
Multi-class Boosting for Imbalanced Data 

Antonio Fernandez-Baldera1, Jose M. Buenaposada2, and Luis Baumela1

1 Dept. de Inteligencia Artificial, Universidad Politecnica de Madrid, Madrid, Spain 
antonio.fbaldera©upm.es, lbaumela©fi.upm.es 

2 ETSII, Universidad Rey Juan Carlos, Madrid, Spain 
josemiguel.buenaposada©urjc.es 

Abstract. We consider the problem of multi-class classification with imbalanced data­
sets. To this end, we introduce a cost-sensitive multi-class Boosting algorithm 
(BA daCost) based on a generalization of the Boosting margin, termed multi-class cost­
sensitive margin. To address the class imbalance we introduce a cost matrix that weighs 
more hevily the costs of confused classes and a procedure to estimate these costs from 
the confusion matrix of a standard O i l-loss classifier. Finally, we evaluate the 
performance of the approach with synthetic and real data-sets and compare our results 
with the AdaC2.Ml algorithm. 

1 Introduction 

Imbalanced classification problems are characterized for having large differences 
in the number of samples in each class. This frequently occurs in complex 
data-sets, such as those involving class overlap, small sample size, or within­
class imbalance. In this situation, standard classifiers perform poorly since they 
minimize the number of misclassified training samples disregarding minority 
classes [1]. Solutions to the class imbalance problem may be coarsely orga­
nized into data-based, that re-sample the data space to balance the classes, and 
algorithm-based approaches, that introduce new algorithms that bias the learn­
ing towards the minority class [1]. Boosting methods have been extensively used 
to address the problem of classification with imbalanced data-sets [1, 2] and cost­
sensitive classification for two-class problems [3-5]. However, with the exception 
of AdaC2.Ml [2], no previous work has addressed the problem of multi-class 
Boosting in presence of imbalanced data. 

In our proposal we merge both multi-class and cost-sensitive perspectives 
into a new Boosting algorithm, BAdaCost, that stands for Boosting Adapted 
for Cost-matrix. We introduce the concept of Multi-class Cost-sensitive Margin, 
which serves as link between multi-class margins and the values of the cost 
matrix, both of them considered as argument of a loss function. We also present 
a procedure to estimate this matrix from the confusion matrix of a standard 0I1-
loss classifier. We justify BAdaCost's good properties in a set of experiments. 
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2 Background 

In this section we briefly review some Boosting results related to our proposal. 
We start by introducing AdaBoost [6]. Given N training data instances {(xi, li)}, 
where xi E X encodes the object to be classified and li E L = { + 1, -1} is the 
class label, the goal of AdaBoost is learning a strong classifier sign(H( x)) = 

sign(I:;::;= 1 Pm Gm ( x)) based on a linear combination of weak classifiers, Gm : 
X --+ L. At each round m, a direction for classification, Gm(x) = ±1, and a step 
size, Pm are added to an additive model whose goal is to minimize the empirical 
risk of the Exponential Loss Function [7], £. (l, Gm(x)) = exp(-l Gm(x)), defined 
over z = l Gm(x), usually known as the margin [8]. 

2.1 Multi-class Boosting with Vectorial Encoding 

A successful way to generalize the symmetry of class-label representation in the 
binary case to the multi-class case is using a set of vector-valued codes that 
represent the correspondence between the multi-class label set L = {1, . . .  , K} 
and a collection of vectors Y = {y1, ... , YK }, where Yk has a value 1 in the kth 
coordinate and ;_11 elsewhere. It is immediate to see the equivalence between 
classifiers G defined over L and classifiers g defined over Y, G(x) = l E L ¢? 
g(x) = Yt E Y. Zou, Zhu and Hastie [8] used this codification to generalize the 
concept of binary margin to the multi-class case using a related vectorial codifi­
cation in which a K-vector y = (y1, ,  ... , YK) T is said to be a margin vector if it 

satisfies the sum-to-zero condition, 2::�1 Yi = 0. The SAMME algorithm gener­
alizes the binary AdaBoost to the multi-class case [9]. It uses the above codifica­
tion and an exponential loss whose risk is minimized using a stage-wise additive 
gradient descent approach. In this loss function the binary margin, z = lG(x), 
is replaced by the multi-class vectorial margin defined with a scalar product, 
z = y T g(x), producing the Multi-class Exponential Loss Function (MELF), 

£. (y, g(x)) =exp (-YT �(x)). 

In this paper we generalize the class-label representation here described so 
that our Boosting algorithm can model the asymmetries arising when training 
on an unbalanced data set. 

