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ABSTRACT 

We previously showed that cocaine self-administration increases spine density in CA1 hippocampal neurons in Lewis 
(LEW) but not in Fischer 344 (F344) rats. Dendritic spine morphology is intimately related to its function. Thus, we 
conducted a 3D morphological analysis of CA1 dendrites and dendritic spines in these two strains of rats. Strain-
specific differences were observed prior to cocaine self-administration: LEW rats had significantly larger dendritic 
diameters but lower spine density than the F344 strain. After cocaine self-administration, proximal dendritic volume, 
dendritic surface area and spine density were increased in LEW rats, where a higher percentage of larger spines were 
also observed. In addition, we found a strong positive correlation between dendritic volume and spine morphology, and 
a moderate correlation between dendritic volume and spine density in cocaine self-administered LEW rats, an effect 
that was not evident in any other condition. By contrast, after cocaine self-administration, F334 rats showed decreased 
spine head volumes. Our findings suggest that genetic differences could play a key role in the structural plasticity 
induced by cocaine in CA1 pyramidal neurons. These cocaine-induced alterations could be related to differences in 
the memory processing of drug reward cues that could potentially explain differential individual vulnerability to 
cocaine addiction. 

INTRODUCTION 

Addiction is a complex and chronic neuropsychiatric 
disorder characterized by a long-term propensity for 
relapse. It has been suggested that, following drug ex
posure, persistent maladaptive memories take over the 
learning and plasticity processes normally involved in 
associations between environmental stimuli and natu
ral reinforcers, and these processes seem to be of 
fundamental importance underpinning drug-seeking 
relapse (Milton & Everitt 2012). Long-term behavioral 
changes that occur as a result of experience are 
thought to depend on the formation and reorganiza
tion of synaptic connections (structural plasticity) in 

distinct brain circuits. Thus, the study of the effects 
of cocaine on structural plasticity may help to better 
understand the neurobiological basis of cocaine 
addiction. 

Dendritic spines (for simplicity, spines) are the sites of 
most excitatory synapses in the brain, and they are con
sidered key elements in learning and memory (Kasai 
et al. 2010; Yuste 2010). Provided that the majority of 
spines have been shown to have synaptic contacts 
(Arellano et al. 2007b), the quantification and analysis 
of these structures are highly appropriate to identify possi
ble alterations in brain circuitry. Several studies have 
demonstrated that abused drugs lead to modifications in 
spines in different cortical and subcortical regions 
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(Robinson & Kolb 2004; Ballesteros-Yanez et al. 2007b; 
Ballesteros-Yanez et al. 2007a; Ballesteros-Yanez et al. 
2008; Russo et al. 2010; Dumitriu et al. 2012; Miguens 
et al. 2015). Most of the studies have focused on the 
nucleus accumbens and prefrontal cortex given the im
portance of the mesocorticolimbic reward system in 
addiction. However, several recent reports suggest that a 
broader circuit is involved in cocaine addiction, including 
structures like the amygdala and hippocampus (Koob & 
Volkow 2010). It has also been reported that addictive 
drugs can alter adult neurogenesis in the hippocampus 
(Canales 2007), and other authors suggest that hippo-
campal neurogenesis protects against cocaine-primed 
relapse (Deschaux et al. 2012). The activation of this 
structure is involved in the reinstatement of cocaine seek
ing (Vorel et al. 2001), and damage to the ventral 
subiculum of the hippocampus was shown to reduce 
cocaine self-administration in rats (Caine et al. 2001). 
Moreover, the dorsal and ventral hippocampus have 
been involved in the association between cocaine and 
contexts, as well as in cue-induced and cocaine-primed 
reinstatement (Fuchs et al. 2005; Rogers & See 2007; 
Lasseter et al. 2010). In addition, decreased glutamate 
transporter binding and long-term potentiation (LTP) 
facilitation in the CA1 field of the hippocampus after 
cocaine self-administration was observed (Del Olmo 
et al. 2006; Miguens et al. 2008; see also Thompson 
et al. 2004)—an effect that seems to be dependent on 
dopamine and metabotropic glutamate receptors (Fole 
et al. 2014). 

