and DP-est is
necessary due to the fact that the ISCREM models the denied
passengers heuristically: the demand on successive arcs are
not linked to each other. Therefore, a denied passenger still
shows up in the demand of later arcs. For more details and
justifications we refer to [7].

We first notice that the lowest possible DP is that one in the
Non-Controlled-Non-Smooth solution; this solution is the least
constrained one. The service quality deteriorates slightly as we
impose more and more restrictions on the schedules.

The solutions do show clear differences for the ease of the
recovery process, measured by the total number of schedule
changes (SC). The results conform with our intuition: so-
lutions Controlled-Smooth, Controlled-Non-Smooth and Non-
Controlled-Non-Smooth have increasingly more freedom to
change the schedules, and they indeed use this freedom to reach
a better service quality. The Controlled-Smooth solution makes
SC dramatically drop while the other values stay more or less
the same.

The operational costs (TSOC and EMOC) do not show
much variation. As one may expect, the Non-Controlled-Non-

Smooth solution is the best, but the Controlled-Non-Smooth and
Controlled-Smooth solutions are reasonably close to it. When
comparing to the undisrupted schedule, the recovery schedules
have lower costs (TSOC) for train and emergency services. This
follows from the fact that some train services are canceled.
On the other hand, the recovery schedules have higher empty
service costs (EMOC) because more empty services are needed
to match capacity requirements and rolling stock resources.

The solution times (ST) range from a few seconds to a
few minutes. We notice that the recovery schedules need a
higher computational time, among others due to the additional
complexity of the timetabling decisions. All in all, the pro-
posed model fits well in the time frame of real life disruption
management.

C. Comparison of Non-Controlled-Non-Smooth and
Controlled-Smooth Solutions

Section V-B gave the high-level statistics of three recovery
solutions. Here we take a closer look at them in order to
assess their practical value. The assessment is based on the total
number of schedule changes and on their temporal distribution.
Desirable recovery solutions do not have too many of them,
and they are to be limited to a short time interval just after the
disruption.

Fig. 2 shows the number of schedule changes (as a function
of time) in the Non-Controlled-Non-Smooth, the Controlled-
Non-Smooth and the Controlled-Smooth solutions. The figure
has a curve for each of the solutions. These curves illustrate the
difficulty of each of the solutions to be implemented in practice.
The disruption of our case study ends at 10:00 AM. The Non-
Controlled-Non-Smooth solution has schedule changes until the
end of the day. This is undesirable because the effects of the
disruption spread out for the whole day, including the after-
noon peak hours. For the Controlled-Non-Smooth solution, the
length of the recovery period is at 2:00 PM. Consequently, the
downstream effects of the disruption are now controlled.
The operations are recovered from the disruption by the time
the afternoon peak period starts. Finally, in the Controlled-
Smooth solution, the maximum number of simultaneous sched-
ule changes is required to decrease by 25%. The additional
requirements leads to an even shorter recovery period.

The area under the curves indicates the number of schedule
changes weighted by their duration. The area can thus be
perceived as an intuitive quality measure of the recovery plans.
It confirms our finding that Controlled-Smooth is superior to the
other solutions for its controllability and smoothness.

Limiting the recovery efforts (in terms of maximum si-
multaneous schedule changes and length of recovery period)
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Fig. 3. Passenger demand in the Non-Controlled-Non-Smooth solution: num-

ber of requested trips (higher curve) and number of denied trips (lower curve).

provides better recovery planning for the operator. However,
these limitations may have a negative effect on passenger
demand. Fig. 3 depicts the passenger demand as a function
of time; Fig. 3 belongs to the Non-Controlled-Non-Smooth
solution. It contains two curves: the higher curve indicates the
sum of all passenger demand figures at a given time, while the
lower curve shows the denied passenger demand at that time.
The figure confirms that a very small fraction of the demand is
denied, indeed.

