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ABSTRACT

This paper presents the development of an analytical model for the prediction of the friction coefficient in
line contacts under thermal elastohydrodynamic lubrication (TEHL). A new theoretical equation is deduced
for determining the friction coefficient, taking into account the rheology of common lubricants under
TEHL. This approach also considers the heat generated and its penetration into the bulk of the contacting
solids. Therefore, the increase in temperature and ensuing variations in the operating conditions are
determined.

In order to illustrate the use of the new model and verify its accuracy, an experimental stage is performed
in a tribological test rig. The predictions of the proposed model are compared with the results obtained in the
test rig and other data reported in the literature for diverse lubricants, showing a good agreement in every
case. © 2015 The Authors Lubrication Science published by John Wiley & Sons Ltd.
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NOMENCLATURE

a Hertz semi-width of the contact (m)
E′ reduced Young’s modulus (Pa)
G shear modulus of the lubricant (Pa)
h0 minimum film thickness (m)
hc central film thickness (m)
hNc Newtonian central film thickness (m)
hNct Newtonian central film-thickness corrected by thermal effects (m)
I number of terms of the Gauss-Chebyshev approximation
K thermal conductivity of a body (W (mK)�1)
Kl thermal conductivity of the lubricant (W (mK)�1)

*Correspondence to: Javier Echávarri Otero, Grupo de Investigación en Ingeniería de Máquinas, Universidad Politécnica
de Madrid, Spain.
†E-mail: jechavarri@etsii.upm.es

LUBRICATION SCIENCE
Lubrication Science 2016; 28:189–205
Published online 15 October 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/ls.1325

© 2015 The Authors Lubrication Science published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License,
which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial
and no modifications or adaptations are made.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148684994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


LT thermal loading factor
n power-law exponent
p contact pressure (Pa)
p0 Hertz (maximum) pressure (Pa)
PE Peclet number
R reduced radius of curvature (m)
SRR slide-to-roll ratio (%)
T temperature of the lubricant (°C)
Tb lubricant bath temperature (°C)
Tin lubricant inlet temperature (°C)
Tf flash temperature rise (°C)
u velocity of a surface (m s�1)
um average surface velocity or rolling velocity (m s�1)
W/L contact load per unit length (Nm�1)
α pressure–viscosity coefficient (Pa�1)
β temperature–viscosity coefficient (K�1)
γ_ shear rate (s�1)
ΔTl average temperature increase due to internal heating of the film (°C)
Δu sliding velocity (m s�1)
η low-shear viscosity (Pa s)
η0 low-shear viscosity at ambient pressure (Pa s)
ηG generalised viscosity (Pa s)
μ traction (or friction) coefficient
ρ density (kgm�3)
σ specific heat (J (kgK)�1)
τ shear stress (Pa)
φT thermal film thickness reduction factor
χ thermal diffusivity (m2 s�1)

INTRODUCTION

During the last decades, continuous research activity in elastohydrodynamic lubrication has led to
progressive understanding of the complex phenomena involved in non-conformal contacts. Starting
from the classical studies 1–3 that combined the hydrodynamic effect with the piezoviscous behaviour
of the lubricant and deformation of the contacting solids, significant advances have been made from
then to the present.4,5

Numerous analyses observed that under the severe operating conditions of elastohydrodynamics, the
rheology of many common lubricants varies from Newtonian to pseudoplastic.6,7 Furthermore, it was
found that heat generated by friction can produce a local temperature rise, leading to analysis of the
thermal effects, and therefore giving rise to the so-called thermal elastohydrodynamic lubrication.8,9