We previously reported that Lewis (LEW) rats are 
more sensitive than Fischer 344 rats (F344) to the rein
stating effects of cocaine after setting similar cocaine 
self-administration (Miguens et al. 2013)—two strains 
that have been proposed as a useful model to study 
genetic vulnerability to drug addiction (Kosten & 
Ambrosio 2002). In addition, we found strain-specific 
differences in cocaine-induced neuroplasticity in these 
two strains of rats in the hippocampus. We observed 
impaired LTP depotentiation in the F344 strain—a re
sult that is only found in LEW rats after cocaine self-
administration (Miguens et al. 2011). Furthermore, 
F344 rats showed higher spine density than LEW rats, 
and cocaine self-administration increased spine density 
in the LEW strain—no increase was observed in the 
F344 (Miguens et al. 2015). Thus, these differences 
in cocaine-induced neuroplasticity could reflect differ
ences in neuronal structure and function in these 
strains of rats. 

It has been suggested that morphological changes 
of spines may represent significant modifications in 
their biochemical function. There is also a correlation 
between several morphological parameters, such as 
the postsynaptic density size, spine head volume and 

the number of vesicles in presynaptic terminals, in 
many brain regions including the neocortex, hippo
campus and cerebellum (Harris & Stevens 1988, 
1989; Tashiro & Yuste 2003), indicating that changes 
in spine morphology are related to functional modifi
cations in the mechanisms of information processing 
at spine level (Yuste 2010). Given that the hippocam
pus has been involved in drug context memory forma
tion (Koob & Volkow 2010), ascertaining whether or 
not there are alterations in the neuroplasticity of this 
structure is imperative to understand more about the 
mechanisms that underlie drug-associated memory 
formation and its relationship to relapse to cocaine 
seeking. Newly generated synaptic inputs distributed 
along the dendrites might clarify how information is 
integrated into the neurons to produce their own out
put signals after cocaine exposure. 

Therefore, following our previous work demonstrating 
strain-specific changes in spine density in the hippocam
pus after cocaine self-administration (Miguens et al. 

2015), here, we have studied in detail the morphological 
changes at the dendrite and spine level, in the CA1 collat
erals of apical dendrites of the hippocampus of LEW and 
F344 rats. 

MATERIAL A N D METHODS 

Animals 

We analyzed the dendrites of 23 adult male LEW (n = 12) 
and F344 (n = 11) rats (Harlan Interfauna Ibérica, Barce
lona, Spain) from a previous study (Miguens et al. 2015). 
The animals were experimentally naïve and weighed 
275-350g prior to the initiation of the experiments. 
They were singly housed in a climate-controlled room 
(23°C) with a 12-hour light-dark cycle (0800-2000 
lights on) with free access to Purina laboratory feed 
(Panlab, Barcelona, Spain) and tap water. All animals 
were maintained and handled according to European 
Union guidelines for the care of laboratory animals 
(Directive 2010/63/EU), and we followed the ‘Principles 
of Laboratory Animal Care’. 

Catheter surgery 

As previously described (Miguens et al. 2013), subjects 
were implanted with intravenous polyvinylchloride tub
ing in the jugular vein (0.064 i.d.) under ketamine 
(40 mg/kg) and diazepam (10 mg/kg) anesthesia approx
imately at the level of the atrium. Rats were allowed to 
recover for 7 days after surgery, and catheters were 
flushed daily with 0.5 ml of a solution of antibiotic 
(gentamicin, 0.10mg/ml) dissolved in heparinized saline 
to prevent infections and to maintain catheter patency. 
At the end of the experiments, the catheter patency was 



tested with the barbiturate anesthetic thiopental (10 mg/ 
kg, i.v.), and it was assumed to remain unblocked if the 
rat immediately lost consciousness. 

Experimental procedure 

Behavioral experiments were performed in 12 operant 
conditioning chambers (Coulburn Instruments, Allen-
town, PA, USA) with two fixed levers. Active lever 
presses resulted in cocaine infusions, while inactive le
ver presses were recorded but had no programmed 
consequences. Before surgery, rats were food deprived 
to 95 percent of their free-feeding weight, and they 
were subjected to a fixed ratio (FR) 1 schedule of 
food reinforcement over several sessions until they 
showed stable operant behavior. Then, they were 
allowed ad libitum access to food, and surgery was 
performed. After a postoperative recovery period of 
at least 7 days, the rats were food deprived again to 
95 percent of their free-feeding body weight. Subse
quently, they were trained to self-administer cocaine 
(1 mg/kg per infusion; LEW and F344, n = 6 in each 
strain) or saline (LEW n = 6 , and F344 n = 5 ) in 
100 μl of volume over 10 seconds for at least 20days 
under an FR1 schedule of reinforcement with a 
timeout period of 10 seconds. A stimulus light over 
the lever signaled drug availability and was switched 
off during drug infusion and the timeout period. Daily 
training sessions lasted 2 hours or until 20 cocaine 
infusions had been earned. A microliter injection 
pump (Harvard 22; Harvard Apparatus, Holliston, 
MA, USA) was used to deliver the cocaine or saline 
infusions over 10 seconds when the animals pressed 
the active lever. 

