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Abstract

To date, running robots are still outperformed by animals,
but their dynamic behaviour can be described by the same
model. This coincidence means that biomechanical studies
can reveal much about the adaptability and energy effi‐
ciency of walking mechanisms. In particular, animals
adjust their leg stiffness to negotiate terrains with different
stiffnesses to keep the total leg-ground stiffness constant.
In this work, we aim to provide one method to identify
ground-robot impedance so that control can be applied to
emulate the aforementioned animal behaviour. Experi‐
mental results of the method are presented, showing well-
differentiated estimations on four different types of terrain.
Additionally, an analysis of the convergence time is
presented and compared with the contact time of humans
while running, indicating that the method is suitable for
use at high speeds.

Keywords running robot, adaptability, ground-robot
impedance

1. Introduction

Although there are only a few agile legged machines,
research into faster robots is increasing [2, 20, 22, 26, 38, 39,

42]. Nevertheless, these robots are still outperformed by
animals. Thus, there remains a lot to learn from their
biological counterparts, particularly in the case of adapta‐
bility and endurance.

It is generally accepted that a spring-loaded inverted
pendulum (SLIP), i.e., a point mass on a simple Hookean
spring, models the basic dynamics of running remarkably
well. This model explains the mechanics of running of
several animals, including humans [1, 8, 9, 11, 14, 17, 35].
Moreover, it has been applied to describe the dynamic
behaviour of running robots [2, 19, 41]. This coincidence
implies that the conclusions obtained from studies of
animal-running dynamics should also be applicable to
robots.

The stiffness of the leg spring (the spring used to model the
energetics of running) is an important parameter in the
dynamics of running because it influences contact time and
stride frequency [15, 36]. Biomechanical studies of running
reveal that animals, including humans, can adjust the
stiffness of their leg spring. Experimental data show that
this adjustment depends on velocity [3], stride frequency
[15] and surface stiffness [16, 28, 37].

Changes of stiffness to increase velocity are small, and the
same effect can be achieved by increasing the leg stride
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(angle swept by the leg) while maintaining the same stride
frequency [14]. Moreover, stiffness changes depending on
stride frequency are made to preserve a certain velocity
[15]. In contrast, stiffness changes made to accommodate
different surface stiffnesses have more important conse‐
quences. First, if the same leg stiffness is used on every
surface, the body can be put out of balance whenever an
abrupt change in the surface stiffness occurs; however,
adjusting the stiffness offers a smooth transition between
surfaces [17]. Second, adjusting the leg stiffness to accom‐
modate different terrains can lead to more efficient running
because increasing the leg stiffness as the terrain stiffness
decreases leads to less mechanical work being done by the
leg and more mechanical work being done by the terrain
[18]. In other words, by adjusting the leg stiffness to
accommodate terrain adaptability, energy efficiency can be
enhanced.

To extrapolate this conclusion to legged robots, one
important consideration is how to know when the stiffness
adjustment must be performed. Animals, or at least birds
[12] and humans [17], change their leg stiffness before
stepping onto a new surface when they are knowingly
changing surfaces. Nonetheless, the question remains as to
how they adjust leg stiffness one the first occasion, when
the surface is unknown. This question leads to the idea that
some sort of information about ground stiffness must be
acquired directly from the surface (on at least) the first time
they step on it while running.

The aim of this study is to provide a method to obtain
ground stiffness information with a legged robot rather
than to propose methods to adjust leg stiffness, although
much research effort is being put into solving the latter
problem [5, 7, 24, 25, 27]. Nevertheless, this application is
kept in mind throughout the paper. The reason for this
approach is that identifying the leg-ground stiffness while
running must be treated as an independent problem due to
the various application restrictions (these restrictions will
be clarified in the next section). Additionally, the ultimate
goal of our identification method is not to estimate the
ground stiffness as accurately as possible but rather to
estimate the robot-ground interaction properties, which are
the control target.

Another important reason for this study is that, in real-
world conditions, it is not possible to predict every contact
surface that will be encountered. Nevertheless, it might be
possible to store the information of ground stiffness
beforehand in order to adjust the robot’s leg stiffness using
some type of perception, although perception (e.g., vision)
has its limits in detecting different surfaces; for example,
two different terrains might be hidden under a given cover.
For this reason, in order to obtain information about the
terrain, we propose to use an event-driven system identi‐
fication method. This method is based on the well-known
recursive least squares (RLS) method [23, 33] and aims to
estimate the parameters of the ground as modelled as a
spring dashpot. The RLS method was chosen because it is

computationally efficient, allowing online computation,
and because it has shown good convergence and accurate
results in similar applications.

This paper is organized as follows. Section 2 presents the
contact model we used as well as a brief summary of the
detail, and the necessary considerations for its application
are established. Section 4 describes the experimental setup
and the implementation of the algorithm on a leg proto‐
type. In Section 5, the experimental results are presented,
and finally, the conclusions are provided in Section 6.

2. Background

Most of the biomechanics research on the adaptability of
humans and other animals to different terrains has focused
on leg stiffness [3, 12, 14–17, 28, 35–37]. However, there are
studies that show that the centre of mass (COM) of humans
running on dissipative materials (such as sand) follows a
bouncing motion with the same stride frequency as on hard
surfaces [31, 43]. For this reason, to incorporate an estimate
of the energy dissipation, the contact model chosen in this
work was the spring dashpot model [7, 21]:

 d d= + &
cF k b (1)

where Fc is the contact force, δ is the displacement of the
ground, and k and b are the stiffness and damping con‐
stants of the surface, respectively. This particular model
was also chosen because it is linear and thus relatively easy
and quick to identify. Other more complex models that
describe the contact dynamics more accurately are nonlin‐
ear and require special techniques of system identification,
more execution time, and frequency-richer data than the
data that can be obtained using a legged robot (while
walking or running). The relatively poor frequency
information of the data obtained using a legged robot is
because the types of signals that can be given to excite the
ground mechanical system using a legged robot are
limited; other specialized signals that allow for the extrac‐
tion of frequency-rich information can cause the robot to
lose balance, which is undesirable.

As stated above, the identification procedure was devel‐
oped based on the well-known RLS method for system
identification. This choice is justified by the fact that it offers
a low modelling error (defined in the next section) when
used in similar applications, e.g., identifying the contact
properties of a determined surface [4]. Here, a brief
summary of the RLS method is provided for the sake of
completeness. However, the interested reader is referred to
the specialized literature [10, 23, 33].

2.1 RLS method

The RLS method consists of applying the least squares
criteria to minimize the modelling error of a process
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expressed as a linear regression, and it can be summarized
as follows:
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were θ̂k  is the vector of the parameters describing the
system, Lk is a matrix related to the inverse of the measured
covariance matrix of the samples, Pk is the inverse of the
measured covariance matrix of the samples, φ is a vector
grouping the inputs and outputs of the system, yk is the
present output of the system, λ is a design parameter
termed the ’forgetting factor ’, and the sub-index k indicates
the present iteration of the algorithm.

It is important to note that this algorithm can cause matrix
P to become negative because of round-off errors; to avoid
this situation, we have used Bierman’s U-D factorization
algorithm [32] to compute matrix P and update matrix L.

Note that equation (1) is a linear differential equation, not
an autoregressive process. Nonetheless, it can be trans‐
formed into a linear regression by simply rewriting the
equation as follows:

  d j q= T (5)

where:

 ,j dé ù= -ë û
&T F (6)

 / , /[ 1 ] q =T b k k (7)

Thus, the modelling error is defined as:

d j q= - TE (8)

It is important to note that equation (1) can be written in
different forms. To clarify the choice of equation (7), let
verr denote the unknown modelling errors and the noise in
the measurements of the regression (i.e., force, velocity and
position). As such, we can write the estimations as:

1 1d d j q= + + Þ = +& T
c err c errF k b v F v (9)
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Now, if we apply a least squares estimation to the above
equations, this yields [33]:

( )1 1 1
ˆ M q q j w- = (12)

( )2 2 2
ˆ M wq q j- =

k
(13)

( )3 3 3
ˆ M wq q j- =

b
(14)

where M(φi) is a matrix that depends on the regressor and
w is a vector containing the modelling errors and the noise
in the measurements. These last equations can be used to
find and upper bound in terms of the largest singular value
of the matrix M(φi). Let us denote this singular value as σmax

(M(φi)). Thus, we can write the upper bound as:

( )( )11 1q̂ q s j w- = max M (15)

22 2
ˆ ( ( ))

w
q q s j- = max M k (16)

33 3
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w
q q s j- = max M b (17)

The previous analysis suggests that if the maximum
singular values are equal, then equation (??) provides the
best estimate. Moreover, the results of a comparison
between the results applied to the data will be provided
further below.