2.2 Cost-Sensitive Binary Boosting 

Classifiers that weigh certain types of errors more heavily than others are called 
cost-sensitive. They are used for example in medical diagnosis and object detec­
tion problems. Optimal cost-sensitive Boosting in two-class problems has been 
already studied in the literature [3-5]. The solution in [3] is based on minimiz­
ing the Cost-sensitive Binary Exponential Loss Function (CBELF) L.(l, f(x)) = 
I(l = 1) exp (-lCif(x)) + I(l = -1) exp (-lC2f(x)), where I(-) is the indica­
tor function and CJ are the costs of the two possible errors. Classification with 
imbalanced data-sets is a typical cost-sensitive problem. To counter balance the 
bias in the data we want the classifier's loss function to under-weigh errors from 



the majority class. In this paper we generalize the Cost-sensitive AdaBoost [3] 
to the multiple-class case and use it to solve imbalanced problems. 

3 Multi-class Cost-Sensitive Margin 

In this section we introduce the multi-class cost sensitive margin, based on which 
we derive the BAdaCost algorithm. Let us suppose the misclassification costs for 
our multi-class problem are encoded using a K x K-matrix C, where each value 
C( i, j) represents the cost of misclassifying an instance with real label i as j. We 
can assume without loss of generality [10] that C( i, i) = 0, Vi E L, i.e. the cost 
of correct classifications is null. We introduce an essential change in the MELF 
to handle this kind of problems. Firstly, let C* be a K x K-matrix defined in 
the following way 
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For our cost-sensitive classification problem each value C* (j, j) will represent a 
"negative cost" associated to a correct classification, i.e. a "reward". 

The jth row in C*, denoted as C(j, -), is a margin vector that encodes 
the cost structure associated to the jth label. By using it we can define the 
multi-class cost-sensitive margin value for an instance (x, l ) with respect to the 
multi-class vectorial classifier g( · ) as zc : =  C* ( l, -) · g( x) . It is easy to verify that 
if g(x) =Yi E Y, for a certain i E L, then C*(l, -) · g(x) = KK_l C*(l, i) . Hence, 
multi-class cost-sensitive margins obtained from a discrete classifier g : x --+ Y 
can be computed using the "label valued" analogous of g, G : x --+ L, zc = 
C* (l ,  -) · g(x) = KK_1 C* (l ,  G(x) ). We use this generalized margin as argument 
for the MELF in order to obtain the Cost-sensitive Multi-Class Exponential Loss 
Function ( CMELF ) , L.c(l, g(x)) : =  exp(zc) =exp (C* (l ,  -) · g(x)) , as the loss 
function for our problem. Although any other margin-based loss functions could 
have been used, we use the exponential loss to maintain the similarity with the 
original AdaBoost algorithm. The new margin, zc, yields negative values when 
classifications are correct under the cost-sensitive point of view, and positive 
values for from costly (wrong) assignments. Moreover, the range of margin values 
of zc is much broader than the z = ±1 values of AdaBoost. 

The CMELF is a generalization of the MELF and CBELF. Let C011 be the 
cost matrix with zeros in the diagonal and ones elsewhere. This matrix encodes 
a multi-class problem free of costs. Further, it is well known that any matrix 
>.C011, with >. > 0, represents the same problem [10]. If we take into account 

that y T g(x) has two possible values ( KK__1 when correct and (K--�)2 for errors) 

it is straightforward to prove that K(�-l) C011 will lead exactly to the same 

values of MELF when applied over the CMELF. In other words, the MELF is 
a particular case of the CMELF. On the other hand, it is also immediate to see 
that for a binary classification problem the values of C* lead to the CBELF. 
Hence, it is a special case of CMELF as well. 



Vectorial classifiers, f(x) = (!1 (x), . . .  , f K (x)) T, provides us with a degree of 
confidence for classifying sample x into every class. Hence, they use the max rule, 
arg maxk=l, ... ,K fk(x), for label assignment [9, 11]. It is immediate to see that 
this criterion is equivalent to assigning the label that maximizes the multi-class 
margin, arg maxk=l, ,K YU(x) = arg mink=l, ,K -yU(x). Since -yU(x) is 
proportional to c�11(k, -)T f(x), we can extend the decision rule to the cost­

sensitive field just by assigning arg mink=l, ,K C*(k, -)f(x). 

4 BAdaCost: Boosting Adapted for Cost-Matrix 

In this section we present the BAdaCost, a multi-class cost-sensitive Boosting 
algorithm. As we have defined the CMELF and given a training sample {(xi, li)} 
we minimize the empirical expected loss, I::=l L.c(ln, f(xn)). The minimiza­

tion is carried out by fitting an additive model, f(x) = I:�=l Pmgm(x). The 
weak learner selected at each iteration m will consists of an optimal step of size 
Pm along the direction gm of the largest descent of the expected CMELF. In 
Lemma 1 we show how to compute them. 