Intracellular injections 

Single-cell microinjections were performed according to 
the methods described in our previous study (Miguens 
et al. 2015; for further methodological details, see 
Benavides-Piccione et al. 2013; Elston & Rosa 1997). 
Briefly, 24 hours after the last self-administration session, 
rats were intracardially perfused with 4 percent parafor-
maldehyde in phosphate buffer (PB; 0.1M; pH7.3), and 
their brains were removed and immersed in 4percent 
paraformaldehyde in PB for a further 24hours. Coronal 
sections (200 μm) were obtained with a vibratome 
(Lancer 1000 vibratome; St. Louis, MO, USA) at the level 
of the dorsal hippocampus. CA1 hippocampal pyramidal 
cells were individually injected with Lucifer yellow (8 per
cent in 0.1M Tris buffer, pH 7.4) by continuous current 
until the distal tips of the collateral branches of the apical 
dendrites and the dendritic spines were readily visible. 
Then, sections were processed with a rabbit antibody 

against Lucifer yellow (1:400 000 made in the Cajal In
stitute) and a secondary antibody against rabbit conju
gated with Alexa 488 (1:1000; Invitrogen, Carlsbad, 
CA, USA). Sections were mounted and coverslipped using 
ProLong® Gold antifade reagent (Invitrogen). 

Morphometric analysis of spines 

3D z-stack images were taken for analysis with Zeiss con-
focal equipment (LSM 710, equipped with an Axio Ob
server. Z1 inverted microscope; Carl Zeiss MicroImaging 
GmbH, Germany), using a 0.057 × 0.057 × 0.14 ^m 
voxel size. A 63× immersion objective was used (Zeiss Ob
jective Plan-Apochromat 63×/1.40 NA Oil DIC M27) 
with a theoretical minimum resolvable resolution in the 
x-y plane of about 0.14 jim. We collected at least eight 
CA1 hippocampal collateral dendrites (Fig. 1) from each 
animal and made sure that each dendrite was acquired 
from the apical shaft to the end of its distal tip. This pro
cedure usually rendered three different files for a single 
dendrite. Images were deconvolved using AUTODEBLUR 
software (MediaCybernetics, Inc.; Bethesda, MD, USA) 
to decrease the blur around spines, and stacks were inte
grated into a single volumetric dataset with VIAS software 
(Computational Neurobiology and Imaging Center; Mt Si
nai School of Medicine, New York, NY, USA). Tridimen
sional reconstruction of the spines in the collateral 
branches of the apical dendrite was performed using the 
semi-automated software NEURONSTUDIO (http://re-
search.mssm.edu/cnic/tools-ns.html), and a dynamic 
threshold was used to adjust the local intensity distribu
tion of the data. The attach ratio value used for the 
neurite endpoints of the model was 3, and to control 
the model vertices, we used a discretization ratio of 
0.5. Regarding spines, the minimum and maximum 
values for height were 0.2 and 4.0 jim, respectively, 
with a maximum width value of 3 |jm. The maximum 
number of voxels was 10 for stubby spines and 5 in 
the case of non-stubby spines. A human operator, 
blinded to the condition, selected 5-7 apical collateral 
dendrites from different neurons of each animal 
(n = 5-6 per group), and several morphological parame
ters were measured: 

• averaged dendritic diameter, 

• dendritic volume as a function of the distance from 
the apical trunk, 

• dendritic surface area as a function of the distance 
from the apical trunk, 

• spine density, 
• spine head volume (rayburst sampling algorithm), 
• spine head diameter and 
• spine length (distance from the tip of the spine to the 

surface of the model; this value is an approximate 
measure of the length of the spine). 

http://research.mssm.edu/cnic/tools-ns.html
http://research.mssm.edu/cnic/tools-ns.html