Now, using the linear regression form of equation (1), it is
possible to apply the RLS method directly to the identifi‐
cation problem. However, because our intention is to use
the algorithm in a legged robot (namely, to identify the
contact properties of the ground using legs), a few concerns
arise: When should the identification start? How are the
samples taken? Is it necessary or even practical to use the
system identification during the whole gait cycle? The next
section is devoted to answering these questions and it
describes in detail the system identification procedure
proposed in this work.
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3. Identification procedure

Before describing the identification procedure, it is useful
to review the literature concerning haptic interfaces. In that
field, several studies have focused on recognizing the
dynamic properties of manipulated objects [13, 29, 30, 34].
These studies have mainly used two approaches: active
sensing methods [34], which offer precise and accurate
estimations of the properties in the presence of noise, but
which require specialized control techniques; and passive
sensing methods [13, 29, 30], in which the identification
procedure is independent of control but which are less
efficient [29].

3.1 Basic considerations

Although the application addressed in this paper is
different and some necessary considerations may differ,
some of the conclusions of the previous work on haptic
interfaces still apply. Active sensing, although more
precise, is not suitable for use in legged robots because
using a specialized control method for the identification
would disrupt the robot running behaviour, which might
cause destabilization. Moreover, active sensing methods
continuously preform the system identification. On the
other hand, the system identification literature establishes
that identifying a system in equilibrium is useless because
information about its dynamic behavior cannot be ob‐
tained. This implies that the identification should start as
soon as the foot touches the ground and cease when the foot
leaves the ground or the contact has been stabilized
Therefore, passive sensing is the logical choice.

Considering this last remark, one possible state diagram of
the identification procedure can be envisaged (see Figure 1).

This state machine consists of two basic states: (a) the "idle"
state, in which all of the matrices and vectors of the
identification method are reset to their original values and
wait until the leg contacts the ground (in this case, it goes
to the next state); and (b) the "identify ground impedance"
state, which performs the system identification according
to the RLS method described in the previous section.

Note that the "idle" state is said to reset the system identi‐
fication algorithm. This feature is not strictly necessary if
the robot steps on the same surface more than once. In fact,
using the estimates of a prior identification with a given
surface might enhance the accuracy of the estimation.
Nevertheless, we chose to reset the algorithm here in order
to prepare the robot for a new surface, as using the esti‐
mates of another surface as the starting point might affect
convergence.

At this point, it is important to discuss the sampling
frequency. When controlling a system, the sampling
frequency should be as high as possible so as to maintain
good tracking error for the reference trajectories, regardless
of the control method used. Nevertheless, in this case the
control loop frequency (2,000 kHz) may be too high and

produce a quantization error in the identification algo‐
rithm. These errors might lead the system identification
algorithm to fail because it might consider the system to be
in equilibrium. Thus, the sampling frequency should be
chosen accordingly in order to reflect the changes in the
system response. A more detailed discussion of the
sampling frequency will be addressed in Section 5.

3.2 Robot structure considerations

Another important point is the effect of the robot’s structure
on the identification. Let us consider a robot during a
bouncing gait in contact with the ground. The behaviour of
the robot should resemble a SLIP. Nevertheless, many
robots have rigid links, and the spring compression at the
lowest part of the stance phase could be achieved by flexing
a rigid leg. In this case, there is no need to consider defor‐
mation on the robot’s links, and the state diagram described
in the above section might be sufficient.

In contrast, the robot might not be constructed entirely of
rigid links, as is the case with many robots designed to run
[20, 22, 26, 38–40, 42]. In this case, when computing the
ground penetration (δ), the compression of the robot’s links
must be considered to obtain an accurate measure.

With  this  last  consideration,  a  modified  version  of  the
block diagram in Figure 1 with a wider range of applica‐
bility can be designed (see Figure 2). In this diagram, two
new states  have  been  included,  an  "initialization"  state
and a "compute COM position"  state.  The initialization
state  computes  the  initial  leg  position,  its  maximum
length and the COM position when the algorithm starts.
Next,  the "compute COM position" state  is  included to
compute  the  COM’s  vertical  displacement  to  pass  the
information to the next identification state at the begin‐
ning  of  the  stance  phase.  Following  this,  the  "identify
ground impedance" state can compute the COM’s vertical
displacement from the moment at which the foot makes
contact  with  the  ground.  Thus,  the  ground penetration
will  be  equal  to  the  difference  between  the  COM’s
displacement and the leg’s compression.
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Figure 1. State diagram of the system identification method.

with a given surface might enhance the accuracy of the
estimation. Nevertheless, we chose to reset the algorithm
here in order to prepare the robot for a new surface, as
using the estimates of another surface as the starting point
might affect convergence.

At this point, it is important to discuss the sampling
frequency. When controlling a system, the sampling
frequency should be as high as possible so as to
maintain good tracking error for the reference trajectories,
regardless of the control method used. Nevertheless,
in this case the control loop frequency (2,000 kHz) may
be too high and produce a quantization error in the
identification algorithm. These errors might lead the
system identification algorithm to fail because it might
consider the system to be in equilibrium. Thus, the
sampling frequency should be chosen accordingly in order
to reflect the changes in the system response. A more
detailed discussion of the sampling frequency will be
addressed in Section 5.

3.2. Robot structure considerations

Another important point is the effect of the robot’s
structure on the identification. Let us consider a robot
during a bouncing gait in contact with the ground.
The behaviour of the robot should resemble a SLIP.
Nevertheless, many robots have rigid links, and the spring
compression at the lowest part of the stance phase could be
achieved by flexing a rigid leg. In this case, there is no need
to consider deformation on the robot’s links, and the state
diagram described in the above section might be sufficient.

In contrast, the robot might not be constructed entirely of
rigid links, as is the case with many robots designed to
run [20, 22, 26, 38–40, 42]. In this case, when computing
the ground penetration (δ), the compression of the robot’s
links must be considered to obtain an accurate measure.

With this last consideration, a modified version of
the block diagram in Figure 1 with a wider range
of applicability can be designed (see Figure 2). In
this diagram, two new states have been included, an
"initialization" state and a "compute COM position" state.
The initialization state computes the initial leg position,
its maximum length and the COM position when the
algorithm starts. Next, the "compute COM position" state
is included to compute the COM’s vertical displacement
to pass the information to the next identification state
at the beginning of the stance phase. Following this,
the "identify ground impedance" state can compute the
COM’s vertical displacement from the moment at which
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Figure 2. State diagram of the system identification method
considering the robot structure.

the foot makes contact with the ground. Thus, the ground
penetration will be equal to the difference between the
COM’s displacement and the leg’s compression.

Note that to increase the adaptability to the terrain,
the ultimate goal of the identification is not to estimate
the ground properties as accurately as possible but
rather to estimate the robot-ground interaction properties.
Thus, the leg stiffness can be adjusted to hold the total
robot-ground impedance constant, which is desirable
because biomechanical studies in humans [17, 18] show
that humans adjust their leg stiffness to maintain the total
impedance as constant, leading to more energy-efficient
running.

In the next section, the system identification procedure is
implemented on a robotic leg prototype [5, 20] and used to
identify the impedance of the leg in contact with different
types of ground.

4. Experimental setup

The HADE leg prototype (see Figure 3) is a planar,
three-degree-of-freedom (DOF), under-actuated
mechanism featuring the characteristics of a horse
leg [20]. It is actuated by two series elastic actuators
(SEAs), one at the hip and one at the knee, while the ankle
joint is passively driven by an extension spring with a
stiffness constant Ks = 3, 113 N/m. The hip and knee
actuators have a spring with an encoder attached that acts
as a force sensor with a resolution of 1.2 N per count and
an encoder for measuring the position with a resolution of
50.8e-6 m per count. The ankle has a linear encoder with
a resolution of 224e-6 m per count, which is equivalent as
0.69 N per count.

The leg is fixed to the wall by a sliding rail, so horizontal
movements of its COM are restricted but it is capable
of moving vertically. Moreover, the vertical movement
is limited by a mechanical top at the bottom in order
to prevent falling when the leg is not in contact with
the ground. Incremental encoders are used to measure
the position of each joint and to indirectly measure the
joint torque by measuring the spring deflection at each
actuator and the fetlock spring. The leg implements
a position control scheme based on inverse kinematics
and proportional-integral-derivative (PID) controllers at
each active joint (hip and knee), while ground contact
is detected by monitoring the ankle spring torque. The
control was implemented using a National Instruments
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using the estimates of another surface as the starting point
might affect convergence.
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frequency should be as high as possible so as to
maintain good tracking error for the reference trajectories,
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in this case the control loop frequency (2,000 kHz) may
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sampling frequency should be chosen accordingly in order
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detailed discussion of the sampling frequency will be
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the block diagram in Figure 1 with a wider range
of applicability can be designed (see Figure 2). In
this diagram, two new states have been included, an
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its maximum length and the COM position when the
algorithm starts. Next, the "compute COM position" state
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at the beginning of the stance phase. Following this,
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the foot makes contact with the ground. Thus, the ground
penetration will be equal to the difference between the
COM’s displacement and the leg’s compression.

Note that to increase the adaptability to the terrain,
the ultimate goal of the identification is not to estimate
the ground properties as accurately as possible but
rather to estimate the robot-ground interaction properties.
Thus, the leg stiffness can be adjusted to hold the total
robot-ground impedance constant, which is desirable
because biomechanical studies in humans [17, 18] show
that humans adjust their leg stiffness to maintain the total
impedance as constant, leading to more energy-efficient
running.