Lemma 1. Under the above assumptions, both Pm and gm are given by mini­
mizing: 

(iJrn, grn(x)) = arg mint (sj exp ((JC*(j,j)) + L Ej,k exp (f)C*(j, k))) , (2) 
;3,g(-) j=l k"f'j 

where the values of sj = L:{n:G(xn)=ln=j} Wn, Ej,k = L:{n:ln=j,G(xn)=k} Wn and 

Wn = Wnexp (Pm C* (Zn, -) 9m ( Xn)). Given a known direction g, the optimal step 
p(g) can be obtained as the solution to 

K K 

L L°,Ej,kC*(j, k)A(j, kl= -L S1C*(j,j)A(j,jl, (3) 
j=l k"f'j j=l 

being A(j, k) = exp( C* (j, k) ) ,  Vi, j. Finally, given a value of p, the optimal 
descent direction g, equivalently G(-) , is 

The BAdaCost pseudo-code is shown in Algorithm 1. At each iteration, we 
add a new multi-class weak learner gm : X --+ Y to the additive model weighted 
by Pm, a measure of the confidence in the prediction of gm. The optimal weak 
learner that minimizes (Eq. 4) is a cost-sensitive multi-class classifier trained 
using the data weights, wi, and a modified cost matrix, Cwz, with Cwz(i, j) = 
A(i, j)I', 'ili, j. 



Algorithm 1. BAdaCost 
1: Input: Cost matrix C, N labeled training instances (X, Y) and number of itera­

tions M 

2: Output: The trained weak learners and weights (Grn,f3rn), m = 1, ... , M 

3: 

4: Initialize weight vector w E JF!(N, with Wi = 1/N; Vi= 1, . . .  , N. 
5: C* := computeFullCostMatrix(C) { Using equation {1) } 
6: for m =  1, ... , M do 

7: {3 := 1; c := oo; .1c := oo. 
8: while .1c 2: / do 

9: Cwz := computeWLCostMatrix(C*, {3) . 

10: G := trainMulticlassCostSensitiveWL(X, Y, w, Cwz ). 
11: {3 := computeBeta(C*, G, w, Y) { Solving equation {3)} 
12: Cnew := computeCost(C*, G, w, Y, {3) { Using {3 and G in equation {2) } 
13: .1c := C - Cnew; C := Cnew. 
14: end while 

15: Grn := G; f3rn := {3. 
16: Translate Grn into grn : X ---+ Y. 
17: Update weights Wi = Wi exp (f3rnC*(li,-)grn(xi)) for i 

normalize vector w. 

18: end for 

1, . . .  , N, and re-

19: Output Classifier: H(x) = arg mink C*(k, -)f(x), where f(x) = L�=l f3rngrn(x). 

5 Experiments 

In this section we experimentally evaluate BAdaCost's accuracy on imbalanced 
data-sets. In our experiments we use CART weak-learners and regularize our 
Boosting algorithm using shrinkage and re-sampling. 

5.1 Cost Matrix Construction 

A preliminary issue when using a cost-sensitive algorithm for solving an imbalance 
problem is establishing the cost matrix, C. A straightforward solution would be 
to set the costs inversely proportional to the class imbalance ratios. However, this 
solution does not take into account the complexity of the classification problem. 
i.e. the amount of class overlap, within-class imbalance, etc. Here we introduce an 
alternative solution that considers the problem complexity. To this end we intro­
duce a cost matrix that weighs more hevily the errors of poorly classified classes, 
hence the classifier will concentrate on the difficult minority classes. 

Let F be the confusion matrix and F* the matrix obtained when dividing 
each row i, F(i, -),  by F(i, · ) = L:j F(i, j), i.e. the number of samples in class i. 
Then F* ( i, j) is the proportion of data in class i classified as j. In a complex 
and imbalanced data-set, a Oil-loss classifier (e.g. BAdaCost with Oil-losses) will 
tend to over-fit the majority classes. So, off-diagonal elements in rows F* ( i, -) for 
majority (alt. minority) classes will have low (high) scores. Hence, the resulting 
matrix after setting F* ( i, i) = 0, Vi = 1 . . .  K is already a cost matrix. Finally, 
to improve numerical conditioning, we set C = .AF*, for a small ..\ > 0. 