Many other studies10–12 contributed to a better understanding of the main factors which influence
the behaviour of the lubricant and the quantitative effects of each.
In this way, knowledge of the physical phenomena has been increasingly improving up to a very

successful level. This knowledge, combined with the parallel development of the numerical methods,
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allows us to obtain accurate simulations for elastohydrodynamic problems.13,14 Thus, friction can be
predicted, together with the distributions of pressure, film thickness and temperatures of the lubricant
and the contacting solids.
Nevertheless, the high accuracy of the numerical methods is frequently in opposition with their

complex and tedious application to real case studies. This results in reduced practical use of the sim-
ulations, and therefore limiting the possibility of transferring knowledge from research groups to the
industry. Among factors that reduce applicability are the requirements of specific software and
highly specialised personnel, along with high computational cost and difficult interpretation of the
results.
In contrast, this paper presents the development of a predictive model whose application is very sim-

ple and suitable for calculation by hand, although the help of a spreadsheet is recommended in order to
optimise time and effort. In addition, the fast computation of results makes it useful for pre-modelling
purposes, as an initial approach to a complex problem.
The model proposed hereby is based on the theoretical deductions for pseudoplastic lubricants

presented in references 15,16 for point contacts. In this paper we focus our attention on line contacts
in order to broaden the field of application of the model and cover gears and roller bearings. Al-
though the variation of the contact geometry complicates the analytical process followed in refer-
ence 15 to deduce an equation for the friction coefficient, it is possible to derive an easy-to-use
formula for line contacts. Subsequently, thermal effects can be added to predict friction in
thermal-elastohydrodynamics.

PRESSURE, PIEZOVISCOSITY AND SHEAR-THINNING

Equation (1) shows the pressure distribution and the half-width of dry line contacts, according to
Hertz’s results,17 which have shown to be a reasonable approach to behaviour under elastohydro-
dynamic lubrication. 14

p ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

r
; with: p0 ¼

2 W=Lð Þ
πa

; a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 W=Lð ÞR

πE′

r
(1)

The rheology of the lubricant is modelled 18 by means of the Carreau non-Newtonian Equation
(2), where the influence of pressure in low-shear viscosity is taken according to Barus law 19,20

and shear rate is simplified to the Couette component 14 in the Hertz region, as customary for
analyses of traction.

ηG ¼ η 1þ η
G
_γ

� �2
� �n�1

2

; with: η ¼ η0e
ap _γ ¼ Δu

hc
(2)

Carreau rheological model properly describes the shear-thinning behaviour of many lubricants.21–23

Carreau Equation (2) introduces two parameters of lubricants, the Carreau’s exponent n and the shear
modulus G, whose influence in generalised viscosity is outlined in Figure 1.
In Equation (2) film thickness is approached as constant and equal to the central value.24 Equation

(3) gives the Newtonian result hNc of Hamrock,25 which, when multiplied by the thermal factor φT of
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Equation (4) provides a corrected value hNct that considers shear heating effects in the inlet zone.26,27

Later on, Equation (5) is used to take account of the shear-thinning influence on the film thickness. 28

hNc ¼ 2:154α0:47 η0umð Þ0:692E′0:110R0:308p�0:332
0 (3)

hNct ¼ hNc·φT ; with: φT ¼ 1� 13:2 p0=E′ð ÞL0:42T

1þ 0:213 1þ 2:23 Δu
um

� �0:83
� �

L0:64T

; where: LT ¼ βη0u
2
m

Kl
(4)

hNct
hc

¼ 1þ 0:79 1þ SRR

100

� �
umη0
hNctG

� � 1
1þ0:002SRR

" #3:6 1�nð Þ1:7

(5)

where SRR is defined as the ratio of the sliding velocity Δu to the average (rolling) velocity um,
expressed as a percentage. Therefore, the central film thickness hc can be obtained by combining Equa-
tions (3), (4) and (5), where empirical formulae (4) and (5) quantify the film thickness reduction due to
inlet heating and shear-thinning.