A demand picture similar to Fig. 3 can be drawn for the
Conirolled-Smooth solution. The cumulative demand curve
(i.e., the upper one) is indistinguishable for the solutions Non-
Conirolled-Non-Smooth and Conirolled-Smooth. We do com-
pare the denied passengers in these solutions in Fig. 4: it
shows the percentage of denied passengers as a function of
time. The Controlled-Smooth solution turns out to have a 9%
larger number of denied passengers. However, this is still a low
percentage of the total passenger demand.

We can conclude that a controlled and smooth recovery plan
enhances the likelihood that the operator can in fact implement
the recovery plan. This benefit can be achieved without sig-
nificantly worsening the service quality to the passengers and
increasing operating costs.

Controlled-Smooth
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Fig. 4. Percentage of denied passenger demand in the Non-Controlled-Non-
Smooth solution and Controlled-Smooth solution (b).

D. Smoothness and Controllability

Smoothness and controllability of the recovery plan are con-
tradictory objectives: smooth plans need to spread out schedule
changes over a longer time period and controlled plans need
to compact them. We are interested in the trade-off between
controllability and smoothness. Therefore, we propose a new
objective function in order to make a bi-objective study as
follows:

by
minwv + (1 — w) ZFt

t=t,

(28)

subject to (2)—(19) and (21)—(25). Here v is a positive variable
representing the maximum number of simultaneous schedule
changes and w € [0, 1]. Different values of w may yield dif-
ferent Pareto solutions for the new bi-objective problem. Fig. 5
shows the Pareto frontier: the x-axis represents the length of the
recovery period in minutes and the y-axis the maximum num-
ber of simultaneous schedule changes. Obviously, this Pareto
frontier does not take care of the traditional criteria, namely the
operational costs (e.g., the carriage kilometers) and the service
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quality for passengers. Therefore, the Pareto optimal solution
may compromise the overall optimal solution given by the
model in (1)—(25). However, the objective (28) minimizes
the deviation from the undisrupted solution, therefore it takes
the traditional criteria implicitly into account. For a com-
parison, Fig. 5 also plots the solutions Non-Controlled-Non-
Smooth, Controlled-Non-Smooth and Controlled-Smooth.

The Controlled-Smooth solution turns out to be Pareto op-
timal; in fact, it features the shortest possible recovery period.
There exist solutions with the same the recovery period length
and with fewer simultaneous schedule changes; those solutions
are more expensive in terms the objective function (1). Never-
theless, the Pareto optimal solutions are very similar for their
value in (1): their differ by at most 4.97% from the objective
value of Controlled-Smooth. This result confirms that the trade-
off mainly lies between smoothness and controllability. The
operator can select the most preferred Pareto optimal solution
without causing any major suboptimality in terms of the objec-
tive function (1).

The modified objective (28) is computationally more chal-
lenging that our original objective (1). We experienced solution
times of up to 17000 seconds, mostly in cases where the
number of simultaneous schedule changes is penalized more
heavily. In contrast, the Controlled-Smooth solution needed
614 seconds.

E. Dealing With Denied Passengers

In this section we consider the Controlled-Smooth solution
and we investigate the accuracy of our heuristic passenger
model. The Non-Controlled-Non-Smooth and Controlled-Non-
Smooth solutions behave very similarly.

Inaccuracy occurs for denied passengers. Of the 1998 denied
passengers, 1314 passengers leave the system because they
reached their deadline. These passengers are handled properly
by the optimization model. However, the remaining 684 pas-
sengers did attempt to board a train but were rejected due to
insufficient capacity. Still, our passenger model adds them to
the demand on their entire path, even after the rejection. Thus

the bogus demand may lead to unnecessary rejections. We give
a conservative estimate on the inconvenience of the rejected
passengers by assuming that the rejected passengers wait for the
earliest available free seat in a train on their chosen path to their
destination. Their delay is defined as the difference between
their rejection time and the time when a seat does become
available for them. It turns out that the rejected passengers
suffer an average delay of 12.8 minutes, the values ranging from
1 minute to 37 minutes; 78.9% of the delays under 20 minutes,
144 passenger have a higher delay.

