
Implementation of an NEP in Java

David Batard, Víctor Martínez

Abstract
TheNetworks of Evolutionary Processors (NEPs) are computing mechanisms directly inspired from the behavior
of cell populations more specifically the point mutations in DNA strands.These mechanisms are been used for
solving NP-complete problems by means of a parallel computation postulation.This paper describes an
implementation of the basic model of NEP and includes the possibility of designing some of the most common
variants of it by means of a graphic user interface which eases the configuration of a given problem. It is a
system designed to be used in a multicore processor in order to benefit from the multi thread use.
Keywords: NEP, Evolutionary processors, natural computing, Implementation.

I. Introduction
Networks of Evolutionary Processors (NEP)

are a rather new computing mechanism directly
inspired from the behavior of cell populations. Every
cell is described by a set of words, evolving by
mutations, which are represented by operations on
these words, resembling the manner carried out by
DNA strings [Páun, 1998]. At the end of the process,
only the cells with correct strings will survive. The
main potential in this model is the simultaneous way
it develops for which a basic architecture for parallel
and distributed computing is required consisting on
several processors, each of them placed in a node of a
virtual complete graph, which are able to handle data
associated with the respective node. Each node
processor acts on the local data in accordance with
some predefined rules. Local data is then sent through
the network according to well-defined protocols. Only
data which is able to pass a filtering process can be
communicated. This filtering process may be required
to satisfy some conditions imposed by the sending
processor, by the receiving processor, or by both of
them. All the nodes simultaneously send their data
and the receiving nodes also simultaneously handle
all the arriving messages, according to specific
strategies. In addition, the data in the nodes is
organized in the form of large multiset of words
where each word could appear in an arbitrarily large
number of copies and all the copies are processed in
parallel so that every possible action takes place.

This basic model has evolved to others
which extend not only the definition but the
applications. In this case we consider the hybrid
networks of evolutionary processors (HNEP) where
the rules in every processor could be applied
differently opposed to the basic model as described in
[Martín-Vide, 2003].Also other variants can be
considered as they all share the same general
characteristics.

In this paperwe describe the ínitial work of
implementation of a general NEP which can be
thought to represent the most common variations of
the basic model, considering the concurrent way it
was conceived to perform and having a graphic user
interface for an easier way of defining it and getting
the outcomes.

II. Basic concepts
A network of evolutionary processors of size

n is a construct:
r = (y.Ni.Nz Nn,G),
where V is an alphabet of symbols and for each 1 < i
< n, N¡ = (M¡, A¡, PL, FIÍPOÍ , FO¡) is the i -th

evolutionary node processor of the network. The
parameters of every processor are:
M¿is a finite set of evolution rules of one of the
foliowing forms only:

- a—> b a, b eV (substitution rules),
- a—* s a EV (deletion rules),
- e—* a a EV (insertion rules),
In this case for the hybrid NEP we are

considering each deletion node or insertion node
having its own working mode (performs the operation
at any position, in the left-hand end, or in the right-
hand end of the word) and different nodes are allowed
to use different ways of filtering. Thus, the same
network may have nodes where the deletion operation
can be performed at arbitrary position and nodes
where the deletion can be done only at the right-hand
end of the word.

i4¿is a finite set of strings over V. The set
A¡is the set of initial strings in the i-th node. We
consider that each string appearing in any node at any
step has an arbitrarily large number of copiesin that
node.

PI, FI c Vare the input permitting/forbidding
contexts of the processor, while PO, FO c V are the
output permitting/forbidding contexts of the
processor. These filters can work in four different
way as described below:

For two disjoint subsets P and F of an alphabet V and
a word over V, we define the predicates cp(1) and
(p(2)as follows:
cp(1)(w; P,F) = P c alph(w) A F n alph(w)

= 0
cp(2)(w; P, F) = alph(w) n P

* 0 A F n alph(w) = 0.
cp(3)(w; P, F) = alph(w) c p

cp(4)(w; P, F) = P c alph(w) A F £ alph(w)
The constraction of these predicates is based on
random-context conditions defined by the two sets P
(permitting contexts) and F (forbidding contexts). For
every language L c V* and (3 £ {(1), (2), (3), (4)},
we define:

/ (L , P, F) = {w £ L| / (w ; P, F)}.
Finally, G= ({N1(N2,...,Nn }, E) is an undirected
graph called the underlying graph of the network.The
edges of G, that is the elements of E, are given in the
form of sets of two nodes.