Figure 1 Tridimensional reconstruction of dendrites and spines of C A 1 pyramidal cells. (a) Confocal projection image from a panoramic view 
of C A 1 pyramidal neurons injected with Lucifer yellow. (b) Magnification of the portion of the injected pyramidal cell boxed in panel a. (c) 
Higher magnification of the apical collateral dendrite indicated with an arrow in panel b. (d) Reconstruction of the dendritic process and spines 
with NEURONSTUDIO software. (e) 3D view of the dendrite reconstructed in panel d. Scale bar = 275 μm in panel a, 60 μm in panel b and 10 μm 
in panels c, d and e 

Additionally, we used the spine classification pro
vided by the NEURONSTUDIO software, which assigns 
each particular spine to one of the three major classes 
(‘mushroom’, ‘thin’ and ‘stubby’). Spines with a head-
to-neck-diameter ratio greater than 1.1 μm and a 
head diameter equal or greater than 0.35 μm were 
classified as mushroom subtype; spines with a head-
to-neck-diameter ratio greater than 1.1 μm and a 
head diameter lower than 0.35μm were classified as 
thin subtype; and spines with a head-to-neck-diameter 
ratio lower than 1.1 μm were classified as stubby 
subtype. 

Statistical analysis of the data 

Averaged dendritic diameter was analyzed by means of 
a two-way ANOVA with strain and treatment as inde
pendent variables. Dendritic volume, dendritic surface 
area and dendritic surface-to-volume ratios were 

analyzed using a mixed ANOVA with strain and treat
ment as independent variables. The within-subject dis
tance to the apical dendrite shaft was measured, and 
ANOVA was performed. The morphometric parameters 
of the spine (head volume, head diameter and length) 
were analyzed using a two-way ANOVA with strain 
and treatment as independent variables. In addition, 
these parameters were analyzed as a function of the 
distance to the apical trunk (subdivided into consecu
tive 10-μm segments) adding the within-subject factor 
distance to the apical dendrite shaft. Two-way ANOVA 
followed by one-way ANOVAs was performed to ana
lyze interaction effects. Cumulative frequencies were 
compared across groups using, first, the normal distri
bution Kolmogorov–Smirnov (K–S) fitting test and 
then K–S two-sample tests for subsequent paired com
parisons. Correlation analysis between the different pa
rameters quantified was performed using Spearman 
analysis. Values of P < 0.05 were considered as signif
icant. Post hoc comparisons were performed by using 



Bonferroni corrections when appropriate. All statistical 

analyses were performed using the SPSS statistical 

package (version 19.0). 

RESULTS 

Cocaine self-administration 

Cocaine self-administered rats of both strains clearly 

showed a higher number of infusions than saline self-

administered rats (F1, 1 9 = 56.93; P<0.0001) . However, 

there were no statistically significant differences in the to

tal cocaine consumption between these two strains of 

rats after 20 days of cocaine self-administration (221.8 

± 26.05 mg/kg for LEW and 242.2 ±28.22 mg/kg for 

F344; t10 = 0.53, P=0.61) . A detailed description of the 

behavioral results can be found in Miguens et al. (2015). 

Morphological analysis of collateral dendrites of 

hippocampal CA1 pyramidal cells 

We analyzed 5–7 whole dendrites per animal from 3 D 

confocal images using NEURONSTUDIO software. The fol

lowing parameters were obtained: averaged dendritic di

ameter of the whole dendrite, dendritic volume and 

surface as a function of the distance to the apical trunk, 

and the dendrite surface-area-to-volume ratio (Fig. 2). 

Strain differences in averaged dendritic diameter 

When we analyzed the averaged dendritic diameter, the 

ANOVA revealed a significant main effect for strain 

(Fig. 2a; F1 , 1 9 = 7.80, P<0.05) ; LEW rats showed larger 

dendritic diameters than F344 rats. However, no differ

ences in the results of the treatment or the 

strain × treatment interaction were observed; i.e. cocaine 

self-administration did not affect averaged dendritic diam

eters in either F344 or LEW rats. 

Cocaine self-administration increases dendritic volume and 

dendritic surface area in LEW but not in F344 rats 

We analyzed dendritic volume and dendritic surface area 

as a function of the distance from the apical trunk. In line 

with previous observations (Bannister & Larkman 1995), 

in the present study, dendritic volume (F11 , 1 7 6 = 139.18, 

P < 0.001) and dendritic surface area (F11 , 1 7 6 = 79.37, 

P < 0.001) decreased along the dendrite as a function of 

the distance to the apical trunk. 