We conclude that heuristic treatment in our model gives rise
to realistic passenger flows with a small fraction of the passen-
gers denied. Moreover, the large majority of these inaccurately
modeled passengers can travel with a tolerable delay. The
passengers without a reasonable travel option form a fraction
whose size is below the daily fluctuation of the demand figures.

VI. CONCLUSION

In this paper we study the recovery problem of rapid transit
networks. When dealing with a disruption, the operator wants
to offer a good service quality and to quickly steer the system
back to the original plan.

A main contribution with respect the literature is that our
approach decides on the recovery length and the number of
simultaneous schedule changes to be implemented during the
recovery process while recovering the timetable, rolling stock
and passenger demand altogether.

Our model balances several system-related and service-
related objective criteria and puts a particular emphasis on the
objective of returning to the original plan as quickly and as eas-
ily as possible, i.e., limiting the disruptive negative impacts in
terms of schedule changes and recovery time period length but
also offering o good quality service to the passenger demand.

The computational tests on realistic instances of RENFE
show that our method is able to find solutions with a very
good balance between the stated managerial goals. The smooth
and controlled variant of the model reduces the number of
simultaneous schedule changes and greatly limits the length
of the recovery period—without compromising the service
quality. In addition, we compare the solutions we found to the
Pareto frontier of the bi-objective minimization problem. Dis-
cussions with practitioners revealed that the solutions captured
all important real-life restrictions, and have a good chance to be
implementable in practice.

The computational times amount to a few minutes which is
sufficiently close to the needs of real-time decision making.
This is a great advantage with respect to the current system
of manual re-planning where planners work under great time
pressure.

ACKNOWLEDGMENT

The first author thanks the Railway Applications Section
of INFORMS, for awarding this research in the 2013 Student
Paper Award. The authors also want to thank the anonymous
referees for their helpful comments on the paper.



(1]

[2]

[3]
[4]
[5]

[6]

7

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

C. Barnhart, “Airline schedule optimization,” in The Global Airline
Industry, P. Belobaba, A. Odoni, and C. Barnhart, Eds. Hoboken, NJ,
USA: Wiley, 2009.

G. Budai, G. Mardti, R. Dekker, D. Huisman, and L. G. Kroon,
“Rescheduling in passenger railways: The rolling stock rebalancing
problem,” J. Sched., vol. 13, no. 3, pp. 281-297, Jun. 2010.

V. Cacchiani et al., “Railway rolling stock planning: Robustness against
large disruptions,” Transp. Sci., vol. 46, no. 2, pp. 217-232, May 2012.

L. Cadarso and A. Marin, “Robust rolling stock in rapid transit networks,”
Comput. Oper. Res., vol. 38, no. 8, pp. 1131-1142, Aug. 2011.

L. Cadarso and A. Marin, “Integration of timetable planning and rolling
stock in rapid transit networks,” Ann. Oper Res., vol. 199, no. 1,
pp. 113-135, Oct. 2012.

L. Cadarso and A. Marin, “Robust passenger oriented timetable and
fleet assignment integration in airline planning,” J. Air Transp. Manage.,
vol. 26, pp. 44—49, Jan. 2013.

L. Cadarso, A. Marin, and G. Maréti, “Recovery of disruptions in rapid
transit networks,” Transp. Res. E, Logist. Transp. Rev., vol. 53, pp. 15-33,
Jul. 2013.

L. Cadarso, V. Vaze, C. Barnhart, and A. Marin, “Integrated airline
scheduling: Considering competition effects and the entry of the high
speed rail,” Transp. Sci., Feb. 2015, accepted for publication.

A. D’ Ariano, M. Pranzo, and I. A. Hansen, “Conflict resolution and train
speed coordination for solving real-time timetable perturbations,” IEEE
Trans. Intell. Transp. Syst., vol. 8, no. 2, pp. 208-222, Jun. 2007.

A. D’Ariano and M. Pranzo, “An advanced real-time train dispatching
system for minimizing the propagation of delays in a dispatching area
under severe disturbances,” Netw. Spatial Econ., vol. 9, no. 1, pp. 63-84,
Mar. 2009.