By a configuration (state) of a NEP as above
we mean an w-tupleC = (L1(L2,...,Ln), with
L¡£V*for all 1 </ '<«. A configuration represents the
sets of strings which are present in any node at a
given moment. The initial configuration of the
network is C0 = (A1(A2,..., An). A configuration can
change either by an evolutionary step or by a
communicating step. When changing by an
evolutionary step, each component L¡ of the
configuration is changed in accordance with the
evolutionary rules associated with the node i.

Formally, we say that the configuration Cx=
(L1(L2, ...,Ln), directly changesinto the configuration
C2 = (L'1(L'2, -Xn) by an evolutionary step, written
as Cx => C2 if L¡ is the set of strings obtained by
applying the rules of R¡to the strings in L¡as follows:
(/') If the same substitution or deletion rule may
replace different occurrences of the same symbol
within a string, all these occurrences must be replaced
within different copies of that string. The result is a
multiset in which every string that can be obtained
appears in an arbitrarily large number of copies.
(/'/') An insertion rule is applied at any position in a
string. Again, the result is a multiset in which every
string, that can be obtained by application of an
insertion rule to an arbitrary position in an existing
string, appears in an arbitrarily large number of
copies.
(/'/'/') If more than one rule, no matter its type, applies
to a string, all of them must be used for different
copies of that string.

When changing by a communication step,
each node processor N¡sends all copies of the strings
it has which are able to pass its output filter to all the
node processors connected to N¡ and receives all
copies of the strings sent by any node processor
connected with Niproviding that they can pass its
input filter.

Formally, we say that the configuration Cx =
(L1(L2,..., Ln)directly changes into the configuration
C2 = (L'1(L2,..., Ln) by a communication step, written
as Cx h C2if

L'i = ¿¿\{w \w e Li n POi)

u y {x i x
{Ni,¡v,-}eE

e Lj n POj n P¿}
for every 1 < i < n.
Let T = (V, N1 (N2 , . . . ,Nn) be an NEP. By a
computation in Twe mean a sequence of
configurations C0, C1(C2,. . ., where C0is the initial
configuration, C2i => C2i+1and C2i+1 h C2i+2for all /'
>0.

If the sequence is finite, we have a finite
computation. The result of any finite or infinite
computation is a language which is collected in a
designated node called the output node of the
network. If one considers the output node of the
network as being the node k, and if C0, Cv . . . is a
computation, then all strings existing in the node k at
some step / - the /c-th component of Ct- belong to the
language generated by the network. Let us denote this
language by Lk (r). The time complexity of
computing a finite set of strings Z is the minimal
number of steps / in a computation C0, C^ . . . , Ct. . .
such that Z is a subset of the &-th component of Ct.

III . Implementation
This NEP implementation is thought to be a

base for future additions and adaptations as the
discoveries in this field are moving forward, so the
class structure is considered to be lithe by means of
the use of interfaces along with abstract classes which
gather the common and required features of the
formal definition.
The relation and dependencies of classes for
simulating the NEP model are showed in Figure 1, in
a simplified way.

NEP

prívate Sring alphatet

public vdd gc-J
public bodean any5toppirigCQndilicíi\)

Graph Connection

prívate ¡nt nodel
prívate ¡nt riodeS pRjblic Arrayüstneighborsfinl ncde)
prívate ¡nt nodel
prívate ¡nt riodeS pRjblic Arrayüstneighborsfinl ncde)

0.*

prívate ¡nt nodel
prívate ¡nt riodeS pRjblic Arrayüstneighborsfinl ncde)

0.*

Co mmj ri ¡cari ng St&p

public vdd appIyíArrayListeNode* ncdes, Graph graph)
public ArrayList<5ü'ing> exchangirigWcrdsíirit ncde.Graph graphjArrayLsKNodes* nodes}

I Sto ppi rigCond iti on

ziz c codean stop;11!-- i e ;)