In the next section, the system identification procedure is
implemented on a robotic leg prototype [5, 20] and used to
identify the impedance of the leg in contact with different
types of ground.

4. Experimental setup

The HADE leg prototype (see Figure 3) is a planar,
three-degree-of-freedom (DOF), under-actuated
mechanism featuring the characteristics of a horse
leg [20]. It is actuated by two series elastic actuators
(SEAs), one at the hip and one at the knee, while the ankle
joint is passively driven by an extension spring with a
stiffness constant Ks = 3, 113 N/m. The hip and knee
actuators have a spring with an encoder attached that acts
as a force sensor with a resolution of 1.2 N per count and
an encoder for measuring the position with a resolution of
50.8e-6 m per count. The ankle has a linear encoder with
a resolution of 224e-6 m per count, which is equivalent as
0.69 N per count.

The leg is fixed to the wall by a sliding rail, so horizontal
movements of its COM are restricted but it is capable
of moving vertically. Moreover, the vertical movement
is limited by a mechanical top at the bottom in order
to prevent falling when the leg is not in contact with
the ground. Incremental encoders are used to measure
the position of each joint and to indirectly measure the
joint torque by measuring the spring deflection at each
actuator and the fetlock spring. The leg implements
a position control scheme based on inverse kinematics
and proportional-integral-derivative (PID) controllers at
each active joint (hip and knee), while ground contact
is detected by monitoring the ankle spring torque. The
control was implemented using a National Instruments
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Note that to increase the adaptability to the terrain, the
ultimate goal of the identification is not to estimate the
ground properties as accurately as possible but rather to
estimate the robot-ground interaction properties. Thus, the
leg stiffness can be adjusted to hold the total robot-ground
impedance constant, which is desirable because biome‐
chanical studies in humans [17, 18] show that humans
adjust their leg stiffness to maintain the total impedance as
constant, leading to more energy-efficient running.

In the next section, the system identification procedure is
implemented on a robotic leg prototype [5, 20] and used to
identify the impedance of the leg in contact with different
types of ground.

4. Experimental setup

The HADE leg prototype (see Figure 3) is a planar, three-
degree-of-freedom (DOF), under-actuated mechanism
featuring the characteristics of a horse leg [20]. It is actuated
by two series elastic actuators (SEAs), one at the hip and
one at the knee, while the ankle joint is passively driven by
an extension spring with a stiffness constant Ks = 3, 113
N/m. The hip and knee actuators have a spring with an
encoder attached that acts as a force sensor with a resolu‐
tion of 1.2 N per count and an encoder for measuring the
position with a resolution of 50.8e-6 m per count. The ankle
has a linear encoder with a resolution of 224e-6 m per count,
which is equivalent as 0.69 N per count.

The leg is fixed to the wall by a sliding rail, so horizontal
movements of its COM are restricted but it is capable of
moving vertically. Moreover, the vertical movement is
limited by a mechanical top at the bottom in order to
prevent falling when the leg is not in contact with the
ground. Incremental encoders are used to measure the
position of each joint and to indirectly measure the joint
torque by measuring the spring deflection at each actuator
and the fetlock spring. The leg implements a position
control scheme based on inverse kinematics and propor‐
tional-integral-derivative (PID) controllers at each active
joint (hip and knee), while ground contact is detected by
monitoring the ankle spring torque. The control was
implemented using a National Instruments PXI-1024Q

(Austin, TX, USA) and had an execution time of 0.5 ms per
cycle, while the identification algorithm had an execution
time of 5 ms per cycle.
PXI-1024Q (Austin, TX, USA) and had an execution time
of 0.5 ms per cycle, while the identification algorithm had
an execution time of 5 ms per cycle.
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Figure 3. The HADE Leg Prototype. Conceptual design (left). Real

prototype (right).

The complete experimental setup is shown in Figure 4.
The foot was placed over two different surfaces and then
commanded to move upwards until it was not in contact
with the surface. Next, it was commanded to stay in that
position for 0.5 s. Afterwards, it was commanded to return
to its initial position (in contact with the ground) and stay
there for another 0.5 s. This procedure was repeated twice
for each experiment.

Figure 4. Experimental setup. Leg stepping over the
variable-impedance box (right) and sand (left).

Moreover, the experiments were performed on four
different types of terrain: (A) rigid ground; (B) an
adjustable-impedance metal box [4], designed to resemble
the behaviour of the spring dashpot contact model (see
equation (1)); (C) river sand; and (D) rocks. The last two
types of terrain were used by filling a wooden box with the
corresponding material (see Figure 4).

4.1. Implementing the system identification algorithm on the
HADE leg

Prior to the implementation on the HADE leg, experiments
were performed on data obtained using the experimental
setup published in [4] with the RLS algorithm to choose
values for the forgetting factor λ and the sampling
frequency. Fig. 5 and 6 show the mean square modelling
error against the sampling time for the metal box and the
river sand, respectively. The data used in these simulations
were collected by applying a force square wave to the
metal box and the river sand; the force wave consisted on
a 60 N force for 15 seconds; next, a square wave of ± 10
N around the 60 N force offset for 10 s; afterwards, the
square wave amplitude was increased to 40 N for 10 s; at
this time, the frequency was changed to 1.5 Hz for 10 s
more; and finally, the reference force was set to 0 for the
last 10 s of the experiment [4]. The results in Fig. 5 and 6 by
resampling the data using frequencies between 2 kHz and
25 Hz and applying the RLS algorithm to 10 repetitions of
the experiment for each type of terrain.
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Figure 5. Mean square error vs sampling time for the metal box.

In Fig. 5, it is shown that - generally - as the sampling
frequency decreases (i.e., the sampling time increases),
the modelling error increase (except for the sampling
frequencies between 2 kHz and 333.3 Hz, where the
error decreases). This is explained by the quantization
error introduced by the position encoders’ measuring
position. Nevertheless, when the algorithm was applied
to the river sand, the modelling error always increased as
the sampling frequency was reduced. The difference is
because the river sand is less stiff, and thus there are larger
variations in the position for the same force; therefore,
the quantization error has less influence on the result.
Nonetheless, in Fig. 6 and 8, the errors are one order
of magnitude larger than the errors shown in Figs. 5
and 7. This has a twofold explanation: the first reason
for why this occurs is that the errors shown here are not
normalized, and thus the errors with the river sand are
larger because it is less stiff and there are larger variations
in position; the second and most important reason is that,
in the case of the river sand, the model is less accurate as
this type of terrain presents nonlinear behaviour, and the
identified model is a linear approximation of the system.
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Figure 3. The HADE Leg Prototype. Conceptual design (left). Real prototype
(right).

The complete experimental setup is shown in Figure 4. The
foot was placed over two different surfaces and then
commanded to move upwards until it was not in contact
with the surface. Next, it was commanded to stay in that
position for 0.5 s. Afterwards, it was commanded to return
to its initial position (in contact with the ground) and stay
there for another 0.5 s. This procedure was repeated twice
for each experiment.

PXI-1024Q (Austin, TX, USA) and had an execution time
of 0.5 ms per cycle, while the identification algorithm had
an execution time of 5 ms per cycle.
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Figure 3. The HADE Leg Prototype. Conceptual design (left). Real

prototype (right).

The complete experimental setup is shown in Figure 4.
The foot was placed over two different surfaces and then
commanded to move upwards until it was not in contact
with the surface. Next, it was commanded to stay in that
position for 0.5 s. Afterwards, it was commanded to return
to its initial position (in contact with the ground) and stay
there for another 0.5 s. This procedure was repeated twice
for each experiment.

Figure 4. Experimental setup. Leg stepping over the
variable-impedance box (right) and sand (left).

Moreover, the experiments were performed on four
different types of terrain: (A) rigid ground; (B) an
adjustable-impedance metal box [4], designed to resemble
the behaviour of the spring dashpot contact model (see
equation (1)); (C) river sand; and (D) rocks. The last two
types of terrain were used by filling a wooden box with the
corresponding material (see Figure 4).

4.1. Implementing the system identification algorithm on the
HADE leg

Prior to the implementation on the HADE leg, experiments
were performed on data obtained using the experimental
setup published in [4] with the RLS algorithm to choose
values for the forgetting factor λ and the sampling
frequency. Fig. 5 and 6 show the mean square modelling
error against the sampling time for the metal box and the
river sand, respectively. The data used in these simulations
were collected by applying a force square wave to the
metal box and the river sand; the force wave consisted on
a 60 N force for 15 seconds; next, a square wave of ± 10
N around the 60 N force offset for 10 s; afterwards, the
square wave amplitude was increased to 40 N for 10 s; at
this time, the frequency was changed to 1.5 Hz for 10 s
more; and finally, the reference force was set to 0 for the
last 10 s of the experiment [4]. The results in Fig. 5 and 6 by
resampling the data using frequencies between 2 kHz and
25 Hz and applying the RLS algorithm to 10 repetitions of
the experiment for each type of terrain.
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Figure 5. Mean square error vs sampling time for the metal box.