J. Dumas and F. Soumis, “Passenger flow model for airline networks,”
Transp. Sci., vol. 42, no. 2, pp. 197-207, May 2008.

J. Dumas, F. Aithnard, and F. Soumis, “Improving the objective function
of the fleet assignment problem,” Transp. Res. B, Methodol., vol. 43, no. 4,
pp. 466475, May 2009.

J. L. Espinosa-Aranda and R. Garcia-Rédenas, “A demand-based
weighted train delay approach for rescheduling railway networks in real
time,” J. Rail Transp. Planning Manage., vol. 3, no. 1/2, pp. 1-13,
Feb.—May 2013.

J. Jespersen-Groth et al., “Disruption management in passenger rail-
way transportation,” in Robust and Online Large-Scale Optimization,
Lecture Notes in Computer Science, vol. 5868, R. Ahuja, R. Mohring,
and C. Zaroliagis, Eds. Berlin, Germany: Springer-Verlag, 2009,
pp. 399-421.

L. G. Kroon and D. Huisman, “Algorithmic support for railway dis-
ruption management,” in Transitions Towards Sustainable Mobility,
J. A. E. E. Nunen, P. Huijbregts, P. Rietveld Eds. Berlin, Germany:
Springer-Verlag, 2011.

L. G. Kroon, G. Mardti, and L. Nielsen, “Rescheduling of railway
rolling stock with dynamic passenger flows,” Transp. Sci., pp. 1-20.
http://dx.doi.org/10.1287/trsc.2013.0502

M. Lohatepanont and C. Barnhart, “Airline schedule planning: Integrated
models and algorithms for schedule design and fleet assignment,” Transp.
Sci., vol. 38, no. 1, pp. 19-32, Feb. 2004.

[18]

[19]

[20]

[21]

[22]

A. Mercier, J. E Cordeau, and F. Soumis, A computational study of
Benders decomposition for the integrated aircraft routing and crew
scheduling problem,” Comput. Oper. Res., vol. 32, no. 6, pp. 1451-1476,
Jun. 2005.

J. A. Mesa, F. A. Ortega, and M. A. Pozo, “A geometric model for
an effective rescheduling after reducing service in public transportation
systems,” Comput. Oper. Res., vol. 40, no. 3, pp. 737-746, Mar. 2011.

N. Papadakos, “Integrated airline scheduling,” Comput. Oper. Res.,
vol. 36, no. 1, pp. 176195, Jan. 2009.

J. Pita, C. Barnhart, and A. P. Antunes, “Integrated flight scheduling and
fleet assignment under airport congestion,” Transp. Sci., vol. 47, no. 4,
pp. 477-492, Nov. 2013.

C. G. Walker, J. N. Snowdon, and D. N. Ryan, “Simultaneous disruption
recovery of a train timetable and crew roster in real time,” Comput. Oper.
Res., vol. 32, no. 8, pp. 2077-2094, Aug. 2005.

Luis Cadarso was born in 1985. He received the
Ph.D. degree in aerospace engineering from the
Technical University of Madrid, Madrid, Spain. In
September 2013, he joined Rey Juan Carlos Univer-
sity, Madrid, as an Assistant Professor. His research
interests include operations research and its applica-
tion to transportation.

Gabor Maréti was born in 1976. He received the
Ph.D. degree in operations research from the Eind-
hoven University of Technology, Eindhoven, The
Netherlands. He is a Senior Researcher at Nether-
lands Railways, Utrecht, The Netherlands, and a
part-time Assistant Professor at VU University Ams-
terdam, Amsterdam, The Netherlands. His research
focuses on the applications of combinatorial opti-
mization and linear (integer) programming for trans-
portation problems.

Angel Marin was born in 1947. He received the
Ph.D. degree in aeronautical engineering from the
Technical University of Madrid, Madrid, Spain. He
has Full Professor position at the Technical Uni-
versity of Madrid. His research activity is focused
on problems of network design, large systems, and
transportation using optimization methods.


http://dx.doi.org/10.1287/trsc.2013.0502