The mixed ANOVA revealed a distance ×strain× treat

ment interaction (F11, 1 7 6 = 2.75, P<0 .01) in dendritic 

volume and a trend bordering on significance in surface 

Figure 2 Analysis of the different morphological parameters of the 

dendritic processes. LEW rats showed larger averaged dendritic diame

ters than F344 rats (P < 0.05), but no statistical differences were ob

served as a consequence of cocaine treatment (a). Cocaine self-

administration was related to increased dendritic surface area (b) and 

volume (c), and decreased surface-area-to-volume ratio (d) in the prox

imal part of the dendrite (30, 40 and 50 μm) in LEW but not in F344 
rats. Data showed the mean ±standard error of mean. *P < 0.05 LEW-
COC with respect to LEW-SAL; n = 5–6 animals per group 

area (F11, 1 7 6 = 1.67, P =0.084). We found a significant 
enlargement in the volume (F11 , 8 8 = 3.20, P<0 .01) 
and the surface area (F11 , 8 8 = 3.18, P < 0.01) of the 



dendrite as a function of the distance from the apical 
trunk, in cocaine self-administered LEW rats compared with 
their saline self-administered counterparts. Significant dif
ferences were observed at 30, 40 and 50 μm from the shaft 
of the apical dendrite (Fig. 2b & c). However, no differences 
were observed in the F344 strain as a consequence of co
caine self-administration. In addition, the surface-area-to-
volume ratio was also altered in this part of the dendrite in 
LEW cocaine self-administered rats (Fig. 2d; F1, 3 0 = 7.67; 

P < 0.05); it was decreased in comparison with their saline 
counterparts. Representative projected z-stacks recon
structed by means of NEURONSTUDIO from each experimental 
condition are shown in Fig. 3. 

Analysis of spine density and morphology 

The main morphometric parameters for spines were 
studied in detail to determine whether the different 

.^fSrtr* k ? * * % 

Figure 3 Dendritic reconstruction using NEURONSTUDIO software. (a) Projections of the reconstructions of high-resolution 3 D confocal 
stacks that illustrate the representative dendritic volume and surface area for each experimental condition. (b) Higher magnification image of 
the dendritic segments within the boxed area in panel a (dendritic fragments spanning the 30-, 40- and 50-μm Sholl spheres from the shaft 
of the apical dendrites). Automatically identified spines are depicted in green, dendritic surface is depicted in red and spheres for Sholl analysis 
are shown as white lines. Scale bar: 10 μm in panel a and 2.5 μm in panel b 



experimental conditions yielded different morphological the collateral dendrite. Spine size was characterized 
profiles (Fig. 4). We first analyzed spine density and by three different parameters: spine length, spine head 
spine size, both as average measurements in the volume and spine head diameter (which is partly re-
whole dendrite and as function of the distance along lated to the spine head volume). 

Figure 4 Analysis of spine density and spine morphology. The different morphological parameters analyzed in each experimental condition are 

shown: spine density (a and b), spine head volume (c and d), spine head diameter (e and f) and spine length (g and h). The panels on the left 

show the values as a function of the distance to the apical dendritic trunk, and the panels on the right show the same parameters averaged 

in the whole dendrite. Graphs show the mean ± standard error of mean. *P < 0.05 and **p < 0.01 denote a significant difference with respect 

to saline group; #P < 0.05 denotes a significant difference with respect to F344 saline group n = 5–6 animals per group 



Spine density 

As expected from our previous observations (Miguens 

et al. 2015), the ANOVA revealed a significant 

strain × treatment interaction effect in averaged spine 

density (Fig. 4b; i.e. spine density measured along 

the whole dendrite; F1 , 1 9 = 9.72, P<0.01) . With re

spect to strain differences, F344 rats showed higher 

spine density than LEW rats (F334-SAL versus LEW-

SAL). In addition, cocaine self-administration induced 

a slight but significant increase in averaged spine den

sity in LEW rats. However, no significant differences 

were observed between saline and cocaine F344 rats. 

The mixed repeated measures ANOVA also showed a 

significant distance × strain × treatment interaction effect 

(F11 , 2 0 9 = 2.58, P<0.01) . Increased spine density in 

LEW after cocaine self-administration seemed to be 

due to differences in the proximal rather than in the 

terminal portion of the dendrite (Fig. 4a). 