CONTACT TEMPERATURE

According to the studies of Blok, Jaeger and Archard,29–31 the contact area in dry contacts can be
modelled as a concentrated source of heat moving over the surface in order to estimate the rise in tem-
perature during sliding contact. Therefore, it is possible to analytically calculate the so-called ‘flash
temperature’ by applying the laws of energy conservation and heat transfer. Flash temperature is de-
fined as a rise in temperature above the initial bulk temperature of the solids.
A subsequent generalisation of this theory to lubricated contacts assumes that heat is produced

through the EHL film and conducted into the contacting solids, without significant heat convected
away by the lubricant.32 The convective term is usually negligible due to the very low EHL film thick-
ness, as reported in references.33–36 Therefore, the average temperature of the lubricant within the film

Figure 1. Generalised viscosity versus shear rate for Carreau’s model. Influence of the parameters n and G.
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(T) is the sum of the flash temperature rise (Tf), the increase due to internal heating of the film (ΔTl) and
the lubricant inlet temperature (Tin),

16:

T ¼ Tf þ ΔTl þ Tin: (6)

Table I presents a set of formulae for the calculation of average flash temperature for line
contacts29,30according to three possible scenarios for each body i, distinguished by the Peclet number
(PEi), which takes into account the heat transfer into the bulk of the contacting solids.32

As shown in Equation (7), the Peclet number can be computed for each body i, taking into ac-
count the half-width of the contact a, the velocity of each surface ui and the thermal diffusivity of
each body χi. The latter depends on the thermal conductivity Ki, the density ρi and the specific heat
σi. In this analysis, the thermal properties of the contacting bodies are considered approximately in-
dependent of temperature,32 as their variations for common materials and usual working conditions
are very limited.37

PEi ¼ uia

2χi
; where: χi ¼

Ki

ρiσi
(7)

The true flash temperature rise Tf can be calculated32 using Equation (8), taking into account that
all heat generated is divided between the contacting bodies. Thus, Tfi (i=1, 2) represents the aver-
age flash temperature for each contact body i, calculated as if all the heat generated were conducted
to it, using the formulae presented in Table I.

1
Tf

¼ 1
Tf 1

þ 1
Tf 2

(8)

If one body is stationary the Peclet number for this body is equal to zero. Therefore, accord-
ing to the first formula from Table I, the average flash temperature for this body tends to
infinity. Then, Equation (8) gives a true flash temperature rise equal to the average flash temper-
ature of the other body. On the other hand, when both Peclet numbers are null (both contacting
bodies stationary) the true flash temperature rise is equal to zero because there is not heat
generation.
A heat balance equation in the lubricant is performed with a method similar to the process pre-

sented in reference, 35 applied to the case of line contact. In this way, the following expression is

Table I. Average flash temperature according to the operating scenarios of a solid i (line contact).

Peclet
number

Situation
considered

Heat
penetration Average flash temperature

PEi< 0.1 Steady state
conduction

High Tf i ¼ 0:318 μ W=Lð ÞΔu
KiPEi

�2:303PEilog102PEi þ 1:616PEið Þ

0.1<PEi< 5 Slowly moving
heat source

Medium Tf i ¼ 0:159 μ W=Lð ÞΔu
KiPEi

· 0:423þ 2:663·PEi � 0:649·P2
Ei þ 0:062·P3

Ei

	 

PEi> 5 Fast moving

heat source
Low Tf i ¼ 0:376 μ W=Lð ÞΔu

KiP
1=2
Ei
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attained for the average increase in the temperature of the lubricant due to internal heating of the
film (ΔTl).

ΔTl ¼ μ W=Lð ÞΔuhc
16aKl

(9)

Thermal conductivity of the lubricant (Kl) can be approached as constant and equal to its value at
bath temperature, because of the low variations with temperature reported in reference 32 for most
mineral and synthetic lubricants.
Finally, the inlet temperature (Tin) and the lubricant bath temperature (Tb) can be related by compar-

ing the expressions for thermal and isothermal film thicknesses (Equations (3) and (4)), obtaining
Equation (10). The inlet temperature can be estimated 16 from this equation since the viscosity–
temperature relationship is generally known for the lubricant.

α Tinð Þ½ �0:47· η0 Tinð Þ½ �0:692 ¼ φT · α Tbð Þ½ �0:47· η0 Tbð Þ½ �0:692 (10)

It is worth noting that this simplified procedure for calculating temperature does not provide values for tem-
perature distribution. However, the average contact temperature can be estimatedwith reasonable accuracy. 16

TRACTION COEFFICIENT

In Couette flow 14 the shear stress can be calculated using the following expression:

τ ¼ ηG _γ (11)

Taking into account the non-Newtonian model proposed by Carreau, the generalised viscosity Equa-
tion (2) is used, and therefore, the following expression (12) is deduced for the friction coefficient by
integrating the shear stress in the contact area and dividing by the load.