In Fig. 5, it is shown that - generally - as the sampling
frequency decreases (i.e., the sampling time increases),
the modelling error increase (except for the sampling
frequencies between 2 kHz and 333.3 Hz, where the
error decreases). This is explained by the quantization
error introduced by the position encoders’ measuring
position. Nevertheless, when the algorithm was applied
to the river sand, the modelling error always increased as
the sampling frequency was reduced. The difference is
because the river sand is less stiff, and thus there are larger
variations in the position for the same force; therefore,
the quantization error has less influence on the result.
Nonetheless, in Fig. 6 and 8, the errors are one order
of magnitude larger than the errors shown in Figs. 5
and 7. This has a twofold explanation: the first reason
for why this occurs is that the errors shown here are not
normalized, and thus the errors with the river sand are
larger because it is less stiff and there are larger variations
in position; the second and most important reason is that,
in the case of the river sand, the model is less accurate as
this type of terrain presents nonlinear behaviour, and the
identified model is a linear approximation of the system.
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Figure 4. Experimental setup. Leg stepping over the variable-impedance box
(right) and sand (left).

Moreover, the experiments were performed on four
different types of terrain: (A) rigid ground; (B) an adjusta‐
ble-impedance metal box [4], designed to resemble the
behaviour of the spring dashpot contact model (see
equation (1)); (C) river sand; and (D) rocks. The last two
types of terrain were used by filling a wooden box with the
corresponding material (see Figure 4).
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4.1 Implementing the system identification algorithm on the
HADE leg

Prior to the implementation on the HADE leg, experiments
were performed on data obtained using the experimental
setup published in [4] with the RLS algorithm to choose
values for the forgetting factor λ and the sampling frequen‐
cy. Fig. 5 and 6 show the mean square modelling error
against the sampling time for the metal box and the river
sand, respectively. The data used in these simulations were
collected by applying a force square wave to the metal box
and the river sand; the force wave consisted on a 60 N force
for 15 seconds; next, a square wave of ± 10 N around the 60
N force offset for 10 s; afterwards, the square wave ampli‐
tude was increased to 40 N for 10 s; at this time, the
frequency was changed to 1.5 Hz for 10 s more; and finally,
the reference force was set to 0 for the last 10 s of the
experiment [4]. The results in Fig. 5 and 6 by resampling
the data using frequencies between 2 kHz and 25 Hz and
applying the RLS algorithm to 10 repetitions of the experi‐
ment for each type of terrain.

PXI-1024Q (Austin, TX, USA) and had an execution time
of 0.5 ms per cycle, while the identification algorithm had
an execution time of 5 ms per cycle.
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The complete experimental setup is shown in Figure 4.
The foot was placed over two different surfaces and then
commanded to move upwards until it was not in contact
with the surface. Next, it was commanded to stay in that
position for 0.5 s. Afterwards, it was commanded to return
to its initial position (in contact with the ground) and stay
there for another 0.5 s. This procedure was repeated twice
for each experiment.

Figure 4. Experimental setup. Leg stepping over the
variable-impedance box (right) and sand (left).

Moreover, the experiments were performed on four
different types of terrain: (A) rigid ground; (B) an
adjustable-impedance metal box [4], designed to resemble
the behaviour of the spring dashpot contact model (see
equation (1)); (C) river sand; and (D) rocks. The last two
types of terrain were used by filling a wooden box with the
corresponding material (see Figure 4).

4.1. Implementing the system identification algorithm on the
HADE leg

Prior to the implementation on the HADE leg, experiments
were performed on data obtained using the experimental
setup published in [4] with the RLS algorithm to choose
values for the forgetting factor λ and the sampling
frequency. Fig. 5 and 6 show the mean square modelling
error against the sampling time for the metal box and the
river sand, respectively. The data used in these simulations
were collected by applying a force square wave to the
metal box and the river sand; the force wave consisted on
a 60 N force for 15 seconds; next, a square wave of ± 10
N around the 60 N force offset for 10 s; afterwards, the
square wave amplitude was increased to 40 N for 10 s; at
this time, the frequency was changed to 1.5 Hz for 10 s
more; and finally, the reference force was set to 0 for the
last 10 s of the experiment [4]. The results in Fig. 5 and 6 by
resampling the data using frequencies between 2 kHz and
25 Hz and applying the RLS algorithm to 10 repetitions of
the experiment for each type of terrain.
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Figure 5. Mean square error vs sampling time for the metal box.

In Fig. 5, it is shown that - generally - as the sampling
frequency decreases (i.e., the sampling time increases),
the modelling error increase (except for the sampling
frequencies between 2 kHz and 333.3 Hz, where the
error decreases). This is explained by the quantization
error introduced by the position encoders’ measuring
position. Nevertheless, when the algorithm was applied
to the river sand, the modelling error always increased as
the sampling frequency was reduced. The difference is
because the river sand is less stiff, and thus there are larger
variations in the position for the same force; therefore,
the quantization error has less influence on the result.
Nonetheless, in Fig. 6 and 8, the errors are one order
of magnitude larger than the errors shown in Figs. 5
and 7. This has a twofold explanation: the first reason
for why this occurs is that the errors shown here are not
normalized, and thus the errors with the river sand are
larger because it is less stiff and there are larger variations
in position; the second and most important reason is that,
in the case of the river sand, the model is less accurate as
this type of terrain presents nonlinear behaviour, and the
identified model is a linear approximation of the system.
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Figure 5. Mean square error vs sampling time for the metal box

In Fig. 5, it is shown that - generally - as the sampling
frequency decreases (i.e., the sampling time increases), the
modelling error increase (except for the sampling frequen‐
cies between 2 kHz and 333.3 Hz, where the error decreas‐
es). This is explained by the quantization error introduced
by the position encoders’ measuring position. Neverthe‐
less, when the algorithm was applied to the river sand, the
modelling error always increased as the sampling frequen‐
cy was reduced. The difference is because the river sand is
less stiff, and thus there are larger variations in the position
for the same force; therefore, the quantization error has less
influence on the result. Nonetheless, in Fig. 6 and 8, the
errors are one order of magnitude larger than the errors
shown in Figs. 5 and 7. This has a twofold explanation: the
first reason for why this occurs is that the errors shown here
are not normalized, and thus the errors with the river sand
are larger because it is less stiff and there are larger
variations in position; the second and most important
reason is that, in the case of the river sand, the model is less

accurate as this type of terrain presents nonlinear behav‐
iour, and the identified model is a linear approximation of
the system.
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Figure 6. Mean square error vs sampling time for river sand.

As the algorithm is intended to be used with different
types of terrain, we have chosen a sampling frequency
of 200 Hz, partly because it presented a near-minimum
modelling error when used in a terrain that resembles
our model. Moreover, when the algorithm was
implemented with the PXI-1024Q, higher sampling
frequencies interfered with the execution of the control
loop. The problems explained here could be solved by
using a computer with more computational power and
with the use of higher resolution encoders.

To choose the forgetting factor, the algorithm was applied
to the same data as the sampling frequency experiment,
using values of λ between 0.89 and 1. Figs. 7 and 8 show
the mean square modelling error vs. λ for the metal box
and the river sand, respectively.
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Figure 7. Mean square error vs λ for the metal box.

In Fig. 7, it can be seen that values of λ between 0.89
and 0.94 lead to a more or less constant modelling error;
nevertheless, as lambda increases from 0.94 to 0.99, the
modelling error decreases until it reaches its minimum
around λ = 0.98 and then increases a little between λ =
0.99 to λ = 1. In Fig. 8, a similar behaviour is observed,
although the constant behaviour of the modelling error is
from λ = 0.89 through λ = 0.97; then the error increases
sharply and starts decreasing until it reaches its minimum
at λ = 0.996 and increasing towards λ = 1.

0.88 0.9 0.92 0.94 0.96 0.98 1
1

1.5

2

2.5

3

3.5

4

4.5
x 10

−5

λ

M
ea

n 
S

qu
ar

e 
M

od
el

in
g 

E
rr

or

Figure 8. Mean square error vs. λ for the river sand.

Considering the results of the previous experiments, we
have chosen a value of λ of 0.996, as it presented an
error value near the minimum with the metal box and the
minimum error value with the river-sand.

Once the values for lambda and the sampling frequency
were chosen, we tested the algorithm with the same data
for different forms of equation (1). The results of this
implementation are shown in table 1, in which the errors
have been divided by the squared sum of the measured
output for meaningful comparison. That is:

e =
∑

N
i=1 E2

i

∑
N
i=1 Y2

i

(18)

where e is the normalized error, Ei are the residuals and
Yi is the measured output of the system. As can be seen
from the table, the chosen form of the recursion performs
better that its counterparts, as suggested by equations (15)
through (17). A detailed analysis of the residuals of the
RLS method with different types of terrain can be found in
[4], where it is shown that the residuals exhibit evidence
of unmodelled behaviour in both nonlinear and linear
terrains due to quantization errors and non-linearities in
the robot.

Table 1. Mean square error for different forms of equation (1).