5.2 Synthetic Datasets 

The aim of this synthetic experiment is to visually analyze the performance of 
BAdaCost. We sample data from 2D Mixtures of Gaussian (MoG) probability 
distributions (see Fig. la) that represent a typical multi-class computer vision 
object detection problem. Two minority classes represent the target objects (col­
ored areas in Fig. la) and a majority class that represents the background (black 
area in Fig. la). For training we sample 500 data for each class 1 (red) and 2 

(green), and 5000 samples for class 3 (black). We also sample 1000 data from 
each class for testing. We run BAdaCost twice, firstly using a Oil cost matrix 
(see results in Fig. 1 b) and in second place using a cost matrix built as described 
in Sect. 5.1 (see results in Fig. ld). 

In Fig. le we can see that, for Oil costs, training error evolves close to zero, 
whereas the testing error rate in a balanced data set levels-off above 0.4. This is 
an expected behavior, since this classifier optimizes the number of misclassified 
training samples, which come mostly from the background class, thus overfitting. 
Note here that, altough the classes are imbalanced, the error rate is a meaningful 
classification measure because the testing data set is balanced. W hen using a cost 
matrix, see Fig. le, we get a much better testing error rate of 0.2. The training 
error rate in this case is higher than that for the 0 I l cost matrix. This is also as 
expected, since the cost matrix has effectively moved the class boundary towards 
the majority class. 

To visually appreciate the effect produced when training with an unbalanced 
data-set and the benefits of BAdaCost, in Fig. 1 b and d we show respectively the 
result of classifying all points on a grid in the feature space of this problem with 
the Oil and the imbalanced cost matrix. We can see a much better reconstruction 
using the imbalanced cost matrix. 
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Fig. 1. Synthetic experiment 1. Simulated computer vision object detection problem 
with majority background class (black) (Color figure online). 

5.3 Real Data-set: Synapse and Mitochondria Segmentation 

In the last years we have seen advances in the automated acquisition of large 
series of images of brain tissue. The complexity of these images and the high 
number of neurons in a small section of the brain, makes the automated analysis 



of these images the only practical solution. Mitochondria and synapses are two 
interesting cell structures that will be the object of detection. Unfortunately, 
the proportion of them w.r.t. the background is quite small, which makes the 
problem highly skewed. In our experiment we used an image stack obtained from 
the somatosensory cortex of a rat, with a resolution of 3.686 µ,m per pixel. The 
thickness of each layer is 20 µ,m [12]. From this data set we collected a training 
set composed of 10,000 background, 4000 mitochondria and 1000 synapse data 
and a testing set with 20,000 data per class. 

In this section we use the BAdaCost algorithm to label pixels in these images 
as mitochondria, synapse and background, and compare the results with those 
achieved by the AdaC2.Ml algorithm. Following [12], we apply to each image 
in the stack a set of linear Gaussian filters at different scales to compute zero, 
first and second order derivatives. For each pixel we get a vector of responses 
S = (soo, s10, soi, so2, s11, so2) that are respectively obtained applying the filters 

a a 2 a2 2 a2 2 a2 
• 

G,'*, er·G<Y *ax, er·G<Y *By, er ·G<Y * ax2, er ·G<Y * Bxy, er ·G<Y * ay2 where G<Y is a zero 
mean Gaussian with er standard deviation. For a given er the pixel feature vector 
is given by f (er) = (soo, Jsi0 + s61, ..\1, ..\2) where ..\1 and ..\2 are the eigenvalues 
of the Hessian matrix of the pixel, that depend on s20, so2 and s11. The final 
16 dimensional feature vector for each pixel is given by the concatenation of the 
f (er) vector at 4 scales (values of er) . 
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Fig. 2. Brain images experiment with a heavily imbalanced data-set. 

In this experiment we compare BAdaCost (with Oil costs), AdaC2.Ml and 
BAdaCost (with the imbalanced cost matrix described in Sect. 5.1). In Fig. 2 we 
show the training and testing classification errors of the three algorithms. The 
behavior of BAdaCost in the real experiment is similar to those obtained with 
synthetic data. The 0I1-cost classifier has lower training error and higher testing 
error, whereas the the classifier with imbalanced cost matrix achieves the best 
generalization on the test set. The AdaC2.Ml classifier with imbalanced matrix 
achieve marginally better results than the Ol 1-cost BAdaCost, but clearly worse 
than the imbalanced BAdaCost. 



6 Conclusions 

In this paper we have addressed the problem of multi-class classification with 
imbalanced data-sets. By extending the notion of multi-class margin to the cost­
sensitive margin we introduced the BAdaCost algorithm and a procedure to 
estimate the cost matrix from the Ol 1-loss confusion matrix. We have shown 
experimentally that BAdaCost performs as expected from a cost-sensitive algo­
rithm and outperforms the AdaC2.Ml when dealing with imbalanced data. 
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