In our previous study using manual counting by 

means of NEUROLUCIDA software (MicroBright-Field, 

Inc., Vermont, USA), we also found underlying differ

ences between LEW and F344 rats and that cocaine 

self-administration increased spine density in LEW 

but not in F344 rats (Miguens et al. 2015). Here, 

we used the semi-automated software NEURONSTUDIO 

(http://research.mssm.edu/cnic/tools-ns.html) and 

found similar results. Focusing on analyzing spine 

morphology, a human operator, blinded to the condi

tion, verified and manually corrected any errors in 

spine identification using a conservative criterion (i.e. 

no visible necks connected to the dendritic shaft or 

spine necks connecting with another dendritic process) 

to eliminate uncorrected spines without adding new 

spines. Thus, the number of spines counted in the 

present study was lower (25.3 percent less) than in 

the former one, but the same pattern of changes 

was found. It is important to note that analyzing the 

‘raw’ data generated by NEURONSTUDIO (i.e. without re

moving those spines with no visible necks), we have 

obtained a difference of approximately 8.6 percent in 

spine density between studies (data not shown). This 

difference is in accordance with previous reports that 

showed less spine detection by NEURONSTUDIO software 

compared with manual detection results by a neurobi-

ology expert (Shi, Huang & Hong 2014). 

Spine morphology (size) 

Among the parameters describing spine size, the analysis 

of spine head volume (Fig. 4c & d) revealed a significant 

strain × treatment interaction effect (F1, 1 9 = 9.10, 

P < 0.01); F344-COC showed reduced spine head 

volumes compared with F344-SAL ( P < 0.05). In turn, 

the Sholl analysis also revealed a significant main effect 

in the strain × treatment interaction (F1, 1 9 = 6.31, 

P < 0.05); LEW-SAL showed lower spine head volumes 

than F344-SAL (P<0.05). With regard to spine head 

diameters (Fig. 4e & f), the ANOVA revealed a significant 

treatment effect (F1, 1 9 = 4.60, P < 0.05), with F344-COC 

showing reduced spine head diameters with respect to 

F344-SAL (P<0.05). Finally, regarding spine length 

(Fig. 4g & h), the ANOVA revealed a main effect of strain 

(Fig. 4h; F1 , 1 9 = 8.85, P <0.01); LEW rats showed 

longer averaged spine length than F344 rats. Supporting 

information Figures S1–S3 show data concerning spine 

density, spine head volume, spine head diameter and 

spine length for each of the spine subtypes classified 

(stubby, Figure S1; thin, Figure S2; and mushroom, 

Figure S3). 

To investigate this effect further, we then analyzed 

the frequency distribution of spine head volume, spine 

head diameter and spine length (Fig. 5). There were sig

nificant differences in the frequency distribution of spine 

head volumes: Larger spine heads and longer spines 

were more frequent in LEW cocaine self-administered 

rats than in the corresponding saline animals (Fig. 5a). 

By contrast, F344 cocaine self-administered rats showed 

a lower frequency of spines with larger head volume 

and head diameter (Fig. 5a & c). A higher frequency 

of shorter spines and a lower frequency of longer spines 

were observed as compared with F344 self-administered 

(Fig. 5e). K–S goodness-of-fit test values are depicted in 

Table 1. 

Correlation analyses between dendritic volume and the 

various spine morphological parameters analyzed 

We then examined whether there was a potential 

correlation between dendritic volume in the proxi

mal segment of the dendrite and the different spine 

morphological parameters analyzed in the present 

study (Fig. 6). As shown in the figure, in LEW 

cocaine self-administered rats, dendritic volume was 

positively correlated with spine densities (Fig. 6b) 

and spine head volumes (Fig. 6d) and diameters 

(Fig. 6f), and negatively correlated with spine neck 

length (Fig. 6h). However, we did not find any 

correlation between these parameters in saline 

self-administered LEW rats (Fig. 6b, d, f & h), or in 

either saline or cocaine self-administered F344 rats 

(Fig. 6a, c, e & g). 