Parameterization Normalized Error

δ = Fc/k − δ̇b/k 0.1587
Fc = kδ + bδ̇ 0.4503
δ̇ = Fc/b − δk/b 0.3562

Once the parameters of the identification algorithm were
chosen, to implement the system identification on the
HADE leg, given the leg characteristics, it was necessary
to use the state machine depicted in Figure 2. Here, during
the "initialization" state, both the total extended length of
the ankle spring and the offset force had to be computed to
obtain an accurate measure. The latter is a consequence of
the incremental encoders mounted on the leg and the fact
that the spring starts pre-compressed because of the leg’s
weight. This implementation has also been presented in
[6].
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Figure 6. Mean square error vs sampling time for river sand

As the algorithm is intended to be used with different types
of terrain, we have chosen a sampling frequency of 200 Hz,
partly because it presented a near-minimum modelling
error when used in a terrain that resembles our model.
Moreover, when the algorithm was implemented with the
PXI-1024Q, higher sampling frequencies interfered with
the execution of the control loop. The problems explained
here could be solved by using a computer with more
computational power and with the use of higher resolution
encoders.

To choose the forgetting factor, the algorithm was applied
to the same data as the sampling frequency experiment,
using values of λ between 0.89 and 1. Figs. 7 and 8 show
the mean square modelling error vs. λ for the metal box and
the river sand, respectively.
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Figure 6. Mean square error vs sampling time for river sand.

As the algorithm is intended to be used with different
types of terrain, we have chosen a sampling frequency
of 200 Hz, partly because it presented a near-minimum
modelling error when used in a terrain that resembles
our model. Moreover, when the algorithm was
implemented with the PXI-1024Q, higher sampling
frequencies interfered with the execution of the control
loop. The problems explained here could be solved by
using a computer with more computational power and
with the use of higher resolution encoders.

To choose the forgetting factor, the algorithm was applied
to the same data as the sampling frequency experiment,
using values of λ between 0.89 and 1. Figs. 7 and 8 show
the mean square modelling error vs. λ for the metal box
and the river sand, respectively.
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Figure 7. Mean square error vs λ for the metal box.

In Fig. 7, it can be seen that values of λ between 0.89
and 0.94 lead to a more or less constant modelling error;
nevertheless, as lambda increases from 0.94 to 0.99, the
modelling error decreases until it reaches its minimum
around λ = 0.98 and then increases a little between λ =
0.99 to λ = 1. In Fig. 8, a similar behaviour is observed,
although the constant behaviour of the modelling error is
from λ = 0.89 through λ = 0.97; then the error increases
sharply and starts decreasing until it reaches its minimum
at λ = 0.996 and increasing towards λ = 1.
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Figure 8. Mean square error vs. λ for the river sand.

Considering the results of the previous experiments, we
have chosen a value of λ of 0.996, as it presented an
error value near the minimum with the metal box and the
minimum error value with the river-sand.

Once the values for lambda and the sampling frequency
were chosen, we tested the algorithm with the same data
for different forms of equation (1). The results of this
implementation are shown in table 1, in which the errors
have been divided by the squared sum of the measured
output for meaningful comparison. That is:

e =
∑

N
i=1 E2

i

∑
N
i=1 Y2

i

(18)

where e is the normalized error, Ei are the residuals and
Yi is the measured output of the system. As can be seen
from the table, the chosen form of the recursion performs
better that its counterparts, as suggested by equations (15)
through (17). A detailed analysis of the residuals of the
RLS method with different types of terrain can be found in
[4], where it is shown that the residuals exhibit evidence
of unmodelled behaviour in both nonlinear and linear
terrains due to quantization errors and non-linearities in
the robot.

Table 1. Mean square error for different forms of equation (1).

Parameterization Normalized Error

δ = Fc/k − δ̇b/k 0.1587
Fc = kδ + bδ̇ 0.4503
δ̇ = Fc/b − δk/b 0.3562

Once the parameters of the identification algorithm were
chosen, to implement the system identification on the
HADE leg, given the leg characteristics, it was necessary
to use the state machine depicted in Figure 2. Here, during
the "initialization" state, both the total extended length of
the ankle spring and the offset force had to be computed to
obtain an accurate measure. The latter is a consequence of
the incremental encoders mounted on the leg and the fact
that the spring starts pre-compressed because of the leg’s
weight. This implementation has also been presented in
[6].
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Figure 7. Mean square error vs λ for the metal box

In Fig. 7, it can be seen that values of λ between 0.89 and
0.94 lead to a more or less constant modelling error;
nevertheless, as lambda increases from 0.94 to 0.99, the
modelling error decreases until it reaches its minimum
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around λ = 0.98 and then increases a little between λ =0.99
to λ = 1. In Fig. 8, a similar behaviour is observed, although
the constant behaviour of the modelling error is from λ =
0.89 through λ = 0.97; then the error increases sharply and
starts decreasing until it reaches its minimum at λ = 0.996
and increasing towards λ = 1.
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Figure 6. Mean square error vs sampling time for river sand.

As the algorithm is intended to be used with different
types of terrain, we have chosen a sampling frequency
of 200 Hz, partly because it presented a near-minimum
modelling error when used in a terrain that resembles
our model. Moreover, when the algorithm was
implemented with the PXI-1024Q, higher sampling
frequencies interfered with the execution of the control
loop. The problems explained here could be solved by
using a computer with more computational power and
with the use of higher resolution encoders.

To choose the forgetting factor, the algorithm was applied
to the same data as the sampling frequency experiment,
using values of λ between 0.89 and 1. Figs. 7 and 8 show
the mean square modelling error vs. λ for the metal box
and the river sand, respectively.
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Figure 7. Mean square error vs λ for the metal box.

In Fig. 7, it can be seen that values of λ between 0.89
and 0.94 lead to a more or less constant modelling error;
nevertheless, as lambda increases from 0.94 to 0.99, the
modelling error decreases until it reaches its minimum
around λ = 0.98 and then increases a little between λ =
0.99 to λ = 1. In Fig. 8, a similar behaviour is observed,
although the constant behaviour of the modelling error is
from λ = 0.89 through λ = 0.97; then the error increases
sharply and starts decreasing until it reaches its minimum
at λ = 0.996 and increasing towards λ = 1.
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Figure 8. Mean square error vs. λ for the river sand.

Considering the results of the previous experiments, we
have chosen a value of λ of 0.996, as it presented an
error value near the minimum with the metal box and the
minimum error value with the river-sand.

Once the values for lambda and the sampling frequency
were chosen, we tested the algorithm with the same data
for different forms of equation (1). The results of this
implementation are shown in table 1, in which the errors
have been divided by the squared sum of the measured
output for meaningful comparison. That is:

e =
∑

N
i=1 E2

i

∑
N
i=1 Y2

i

(18)

where e is the normalized error, Ei are the residuals and
Yi is the measured output of the system. As can be seen
from the table, the chosen form of the recursion performs
better that its counterparts, as suggested by equations (15)
through (17). A detailed analysis of the residuals of the
RLS method with different types of terrain can be found in
[4], where it is shown that the residuals exhibit evidence
of unmodelled behaviour in both nonlinear and linear
terrains due to quantization errors and non-linearities in
the robot.

Table 1. Mean square error for different forms of equation (1).

Parameterization Normalized Error

δ = Fc/k − δ̇b/k 0.1587
Fc = kδ + bδ̇ 0.4503
δ̇ = Fc/b − δk/b 0.3562

Once the parameters of the identification algorithm were
chosen, to implement the system identification on the
HADE leg, given the leg characteristics, it was necessary
to use the state machine depicted in Figure 2. Here, during
the "initialization" state, both the total extended length of
the ankle spring and the offset force had to be computed to
obtain an accurate measure. The latter is a consequence of
the incremental encoders mounted on the leg and the fact
that the spring starts pre-compressed because of the leg’s
weight. This implementation has also been presented in
[6].
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Figure 8. Mean square error vs. λ for the river sand

Considering the results of the previous experiments, we
have chosen a value of λ of 0.996, as it presented an error
value near the minimum with the metal box and the
minimum error value with the river-sand.

Once the values for lambda and the sampling frequency
were chosen, we tested the algorithm with the same data
for different forms of equation (1). The results of this
implementation are shown in table 1, in which the errors
have been divided by the squared sum of the measured
output for meaningful comparison. That is:
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where e is the normalized error, Ei are the residuals and
Yi is the measured output of the system. As can be seen from
the table, the chosen form of the recursion performs better
that its counterparts, as suggested by equations (15)
through (17). A detailed analysis of the residuals of the RLS
method with different types of terrain can be found in [4],
where it is shown that the residuals exhibit evidence of
unmodelled behaviour in both nonlinear and linear
terrains due to quantization errors and non-linearities in
the robot.

Parameterization Normalized Error

δ = Fc /k − δ̇ b/k 0.1587

Fc = kδ + b δ̇ 0.4503

δ = Fc /b − δ̇ k/b 0.3562

Table 1. Mean square error for different forms of equation (1)

Once the parameters of the identification algorithm were
chosen, to implement the system identification on the
HADE leg, given the leg characteristics, it was necessary to
use the state machine depicted in Figure 2. Here, during the
"initialization" state, both the total extended length of the
ankle spring and the offset force had to be computed to
obtain an accurate measure. The latter is a consequence of
the incremental encoders mounted on the leg and the fact
that the spring starts pre-compressed because of the leg’s
weight. This implementation has also been presented in [6].