Sto p p hgCondi tionCo nsec uti%eConfigu ration

Sto p p i ngCo nd it io nWo rdsD isa p p ear

Array List<5tring> vjords

Stop pi ngCo nd it io nNo n Em pty

StoppingConditionStep

Evolutionary Step

public vxHdapdy l̂es(Arra(yLisl<NGde> nodes} z

«Interface»
Filter

public Afraylj3t̂ String> appIyFifterO
public bcclean passFiterü

i L

Filtert

Filtert

Fig. 1. Class diagram of the main design

We can see in this diagram the relation
among all the involved classes. We thought the main
class NEP should be in charge of keeping reference to
the rest of the well-known components of a NEP such
as the alphabet in a form of a Stringin which every
character is standing for a symbol, the graph, the list
of nodes or processors and the stopping conditions.
This class it is also in charge of initiating and
controlling the evolutionary and communication
processes trough the method goOwhich is in charge of
doing this rotation of steps in accordance with the
established model and controlling with the
anyStoppingConditionO the possibility of stopping
the processing due to the occurrence of any of the
required conditions for stopping the computation.
This class also interacts with others devoted to the
data management and NEP configuration procedure
as well as for retrieving the outcomes of a calculation
For the Graph class we have an array list of
Connection which is a class describing a connection
between two nodes by keeping the ñames of the nodes
related in a form ofint values,which are also the
numbers of the positions of each node in the list of
nodes. The method neighbors(int node)of this class
was thought to be of use in communication stepsfor
retrieving the list of nodes connected to a given one
for next exchange of words among them.
As we mentioned, the NEP stops when at least one of
the stopping condition is met. In this case we have
considered covering the most common ones as in
jNEP in[Rosal, 2008].The Figure 1 shows how from
an interface it was conceived the general structure of

the stopping condition by means of the stop(NEP
nep)method allowing future variant to be considered
without extended variation since each of the four
already in the implementing classes(Stopping
Condition Consecutive Configuration, Stopping
Condition Words Disappear, Stopping Condition
Non Empty, Stopping Condition Step) of interface
IStopping Condition share the same method but
differing in theirs atributes. Explaining each one of
them we say that for the Stopping Condition
Consecutive Configurationto succeed stopping the
computation if two consecutiveidentical
configurations are found once communication and
evolutionary steps were performed. For the Stopping
Condition Words Disappearto trigger the stop if
none of the words listed are in the NEP. The
Stopping Condition Non Emptyif one of the nodesis
non-empty and the Stopping Condition Step for
stopping after a given amount of steps.

The processors are other key components of
a NEP simulation, in this they are referred as nodes.
The Node class which has a MultiSetreference,
standing for the group of words of the processor
treated as an ArrayList<String>and implementing a
group of methods useful for the filtering and rules
application processes. In the nodes we have a list of
rules defined by theIRule interface and instantiated
buy a group of the classes: InsertionRule,
DeletionRule, SubstitutionRulethe ones are meant
to cover the basic model of NEP,implementing the
applyRule(String word)method of the interface and
inheriting from the Rule class, not considered in the

class diagram for space reasons.The common
attributes come from Ruleas symbol, torepresent the
symbolto apply the rule to, coming as a Stringbut so
far considering the only character it carnes and the
atribute how, also a String referring the way it has
to be done as in the position the rule has to be used,
having one of this valúes: left, right, any.This also
reworks the basic model which was conceived for
applying rules at the end of the word.

Nodes have two filters as attributes, the
inputfilter and the outputfilterwhich are instantiated
from one of the four filtering classes (Filterl, Filter2,
Filter3, Filter4) according to the level of strength in
the filtering processes described in [Martín-Vide,
2003], each one implementing the IFilterinterface
where the applyFilterOreturns a list of words able to
pass the filter and the passFilter()for considering a
single word.
EvolutionaryStepis the class conceived to manage
the list of nodes for the purpose of performing an

configurations.

Once the InitialView starts it is necessary to
upload the file containing the NEP description,
specified in a jsonsyntax, to the NEP instance
referenced by this view and by means of the
getSavedConfiguration(String path)method of the
PessistentConfiguration class, accessible through

The ConfigurationViewresponsible for the
main interaction with the user permitting the creation
and modification, of a current NEP. The use of the
UserNep class it is given as a translation mechanism

evolutionary step; for doing that and by means of
generating a new thread by each node in every step.
For that, it requires the ThreadNode class which uses
a node reference to access the node multiset and rules.
The run() method in every thread applies randomly
the rules to every word and every copy till no more
can be applied. Once the evolutionary step is finished
the NEP commands to the method
apply(ArrayList<Node>nodes,Graph graph)of the
CommunicatingStepclass to proceed with the
exchange of words using the defined filters of each
node.

The need of a way for nicely defining and
storing the different designs of NEP is something
considered in this implementation. Some previous
application for this models do not present a solution
for this matter but for only for storing and reading
from a configuration file which the user has to learn
how to créate. In the Figure 2 we show the class
diagram for the Input/Output of the different

the Load NEP button as showed in Figure 3 which
allows us to lócate y select the desired configuration.

between the form of writing in the visual components
and the NEP object oriented structure. For example in
Figure 4 for defining the graph, a structure in the way
of tupies of nodes numbersassociated with a comma

P-ersistentConfiBuration InitialView

%
Configuration View

i %
[»HcNEPgel5avedCoflfgurAafl{£lñgpa*)
»l^v iCKlsAeCaifgijratai(£lñigpatiJ NEPnep}

,7 V

UserNep

NEP NEP

pufcfc Grapa reddGr¿cti5liflg(<5lmg sgrapíi}

pubfc Srtng virileGraFti(r£P nep}
pufcícAnaylJi*r^le* iead5i i i^^
pubfc: AirayLÍ£KRule> readknseffoi Rite(5iing nsafcfiJ5ting Ixvfl

pubfc Srtng virileGraFti(r£P nep}
pufcícAnaylJi*r^le* iead5i i i^^
pubfc: AirayLÍ£KRule> readknseffoi Rite(5iing nsafcfiJ5ting Ixvfl

Fig. 2. Class diagram for user interface.