μ ¼ 2
π
η0Δu
hcap0

∫
a

�a
e
αp0

ffiffiffiffiffiffiffiffiffiffiffi
1� x

að Þ2
q

1þ η0Δu
Ghc

e
αp0

ffiffiffiffiffiffiffiffiffiffiffi
1� x

að Þ2
q2

4
3
5
20

@
1
A

n�1
2

dx (12)

An analytical integration by parts can be performed when the Newtonian shear stress is substantially
greater than the parameter G in most of the contact area.15 In this way, Equation (13) is attained.

μ ¼ η0Δu
hc

� �n

G1�n 2
πp0

x

a
e
nαp0

ffiffiffiffiffiffiffiffiffiffiffi
1� x

að Þ2
q2

4
3
5
a

�a

þ 2nα
π

∫
a

�a

1
a

x

a

� �2 e
nαp0

ffiffiffiffiffiffiffiffiffiffiffi
1� x

að Þ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

a

	 
2q dx

0
BB@

1
CCA (13)

The process is followed by a variable substitution X= x/a, and thus a new integral is found,
which allows the use of the Gauss–Chebyshev quadrature for approximating the value of the inte-
gral to a finite series. This method can be formulated, in a general way, for a function f (X) as
follows:38
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∫
1

�1

f Xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p dX≈
π
I
∑
I

i¼1
f Yið Þ; where: Yi ¼ cos

2i� 1
2I

π
� �

: (14)

In this way, if we take f Xð Þ ¼ X2enαp0
ffiffiffiffiffiffiffiffi
1�X2

p
, a new expression (15) can be deduced for the fric-

tion coefficient, where Quad(I) denotes the Gauss–Chebyshev approximation with I terms, given
by Equation (15).

μ ¼ η0Δu
hc

� �n

G1�n 4
πp0

þ 2nα
π

Quad Ið Þ
� �

; with: Quad Ið Þ

¼ π
I
∑
I

i¼1
cos2

2i� 1
2I

π
� �

enαp0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2 2i�1

2I πð Þp
(15)

Table II presents the expressions obtained for the friction coefficient by retaining different num-
ber of terms in the series of the Equation (15). The corresponding formulae for the Newtonian case
can be easily deduced from Table II by making n=1. It is worth noting that the results obtained
with four and five terms have been discarded, because they involve more tedious expressions than
the case of six terms, whereas accuracy is expected to increase with the number of terms.
In order to find out the accuracy of the Gauss–Chebyshev approximation for different number of

terms in the series, it is compared to the results of the numerical solution of the integral term of
Equation (13). For this purpose, an interval of values for the group ‘n·α·p0’ is selected from 2 to 12,
which covers typical reference values of lubricants and Hertz pressures.14 Figure 2(a) depicts the re-
sults, where a good accuracy for the analytical approximation with six terms can be observed, with
a maximum error of 3% for values of the group ‘n·α·p0’ under 10. Nevertheless, the deviation becomes
higher in other approaches with less terms, namely I=1, I=2 or I=3. Therefore, Equation (16) is
selected for computing the friction coefficient.

μ ¼ η0
ΔU
hc

� �n

G1�n 4
πp0

þ nα
3

1þ
ffiffiffi
3

p

2

� �
enαp0

ffiffiffiffiffiffiffi
1
2�

ffiffi
3

p
4

p
þ nα

3
enαp0

ffiffi
2

p
2 þ nα

3
1�

ffiffiffi
3

p

2

� �
enαp0

ffiffiffiffiffiffiffi
1
2þ

ffiffi
3

p
4

p� �
(16)

As observed in Figure 2(b), the error increases for the highest values of the group ‘n·α·p0’. There-
fore, accuracy could be significantly reduced for unusually high values of ‘n·α·p0’, i.e. in case of

Table II. Friction coefficient formulae obtained for different number of terms in the series of the Equation (15).