To compute the ground penetration, and because there was
no accelerometer or inertial measurement unit (IMU)
mounted on the leg, we used the COM as the origin of the
coordinate frame. Thus, making ZCOM = 0 made it
necessary to consider the ground penetration as the
difference between the foot’s vertical position Zfoot and the
ankle’s vertical position Zankle. Moreover, it is important
to note that in the implementation, we not only measure
the ground penetration but also the compression in the leg
due to its weight. This is because we only have access to the
displacement of the contact interface between the robot and
the ground. Therefore, in the algorithm we are performing
the identification on the combined robot-ground system,
which for consistency with the rest of the paper we
call ’ground penetration’ δ. Nevertheless the reader should
be aware that hereafter, when we say ’ground penetration’,
we will be referring to the combined displacement of the
leg and the ground (δ = δground +δrobot), which is equal to the
difference between Zfoot −ZAnkle (see Figure9).

To compute the ground penetration, and because there
was no accelerometer or inertial measurement unit (IMU)
mounted on the leg, we used the COM as the origin of
the coordinate frame. Thus, making ZCOM = 0 made
it necessary to consider the ground penetration as the
difference between the foot’s vertical position Z f oot and the
ankle’s vertical position Zankle. Moreover, it is important
to note that in the implementation, we not only measure
the ground penetration but also the compression in the
leg due to its weight. This is because we only have
access to the displacement of the contact interface between
the robot and the ground. Therefore, in the algorithm
we are performing the identification on the combined
robot-ground system, which for consistency with the rest
of the paper we call ’ground penetration’ δ. Nevertheless
the reader should be aware that hereafter, when we say
’ground penetration’, we will be referring to the combined
displacement of the leg and the ground (δ = δground +
δrobot), which is equal to the difference between Z f oot −
ZAnkle (see Figure9).
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Figure 9. Identification parameters.

As can be seen in Fig. 9, δrobot can vary only due to flexion
of the foot, even without observable ground penetration.
Nevertheless, as our primary objective is to identify the
total impedance of the ground-robot system, this is not
an issue. In other words, if the ground is perfectly rigid
(or else stiff enough), the algorithm will identify the leg’s
impedance, which is a logical result since the total stiffness
will converge to the leg’s stiffness. This is because, when
computing the equivalent stiffness of a series of springs:

lim
K2→∞

(1/Keq) = lim
K2→∞

(1/K1 + 1/K2) = 1/K1 (19)

The exerted foot force was computed using the force
measurements on the ankle spring only. This force was a
good approximation because the torque transmitted by the
spring to the ankle was the same as the torque transmitted
by the ankle to the ground, as they were connected to
each other through a rigid link. Nevertheless, the arm
from the spring to the ankle was variable; therefore, this
arm had to be computed for each force measurement.
Technically, the arm from the foot to the ankle was also
variable, as it depended upon the area of contact of the
foot; however, this variation was small because the foot

touched the ground at approximately the same contact
point every time.

One last thing to note about the implementation of the
identification algorithm on the HADE leg is the detection
of contact. As the HADE leg has no force or contact sensor
at the sole of the foot, it was necessary to monitor the ankle
spring. If the spring is sufficiently rigid such that it does
not oscillate when the leg is in the swing phase, it suffices
to monitor only the spring and launch the identification
algorithm when its value is below zero (the force of the
spring has the opposite sign from the contact force because
of the manner in which it is attached to the leg). This
is the case for the HADE leg, and so contact is detected
whenever the value of the force becomes negative.

Nevertheless, note that if the spring does oscillate, then the
contact can be detected when the force reaches a certain
threshold. The value of the threshold will depend upon the
oscillation, and it can also be computed in the "compute
COM position" state.

In our case, the threshold was computed when the leg
left the ground. This is because the encoders used were
incremental and the leg started resting on the ground. This
caused an offset in the force measurements when the leg
was lifted.

5. Results

The results of the identification performed on the rigid
ground and variable-impedance box are presented in
Figure 10, which consists of the scaled Gaussian bell of
the estimated total stiffness (left) with the box (continuous
line) and rigid ground (dashed line), as well as the
Gaussian bell of the damping coefficient (right) for the
box (continuous line) and rigid ground (dashed line). The
scaling was performed as follows:

G =
Σ( f )

Sigma(n)
f (20)

where f is the Gaussian function obtained from the data,
n is the distribution of the values of the histogram of the
data, and G is the Gaussian bell to be plotted.

Scaled Gaussian bells were chosen to offer an intuitive
representation of the results. Though they do not offer a
quantitative result, the figure shows that the majority of
the estimated values lay at approximately 2,750 N/m and
3,500 N/m for the box and rigid ground, respectively.

Moreover, from the curves it can be seen that the results
for both types of ground are differentiated, as the majority
of the curves’ areas do not overlap with each other. In
addition, and in order to offer a quantitative evaluation,
Table 2 shows the mean value, the standard deviation of
the estimated values, the theoretically calculated value,
and the mean of the estimation error.

Note that in the case of the rigid ground, the identified
stiffness corresponds to the leg’s stiffness, as the series
combination of two series springs when K1 >> K2 tends
to K2. Moreover, in the experiment, the final position of
the leg on the ground was the extended position, which
meant that the leg’s stiffness was approximately equal to
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Figure 9. Identification parameters

As can be seen in Fig. 9, δr obot can vary only due to flexion
of the foot, even without observable ground penetration.

Nevertheless, as our primary objective is to identify the
total impedance of the ground-robot system, this is not an
issue. In other words, if the ground is perfectly rigid (or else
stiff enough), the algorithm will identify the leg’s impe‐
dance, which is a logical result since the total stiffness will
converge to the leg’s stiffness. This is because, when
computing the equivalent stiffness of a series of springs:
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The exerted foot force was computed using the force
measurements on the ankle spring only. This force was a
good approximation because the torque transmitted by the
spring to the ankle was the same as the torque transmitted
by the ankle to the ground, as they were connected to each
other through a rigid link. Nevertheless, the arm from the
spring to the ankle was variable; therefore, this arm had to
be computed for each force measurement. Technically, the
arm from the foot to the ankle was also variable, as it
depended upon the area of contact of the foot; however,
this variation was small because the foot touched the
ground at approximately the same contact point every
time.

One last thing to note about the implementation of the
identification algorithm on the HADE leg is the detection
of contact. As the HADE leg has no force or contact sensor
at the sole of the foot, it was necessary to monitor the ankle
spring. If the spring is sufficiently rigid such that it does not
oscillate when the leg is in the swing phase, it suffices to
monitor only the spring and launch the identification
algorithm when its value is below zero (the force of the
spring has the opposite sign from the contact force because
of the manner in which it is attached to the leg). This is the
case for the HADE leg, and so contact is detected whenever
the value of the force becomes negative.

Nevertheless, note that if the spring does oscillate, then the
contact can be detected when the force reaches a certain

threshold. The value of the threshold will depend upon the
oscillation, and it can also be computed in the "compute
COM position" state.

In our case, the threshold was computed when the leg left
the ground. This is because the encoders used were
incremental and the leg started resting on the ground. This
caused an offset in the force measurements when the leg
was lifted.

5. Results

The results of the identification performed on the rigid
ground and variable-impedance box are presented in
Figure 10, which consists of the scaled Gaussian bell of the
estimated total stiffness (left) with the box (continuous line)
and rigid ground (dashed line), as well as the Gaussian bell
of the damping coefficient (right) for the box (continuous
line) and rigid ground (dashed line). The scaling was
performed as follows:

( )
( )

= å f
G f

Sigma n
(20)

where f is the Gaussian function obtained from the data, n
is the distribution of the values of the histogram of the data,
and G is the Gaussian bell to be plotted.
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Figure 10. Scaled Gaussian bell of the estimation results for the stiffness (left) and damping (right) coefficients for the metal box
(continuous line) and the rigid ground (dashed line).

Table 2. Estimation results for the stiffness of the box and rigid

ground.

Estimated value Error

Ground Theoretical (N/m) Mean (N/m) STD Mean (%)

Box 2,639 2,801.5 68.45 9.35
Rigid 3,113 3,392.6 161.37 6.16

Table 3. Estimation results for the damping coefficient of the box

and rigid ground.

Estimated value

Ground Mean (Ns/m) STD

Box 2.0533 0.0453
Rigid 1.7471 0.0862

the ankle spring because the series elastic actuator’s elastic
constant was 15 times higher than that of the ankle spring.

The theoretical values given in Table 2 were computed
with the stiffness values supplied by the manufacturer, so
the tolerance error was also included in the identification.
The damping constant was not included in the table
because this value was unknown for both the leg and the
box, and no theoretical value could be used to evaluate
the performance of the identification method. However,
the estimated values of the damping coefficient and their
standard deviation are shown in Table 3.

Figure 11 shows the results of the identification of the sand
and rocks. The figure shows the scaled Gaussian bells of
the estimated values of the stiffness (left) and damping
coefficients (right) for the rocks (dashed line) and the sand
(continuous line). In the curves, it can be observed that the
two types of ground have well-differentiated stiffnesses.
In the case of the rocks, the majority of the points were
concentrated at approximately 2,500 N/m, while in the
case of the sand they were concentrated at approximately
1,100 N/m. Note that both of these terrains generate
nonlinear behaviour, such as elastic deformation (they can
be compressed due to the geometrical rearrangement of
the rocks or the grains of sand). Thus, the dispersion
standard deviation of the estimation should be larger than
in the previous case.