I=*l BaskApp l ka t i on Example

File Help s i s s

Update Configuration

Ñame: ExamplelNEP

Qutput: Bi/nodes

Fig. 3. Initial View of NEP system.

and delimited through brackets as foliows: (0,1)(1,2)
(0,2). For that purpose the readGraphString(String
sgraph) is in charge of the translation of a string
representation of the graph to a Graph class form, in
the opposite direction the writeGraph(NEP
nep)method is responsible of putting in a string form
the Graph content required for visualizing it in the
ConfigurationView.

In this view the comma is used for
separating the individual elements as words in the
multiset, also the symbolization -> for describing
the rules having consequent, not for the deletion or

inserción ruleswhich only requires the one different
from the empty symbol.
The Node panel also in Figure 4 allows us to move
through the different nodes using the
<««Prev ious N o d e < « « , and > » » N e x t
Node > » » buttons as well as going directly to the
desired one if the configuration is too long.

IM S C E] ^

Alphabet

Graph

Stoping Conditon

Step Amount

\J\ Words Disappear

g Non Empty Node

I | Consenjtive Ccnflg

apcdetghij

(0,1)(1,2)(0,2)

•

Multiset abc,defrghi

Substituticín Rules

|a->ty:-;>b

Deletion Rules

How right

]] How |left

How any

Fiters

Input

Permitting laeh :•»» \^Z
:

Output

Permitting ir»« n
:

CurrentNode | Go to Node # : 1 ¡3

Save | Clase

Fig. 4.ConfigurationView

IV. Conclusión
In this paper we have described the design

and implementation of an abstract computer devise
called NEP, aiming to achieve a solution for fitting
the most common variants. The use of a graphic user
interface is also one of the first attempts of this type
of simulations allowing a fast and pleasant
configuration of the NEP.

This work plays to be a starting tool for
future analysis of the different variants the NEP
family as it will be submitted to forthcoming
developments in order complete a better and more
complete solution.

Bibliography
[1] [Bel-Enguix, 2008] Bel-Enguix G., Jiménez

M : A Biolnspired Model for Parsing of
Natural Languages.Studies in Computational
Intelligence, Springer Verlag, Berlin, 2008,
Vol. 129/2008, 369-378.

[2] [Bottoni, 2011] Bottoni, P., Labella, A.,
Manea, F., Mitraría, V., Petre, L, Sempere,
J.: Complexity-preserving simulations
among three variants of accepting networks
of evolutionary processors, Springer
Science+Business Media B.V 2011.

[3] [Castellanos, 2001] Castellanos, I , Martin-
Vide, C, Mitrana, V., Sempere, I : Solving
NP-complete problems with networks of
evolutionary processors. Proceedings of
IWANN 2001, LNCS 2084, Springer-
Verlag, 2001,621-628.

[4] [Castellanos, 2003] Castellanos, I , C.
Martin-Vide, V. Mitrana& J.M. Sempere,
Networks of Evolutionary processors,
Actalnformatica. 39 (2003): 517-529.

[5] [Manea, 2004] Manea, F., Martin-Vide, V.,
&Mitrana, V., Solving 3CNF-SAT and HPP
in linear time using WWW, Proc. of MCU
2004, LNCS, inpress.

[6] [Manea, 2006] Manea F., Martín-Vide
C, Mitrana V.: A Universal Accepting
Hybrid Network of Evolutionary Processors,
Electronic Notes in Theoretical Computer
Science,2006, Vol. 135, 15-23.

[7] [Martín-Vide, 2003] Martin-Vide, C,
Mitrana, V., Perez-Jimenez, M., & Sancho-
Caparrini, F., Hybrid networks of
evolutionary processors. In: Proc. of
GECCO 2003, LNCS 2723, Springer Verlag,
Berlín, 2003.

[8] [Páun,1998] Páun, Gh.,Rozenberg, G.,
&Salomaa, A., DNA Computing. New
ComputingParadigms, Berlín,
Springer, 1998.

[9] [Rosal, 2008] Rosal, E., Nuñez, R.,
Casteñeda, C, Ortega, A. Simulating NEPs
in a cluster with jNEP.Proceedings of
ICCCC, 2008.