Case Friction coefficient formula

I = 1 μ ¼ η0
ΔU
hc

� �n
G1�n 4

πp0

h i
I = 2 μ ¼ η0

ΔU
hc

� �n
G1�n 4

πp0
þ nαenαp0

ffiffi
2

p
2

h i
I = 3 μ ¼ η0

ΔU
hc

� �n
G1�n 4

πp0
þ nαe

nαp0
2

h i

I = 6 μ ¼ η0
ΔU
hc

� �n
G1�n 4

πp0
þ nα

3 1þ
ffiffi
3

p
2

� �
enαp0

ffiffiffiffiffiffiffi
1
2�

ffiffi
3

p
4

p
þ nα

3 e
nαp0

ffiffi
2

p
2 þ nα

3 1�
ffiffi
3

p
2

� �
enαp0

ffiffiffiffiffiffiffi
1
2þ

ffiffi
3

p
4

p� �
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extreme pressures, together with lubricants with very high viscosity–pressure coefficient and behav-
iour close to the Newtonian approach.

METHODOLOGY

The calculation process is similar to that presented in reference,16 adapted to line contacts through
modifications in the equations of Hertzian pressure (1), Newtonian film thickness (3), temperature rise
(9, 10 and expressions in Table I) and the new friction coefficient equation developed (16).
In summary, the procedure begins by applying the Hamrock’s film thickness equation (3) for the

Newtonian and isothermal approach. Later on, thermal effects and shear-thinning are considered
through formulae (4) and (5). Once the film thickness is known, the result of Equation (4) can be used
to determine whether thermal effects are significant, in line with references39 and40 i.e. when thermal
factor φT is close to one, the regime, can be considered approximately isothermal, and the friction
coefficient calculation is facilitated because viscous properties of the lubricant can be introduced at

Figure 2. (a) Comparison between the numerical solution and the analytical results for different number of
terms used in Quad(I). Note that for I= 1 the series in Equation (15) is identically zero; (b) error for the

analytical solution with six terms.
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bath temperature in expression (16). Otherwise, an iterative process is required for determining the
friction coefficient because the viscous properties of the lubricant used in the expression (16) depend
on the temperature, which in turn, varies with the friction coefficient.
Therefore, in the non-isothermal case, starting from a hypothesis on the average contact temperature

of the lubricant T, the viscous properties are evaluated at this temperature, and the friction coefficient is
computed with Equation (16). Then, the temperature is calculated using expressions of Table I, to-
gether with Equations (8), (9) and (10). This iterative cycle is repeated until convergence of the initial
hypothesis and the calculated value of temperature. Once this process is finished both the friction co-
efficient and contact temperature are determined.

EXPERIMENTATION

The theoretical results are compared with those given by experimental measurements of the traction (or
friction) coefficient, performed on the MPR tribological equipment developed by PCS-Instruments
(www.pcs-instruments.com), shown in Figure 3. This equipment is comprised of a set of three rings
with the same diameter (54mm) positioned apart, with a smaller diameter (12mm) roller located in
the middle, in line contact with all the rings. The set of the three rings and roller are driven by inde-
pendent motors, therefore allowing different combinations of velocity and slide-to-roll ratio. A lubri-
cation system ensures appropriate lubrication of the contact, and an electric cartridge heater is used
to adjust the temperature of the lubricant. A loading arm can apply load on the top ring while the lower
rings remain fixed. Due to the contact symmetric configuration, the force on each lower ring is equal in
magnitude to that applied by the top one. Figure 3 shows the detailed geometry of the roller: the rolling