Regarding the damping coefficients, it can be inferred from
the curves that the damping coefficients of both types of

terrain were relatively close. In the case of the rocks, most
of the estimated values were approximately 200 Ns/m (see
Figure 11 right), while in the case of the sand the values
were concentrated at approximately 600 Ns/m. To provide
quantitative results, the mean and standard deviation of
the estimated values for the rocks and sand are presented
in Table 4.

Table 4. Estimation results for the sand and rocks.

Estimated stiffness Estimated damping

Ground Mean (N/m) Std Mean (Ns/m) Std

Rocks 2,436.9 761.81 281.01 84.13
Sand 1,181.1 276.60 528.22 124.85

Table 4 demonstrates that the standard deviation of all
the quantities was high compared to their respective
mean values. This result indicates unmodelled behaviour,
which was to be expected because the model used in
this work was linear, whereas the terrain behaviour is
not. Nonetheless, they had well-differentiated values of
stiffness. Expressed mathematically:

Ksand + std(Ksand) < Krocks − std(Krocks)

(21)

where K indicates the mean value of the samples and
std(K) indicates the standard deviation. In contrast,
the damping coefficients did not appear useful in
discriminating between the terrains. Nevertheless,
these coefficients did indicate the energy losses during
locomotion, so they can be used to compensate for that
energy.

The value of the standard deviation for the rigid ground
and adjustable-impedance box was approximately 2%
of the mean, while the values for the rocks and sand
were between 23% and 30%. The standard deviation
was relatively high in both cases because there was
unmodelled behaviour due to motor transmissions, joint
friction and other factors that are intrinsic to the leg
system. Therefore, the implemented parameter estimation
method provides more accurate results for the rigid
ground and the adjustable impedance box, as these

8 Short Journal Name, 2013, Vol. No, No:2013 www.intechopen.com

Figure 10. Scaled Gaussian bell of the estimation results for the stiffness (left) and damping (right) coefficients for the metal box (continuous line) and the rigid
ground (dashed line)

Scaled Gaussian bells were chosen to offer an intuitive
representation of the results. Though they do not offer a
quantitative result, the figure shows that the majority of the
estimated values lay at approximately 2,750 N/m and 3,500
N/m for the box and rigid ground, respectively.

Moreover, from the curves it can be seen that the results for
both types of ground are differentiated, as the majority of
the curves’ areas do not overlap with each other. In

addition, and in order to offer a quantitative evaluation,
Table 2 shows the mean value, the standard deviation of
the estimated values, the theoretically calculated value, and
the mean of the estimation error.

Note that in the case of the rigid ground, the identified
stiffness corresponds to the leg’s stiffness, as the series
combination of two series springs when K1 >> K2 tends to
K2. Moreover, in the experiment, the final position of the
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leg on the ground was the extended position, which meant
that the leg’s stiffness was approximately equal to the ankle
spring because the series elastic actuator ’s elastic constant
was 15 times higher than that of the ankle spring.

Estimated value Error

Ground Theoretical (N/m) Mean (N/m) STD Mean (%)

Box 2,639 2,801.5 68.45 9.35

Rigid 3,113 3,392.6 161.37 6.16

Table 2. Estimation results for the stiffness of the box and rigid ground

The theoretical values given in Table 2 were computed with
the stiffness values supplied by the manufacturer, so the
tolerance error was also included in the identification. The
damping constant was not included in the table because
this value was unknown for both the leg and the box, and
no theoretical value could be used to evaluate the perform‐
ance of the identification method. However, the estimated
values of the damping coefficient and their standard
deviation are shown in Table 3.

Figure 11 shows the results of the identification of the sand
and rocks. The figure shows the scaled Gaussian bells of the

estimated values of the stiffness (left) and damping
coefficients (right) for the rocks (dashed line) and the sand
(continuous line). In the curves, it can be observed that the
two types of ground have well-differentiated stiffnesses. In
the case of the rocks, the majority of the points were
concentrated at approximately 2,500 N/m, while in the case
of the sand they were concentrated at approximately 1,100
N/m. Note that both of these terrains generate nonlinear
behaviour, such as elastic deformation (they can be
compressed due to the geometrical rearrangement of the
rocks or the grains of sand). Thus, the dispersion standard
deviation of the estimation should be larger than in the
previous case.

Estimated value

Ground Mean (Ns/m) STD

Box 2.0533 0.0453

Rigid 1.7471 0.0862

Table 3. Estimation results for the damping coefficient of the box and rigid
ground
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Figure 11. Scaled Gaussian bell of the estimation results for the stiffness (left) and damping (right) coefficients for the rocks (continuous
line) and the river-sand (dashed line).

environments are reasonably well modelled by equation
(1).

5.1. Convergence time

Another important aspect of identifying the terrain contact
properties with a legged robot is the convergence time.
This parameter is important because the identification
should be performed completely within the stance phase
of any particular leg.

Figure 12 shows the average values of the components
of the vector of parameters used in the identification of
sand versus time. Note that the figure shows the values of
θ = [1/k, b/k], which was intentional because the vector
of the parameters was initialized with θ1 = 1/k = 0,
implying that k → inf (which might have been confusing
for representation purposes).
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Figure 12. Estimated values of the parameters 1/k (dashed

line) and b/k (solid line) obtained by applying the identification
algorithm to sand versus time.

The parameters 1/k and b/k reach convergence at
approximately t = 0.3s. In contrast, biomechanical studies
show that the contact time of humans when running on
rigid and soft elastic surfaces at a speed of 3.7 m/s is
approximately 0.2 s [28]. McMahon, in [37], reported
that the contact time for a human running over pillows
at a speed of 4 m/s was over 0.3 s. Although it is true
that contact time decreases with increasing speed, these
results show that the algorithm can be used for running
at moderate speeds (on viscous terrains). Moreover, it is

important to note that the average velocity of legged robots
is below 2 m/s (with the exception of Boston Dynamics’
Cheetah).

Moreover, the convergence time differed as the impedance
varied (i.e., with different systems). Figure 13 shows the
values of the estimated parameters with the rigid ground.
The convergence time was approximately 0.15 s, which
was lower than the value measured by Kerdok et al. [28].
This value varies with speed, so the proposed algorithm
can be used at relatively high speeds as long as the contact
time is higher than 0.15 s.
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Figure 13. Estimated values of the parameters 1/k (dashed

line) and b/k (solid line) obtained by applying the identification
algorithm to rigid ground vs time.

The above discussion is valid with an ankle spring with
Kspring = 3, 113 N/m and with the execution time of
5 ms. If the sampling frequency is increased, then the
convergence time can be reduced. However, as was stated
in previous sections, this would require encoders with a
higher resolution.

6. Conclusion

According to biomechanical studies, humans and animals
adjust their leg stiffness to maintain the same mechanics
when running on surfaces with different stiffnesses.
This adjustment allows them to achieve higher energy
efficiency on more flexible terrains while maintaining
balance. This behaviour can also be beneficial for robots,
as their behaviour during running can be explained by

www.intechopen.com :

Identifying ground-robot impedance to improve terrain adaptability in running robots

9

Figure 11. Scaled Gaussian bell of the estimation results for the stiffness (left) and damping (right) coefficients for the rocks (continuous line) and the river-
sand (dashed line)

Regarding the damping coefficients, it can be inferred from
the curves that the damping coefficients of both types of
terrain were relatively close. In the case of the rocks, most
of the estimated values were approximately 200 Ns/m (see
Figure 11 right), while in the case of the sand the values
were concentrated at approximately 600 Ns/m. To provide
quantitative results, the mean and standard deviation of
the estimated values for the rocks and sand are presented
in Table 4.

Estimated stiffness Estimated damping

Ground Mean (N/m) Std Mean (Ns/m) Std

Rocks 2,436.9 761.81 281.01 84.13

Sand 1,181.1 276.60 528.22 124.85

Table 4. Estimation results for the sand and rocks

Table 4. demonstrates that the standard deviation of all the
quantities was high compared to their respective mean
values. This result indicates unmodelled behaviour, which
was to be expected because the model used in this work
was linear, whereas the terrain behaviour is not. Nonethe‐
less, they had well-differentiated values of stiffness.
Expressed mathematically:

( ) ( )+ < -sand sand rocks rocksK std K K std K (21)

where K indicates the mean value of the samples and std(K)
indicates the standard deviation. In contrast, the damping
coefficients did not appear useful in discriminating
between the terrains. Nevertheless, these coefficients did
indicate the energy losses during locomotion, so they can
be used to compensate for that energy.
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The value of the standard deviation for the rigid ground
and adjustable-impedance box was approximately 2% of
the mean, while the values for the rocks and sand were
between 23% and 30%. The standard deviation was
relatively high in both cases because there was unmodelled
behaviour due to motor transmissions, joint friction and
other factors that are intrinsic to the leg system. Therefore,
the implemented parameter estimation method provides
more accurate results for the rigid ground and the adjust‐
able impedance box, as these environments are reasonably
well modelled by equation (1).