Figure 3. Overview of the MPR and detail of the test zone. Contact width of the roller.
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track has a contact width of 1mm, with symmetrical chamfers on both sides in order to avoid stress
peaks on the edges.
The lubricant chosen is a polyalphaolefin base lubricant PAO-6, whose pseudoplastic behaviour has

been reported in references,15,41 in line with other PAOs.6,14,28 The physical properties of this fluid
were measured in the laboratory and are shown in Table III, giving a temperature–viscosity coefficient
of 0.033K�1. The parameters n and G of Carreau’s model and the thermal conductivity at 80°C are
approximately: 15 n=0.81, G=0.1MPa and Kl=0.15W(mK)�1.
Both the properties of the PAO-6 and the operating conditions used in the experiments lead to a

range of ‘n·α·p0’ where the intrinsic error of the friction coefficient formula is under 3%, according
to Figure 2(b). The contact material for the rings and the rollers is 16MnCr5 case carburised steel,
which presents a Young’s modulus of 210GPa, a Poisson’s ratio of 0.3, a thermal conductivity of
41W(mK)�1 and a thermal diffusivity of 0.12 cm2 s�1 approximately. Highly polished rings and rol-
lers are used (RMS roughness lower than 15 nm) in order to ensure EHL conditions for traction calcu-
lations, according to references.42–45 Testing conditions selected are as follows: bath temperature (Tb)
of 80°C, average velocities (um) of 1.5 and 2m s�1, loads of 100Nmm�1 and 150Nmm�1, and slide-
to-roll ratios from 0 to 190%.

RESULTS AND DISCUSSION

Detailed application of the new model to the PAO-6

According to the methodology explained in ‘Methodology’, the process begins using Hamrock’s for-
mula for film thickness and its ensuing modifications for thermal effects and shear-thinning. Figure 4
shows the calculations of film thickness as a function of the slide-to-roll ratio, at a bath temperature of
80°C, for different average velocities and loads. The results are compared with those of Hamrock’s
equation, also depicted in Figure 4.
Then, the iterative calculation process is used to determine the average contact temperatures, the re-

sults of which are shown in Figure 5. It can be observed that the temperatures found are significantly
high, mainly for the highest loads and velocities. Table IV presents an example of the simple iterative
calculation, performed until the convergence of the contact temperature, starting from a hypothesis of
100°C. It corresponds to an average velocity of 2ms�1, 100Nmm�1 load, bath temperature of 80°C
and SRR=190%.
Although not required within the calculation process, an intermediate result of interest derived from

the model is the shear stress profile in the contact half-width. Figure 6 compares the shear stress in the
isothermal and thermal cases for SRRs of 50 and 150%, loads of 100 and 150Nmm�1, average

Table III. Physical properties of the polyalphaolefin PAO-6.

T (°C) η0 (mPa s) α (GPa�1)

30 37.95 12.3
40 25.00 11.5
60 12.57 10.1
80 7.36 9.0
100 4.78 8.2
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velocity of 2ms�1 and bath temperature of 80°C. The increase of SRR or load leads to moving the
results away from the isothermal behaviour.
Finally, Figure 7 compares the experimental friction coefficient with the corresponding predictions

attained using the isothermal and thermal analytical approaches for a bath temperature of 80°C, under
loads of 100 and 150Nmm�1, and average velocities of 1.5 and 2ms�1. It is worth noting that each
traction coefficient value in Figure 7 corresponds to an average value of several series of 28

Figure 5. Examples of temperature calculation for the PAO-6, at Tb= 80°C.

Table IV. Iterative process for calculating the contact temperature and the friction coefficient.

Iteration Hypothesis T (°C) Friction coefficient, μ Calculated T (°C) Deviation (°C)

First 100.00 0.0514 132.34 32.34
Second 110.00 0.0304 111.69 1.69
Third 110.50 0.0296 110.91 0.41
Fourth 110.70 0.0293 110.61 �0.09
Fifth 110.65 0.0294 110.68 0.03

Figure 4. Examples of film thickness calculation for the PAO-6, at Tb= 80°C. The horizontal lines represent
the results obtained using Equation (3).
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Figure 6. Calculating shear stress in the contact area. Examples for 2m s�1 and Tb= 80°C.

Figure 7. Comparison of analytical and experimental results for the friction coefficient of a PAO-6 using
both isothermal and thermal approaches for different loads, average velocities and SRRs.
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measurements under the same testing conditions in the MPR. Control steps are used during the test to
check repeatability. After finishing the test with a set of rings and a roller, the same test is repeated
using new samples. By the way of example, Figure 8 presents results of different repetitions, along
with their means and deviations, which show a reasonably good repeatability.
As observed in Figure 7, the isothermal model overestimates the friction, whereas the thermal one

more accurately predicts the friction coefficient. These results are in line with the contact temperatures
shown in Figure 5, which demonstrates a non-isothermal behaviour of the contact except for low SRRs.