5.1 Convergence time

Another important aspect of identifying the terrain contact
properties with a legged robot is the convergence time. This
parameter is important because the identification should
be performed completely within the stance phase of any
particular leg.

Figure 12 shows the average values of the components of
the vector of parameters used in the identification of sand
versus time. Note that the figure shows the values of θ =
[1/k, b/k], which was intentional because the vector of the
parameters was initialized with θ1 = 1/k = 0, implying that
k → inf (which might have been confusing for representa‐
tion purposes).
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Figure 11. Scaled Gaussian bell of the estimation results for the stiffness (left) and damping (right) coefficients for the rocks (continuous
line) and the river-sand (dashed line).

environments are reasonably well modelled by equation
(1).

5.1. Convergence time

Another important aspect of identifying the terrain contact
properties with a legged robot is the convergence time.
This parameter is important because the identification
should be performed completely within the stance phase
of any particular leg.

Figure 12 shows the average values of the components
of the vector of parameters used in the identification of
sand versus time. Note that the figure shows the values of
θ = [1/k, b/k], which was intentional because the vector
of the parameters was initialized with θ1 = 1/k = 0,
implying that k → inf (which might have been confusing
for representation purposes).
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Figure 12. Estimated values of the parameters 1/k (dashed

line) and b/k (solid line) obtained by applying the identification
algorithm to sand versus time.

The parameters 1/k and b/k reach convergence at
approximately t = 0.3s. In contrast, biomechanical studies
show that the contact time of humans when running on
rigid and soft elastic surfaces at a speed of 3.7 m/s is
approximately 0.2 s [28]. McMahon, in [37], reported
that the contact time for a human running over pillows
at a speed of 4 m/s was over 0.3 s. Although it is true
that contact time decreases with increasing speed, these
results show that the algorithm can be used for running
at moderate speeds (on viscous terrains). Moreover, it is

important to note that the average velocity of legged robots
is below 2 m/s (with the exception of Boston Dynamics’
Cheetah).

Moreover, the convergence time differed as the impedance
varied (i.e., with different systems). Figure 13 shows the
values of the estimated parameters with the rigid ground.
The convergence time was approximately 0.15 s, which
was lower than the value measured by Kerdok et al. [28].
This value varies with speed, so the proposed algorithm
can be used at relatively high speeds as long as the contact
time is higher than 0.15 s.
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Figure 13. Estimated values of the parameters 1/k (dashed

line) and b/k (solid line) obtained by applying the identification
algorithm to rigid ground vs time.

The above discussion is valid with an ankle spring with
Kspring = 3, 113 N/m and with the execution time of
5 ms. If the sampling frequency is increased, then the
convergence time can be reduced. However, as was stated
in previous sections, this would require encoders with a
higher resolution.

6. Conclusion

According to biomechanical studies, humans and animals
adjust their leg stiffness to maintain the same mechanics
when running on surfaces with different stiffnesses.
This adjustment allows them to achieve higher energy
efficiency on more flexible terrains while maintaining
balance. This behaviour can also be beneficial for robots,
as their behaviour during running can be explained by
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Figure 12. Estimated values of the parameters 1/k (dashed line) and b/k
(solid line) obtained by applying the identification algorithm to sand versus
time

The parameters 1/k and b/k reach convergence at approxi‐
mately t = 0.3s. In contrast, biomechanical studies show that
the contact time of humans when running on rigid and soft
elastic surfaces at a speed of 3.7 m/s is approximately 0.2 s
[28]. McMahon, in [37], reported that the contact time for a
human running over pillows at a speed of 4 m/s was over
0.3 s. Although it is true that contact time decreases with
increasing speed, these results show that the algorithm can
be used for running at moderate speeds (on viscous
terrains). Moreover, it is important to note that the average
velocity of legged robots is below 2 m/s (with the exception
of Boston Dynamics’ Cheetah).

Moreover, the convergence time differed as the impedance
varied (i.e., with different systems). Figure 13 shows the
values of the estimated parameters with the rigid ground.
The convergence time was approximately 0.15 s, which was
lower than the value measured by Kerdok et al. [28]. This
value varies with speed, so the proposed algorithm can be
used at relatively high speeds as long as the contact time is
higher than 0.15 s.
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line) and the river-sand (dashed line).

environments are reasonably well modelled by equation
(1).

5.1. Convergence time

Another important aspect of identifying the terrain contact
properties with a legged robot is the convergence time.
This parameter is important because the identification
should be performed completely within the stance phase
of any particular leg.

Figure 12 shows the average values of the components
of the vector of parameters used in the identification of
sand versus time. Note that the figure shows the values of
θ = [1/k, b/k], which was intentional because the vector
of the parameters was initialized with θ1 = 1/k = 0,
implying that k → inf (which might have been confusing
for representation purposes).
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Figure 12. Estimated values of the parameters 1/k (dashed

line) and b/k (solid line) obtained by applying the identification
algorithm to sand versus time.

The parameters 1/k and b/k reach convergence at
approximately t = 0.3s. In contrast, biomechanical studies
show that the contact time of humans when running on
rigid and soft elastic surfaces at a speed of 3.7 m/s is
approximately 0.2 s [28]. McMahon, in [37], reported
that the contact time for a human running over pillows
at a speed of 4 m/s was over 0.3 s. Although it is true
that contact time decreases with increasing speed, these
results show that the algorithm can be used for running
at moderate speeds (on viscous terrains). Moreover, it is

important to note that the average velocity of legged robots
is below 2 m/s (with the exception of Boston Dynamics’
Cheetah).

Moreover, the convergence time differed as the impedance
varied (i.e., with different systems). Figure 13 shows the
values of the estimated parameters with the rigid ground.
The convergence time was approximately 0.15 s, which
was lower than the value measured by Kerdok et al. [28].
This value varies with speed, so the proposed algorithm
can be used at relatively high speeds as long as the contact
time is higher than 0.15 s.
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Figure 13. Estimated values of the parameters 1/k (dashed

line) and b/k (solid line) obtained by applying the identification
algorithm to rigid ground vs time.

The above discussion is valid with an ankle spring with
Kspring = 3, 113 N/m and with the execution time of
5 ms. If the sampling frequency is increased, then the
convergence time can be reduced. However, as was stated
in previous sections, this would require encoders with a
higher resolution.

6. Conclusion

According to biomechanical studies, humans and animals
adjust their leg stiffness to maintain the same mechanics
when running on surfaces with different stiffnesses.
This adjustment allows them to achieve higher energy
efficiency on more flexible terrains while maintaining
balance. This behaviour can also be beneficial for robots,
as their behaviour during running can be explained by
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Figure 13. Estimated values of the parameters 1/k (dashed line) and b/k
(solid line) obtained by applying the identification algorithm to rigid ground
vs time

The above discussion is valid with an ankle spring with
Kspring = 3, 113 N/m and with the execution time of 5 ms. If
the sampling frequency is increased, then the convergence
time can be reduced. However, as was stated in previous
sections, this would require encoders with a higher
resolution.

6. Conclusion

According to biomechanical studies, humans and animals
adjust their leg stiffness to maintain the same mechanics
when running on surfaces with different stiffnesses. This
adjustment allows them to achieve higher energy efficiency
on more flexible terrains while maintaining balance. This
behaviour can also be beneficial for robots, as their behav‐
iour during running can be explained by the same mathe‐
matical model as animals. Following this idea, we have
described in detail a system-identification procedure based
on the RLS method to be used in legged robots. The
algorithm identifies the combined impedance of the leg and
the ground simultaneously. Moreover, it considers several
aspects, such as ground modelling, the structure of the
robot and the sampling frequency.

Additionally, we experimentally evaluated the HADE leg
(an under-actuated 3-DOF planar mechanism). The results
of the evaluation are encouraging, as the algorithm offers
good convergence and tracking when applied to elastic
terrains (a rigid ground and adjustable impedance box) in
addition to unknown dissipative terrains (sand and rocks).
Despite the nonlinearity of the behaviour of these last two
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terrains, the algorithm is capable of producing well-
differentiated estimations of their respective stiffnesses and
produces an estimation of their damping properties.

Moreover, the convergence time of the algorithm was
analysed, comparing the convergence time with the
published data on contact time in running humans. This
comparison shows that the algorithm is faster than the
contact time of human running (3.7 m/s). Thus, it can be
used at relatively high velocities if the contact time is lower
than 0.15 s.

One major disadvantage of our approach is that if the
walking speed is high, the information can only be used in
the next step. Thus, in the worst case scenario (where the
impedance of the ground varies substantially between one
step and another) this makes the model-based approach a
better option. Nevertheless, model-based approaches
requires a model of the robot, while our approach does not.
Moreover, this method can be used to construct a map of
such types of terrain to be used later for other robots to
adjust their impedance. Another possible solution is to use
a combined approach, using the proposed method to
compute the impedance of the ground on the fly and
combine it with a model-based approach to adjust the
desired impedance as the preliminary parameters of the
contact model are updated.
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