Figure 8. Repeatability analysis of the tests: (a) um= 2m s�1, SRR= 10%, W/L= 100Nmm�1; (b)
um=2m s�1, SRR= 10%, W/L= 150Nmm�1.

Figure 9. Comparison of the new analytical model with the results published in references 46,47 for different
lubricants and operating conditions.
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The effect of increasingly heating with the rise of SRR is also observed in Figure 6 because shear stress
results differ more and more from the isothermal result.

Application of the model to other lubricants

As for applying the model described in this paper to other lubricants, the main difficulty found is the
limited information available about the rheology of the lubricants under the extreme operating condi-
tions of pressure, temperature and slide velocity, which are typical in EHL. Nevertheless, for lubricants
whose rheological properties are known, a reasonably accurate prediction of the friction coefficient is
attained.
By way of example, Figure 9 shows a comparison between the traction coefficient data published for

both Newtonian and pseudoplastic lubricants 46,47 and predictions of the model presented in this paper.
The rheological properties of the lubricants used in this study are taken from references,14,21,46–51 as
summarised in Table V. The parameter ‘n·α·p0’ has been calculated in all the cases to ensure an intrin-
sic error in the friction coefficient formula under 3%, according to Figure 2(b). In every case, the fric-
tion coefficient results obtained for the new model show good correlation with the experimental data
and the simulation results presented by other authors, with an average deviation of 12%. Significant
thermal effects can be appreciated by comparing isothermal and thermal approaches, although in some
cases the isothermal result is omitted for clarity purposes. Furthermore, taking into account the cases
where film thickness and temperature predictions are available,13,49 Table VI suggests a good agree-
ment of the new model with the results published.

Table V. Rheological properties of other lubricants.14,21,46–51 Average values of n and G were fitted
through experimental results in references.14,21,47

Lubricant Tb (°C) η0 (mPa s) α (GPa�1) n G (MPa)

MIL-L-23699 50 15.5 9.6 0.3 4.0
PAO-100 70 181.0 10.9 0.625 1.5
Newtonian 40 40.0 8.9 1.0 ∞
PDMS 26 491.0 16.42 0.33 0.13

Table VI. Comparison of dimensionless film thickness and contact temperature of the new model with
other published data. Results for a Hertz maximum pressure of 1GPa.

Reference Kumar & Khonsari Lee & Hsu This paper

SRR (%) um (m s�1) h0R/a
2 T (°C) h0R/a

2 T (°C) h0R/a
2 T (°C)

10 3.96 0.0895 60.29 0.0853 61.31 0.0720 58.87
10 6.05 0.1140 68.37 0.1084 69.76 0,0896 67.02
20 3.96 0.0858 78.63 0.0815 80.00 0.0708 75.11
20 6.05 0.1090 88.85 0.1045 90.09 0.0872 85.48
30 3.96 0.0824 91.52 0.0783 93.09 0.0700 86.81
30 6.05 0.1049 102.66 0.1006 104.46 0.0851 98.39
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CONCLUSIONS

Bearing in mind the good results of the analytical thermal elastohydrodynamic model presented previ-
ously for point contacts, an analogue method has been proposed in this paper for line contacts. For this
purpose, a new formula has been developed for predicting the friction coefficient. The results of the
new analytical model have been validated experimentally and with the predictions of other authors.
Once the accuracy has been verified, it is important to note that a major advantage of the new model

is its simple and analytical formulation, leading to a method suitable for calculation by hand. Although
the implementation of the process in a spreadsheet facilitates its use, neither specific software nor
specialised personnel are required.
Therefore, we hope that the new model will be useful from a practical standpoint, due to its easy,

quick and reliable predictions of friction, film thickness and contact temperature in thermal
elastohydrodynamic line contacts.
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