DISCUSSION 

We have reported here underlying strain differences in 

the morphology of the collateral dendrites in the 

stratum radiatum of the CA1 pyramidal cells, as well 

http://research.mssm.edu/cnic/tools-ns.html


Figure 5 Frequency distributions of spine head volume, spine head diameter and spine length. Panels show frequency distribution histograms 
(a, c and e) and cumulative distribution functions as a percentage (b, d and f) of the morphological parameters analyzed: spine head volume (a 
and b), spine head diameter (c and d) and spine length (e and f). LEW cocaine self-administered rats compared with their saline self-administered 
counterparts showed a higher percentage of spines with larger spine head volume (0.15 to 0.45 μm3 intervals) and length (1.4 to 1.9 μm inter
vals). By contrast, compared with their saline self-administered counterparts, F344 cocaine self-administered rats showed a lower percentage of 
spines with larger spine head volume (0.15 to 0.45 μm3 intervals), lower percentage of spines with lower spine head diameter (0.05 to 0.10 μm 
intervals) and lower percentage of longer spines (1.0 to 1.7 μm intervals) 



Table 1 Kolmogorov–Smirnov goodness-of-fit test for the den
dritic spine parameters analyzed. 

Spine head 
volume 

Spine head 
diameter 

Spine length 

F344-SAL versus 

F344-COC 
LEW-SAL versus 

LEW-COC 
F344-SAL versus 

F344-COC 
LEW-SAL versus 

LEW-COC 
F344-SAL versus 
F344-COC 
LEW-SAL versus 

LEW-COC 

Goodness-of-fit statistics 
Kolmogorov-Smimov 

0.075, P < 0.0001 

0.041, P < 0.0001 

0.050, P < 0.001 

0.007, P = 0.983 

0.024, P = 0.009 

0.029, P = 0.002 

F344 = Fischer 344; LEW = Lewis. 

as strain-specific effects of cocaine self-administration. 
A schematic summary of the results is presented in 
Fig. 7. With respect to strain-based morphological dif
ferences, we found that LEW rats had significantly 
greater dendritic diameters and longer spines but 
lower spine density compared with the F344 strain 
(Fig. 7, bottom). Moreover, the analysis revealed that 
cocaine self-administration increased volume and sur
face area in the proximal portion of the dendrite in 
LEW but not in F344 rats. Furthermore, in LEW co
caine self-administered rats, dendritic volume in this 
part of the dendrite was positively correlated with 
spine density, spine head volume and spine head di
ameter, and inversely correlated with spine length. 
When we analyzed frequency distributions in the en
tire dendrite, a higher percentage of spines with larger 
head volume and length were found in LEW rats sub
jected to cocaine self-administration as compared with 
their saline counterparts (Fig. 7, right). Finally, we 
have observed a reduction in spine head volume and 
spine head diameter in F334 cocaine self-administered 
rats compared with their saline counterparts—an ef
fect that was mainly related to the ‘stubby’ and ‘thin’ 
subtypes (Fig. 7, left). 

Strain-based structural plasticity differences 

Strain-based structural plasticity differences in CA1 
pyramidal neurons may be implicated in the different 
responses that LEW and F344 rats display to cocaine 
and other drugs of abuse. In the most of mammalian 
forebrain structures, pyramidal neurons are found and 
have been associated with sophisticated cognitive 

functions. Although pyramidal cells have common fea
tures, differences in neuron structure have been de
scribed among different regions of the brain and 
different species (Elston 2000; Jacobs et al. 2001; 
Ballesteros-Yáñez et al. 2006; Benavides-Piccione 
et al. 2006; Elston et al. 2011; Oga et al. 2013; Elston 
& Manger 2014), and the differences in their struc
ture are thought to underpin functional differences 
(see Elston 2003; Jacobs & Scheibel 2002; Spruston 
2008; Elston & Fujita 2014 for reviews). We 
previously reported strain-specific differences between 
LEW and F344 rats in different brain areas including 
the hippocampus (Ballesteros-Yanez et al. 2007a; 
Ballesteros-Yanez et al. 2008; Miguens et al. 2015). 
Our present results showed that averaged dendritic di
ameter in LEW rats was larger than in the F344 
strain (Fig. 2a). Dendritic diameters are associated 
with cable properties (Rall 1995), and the differences 
in the dendritic diameter likely affect the physiological 
activity of the neurons given that dendrite diameter 
is closely related to electrical conductivity (Holmes 
1989; Mainen & Sejnowski 1996; Vetter, Roth & 
Hausser 2001). It may be that the decreased aver
aged diameter of the dendrites in the F344 strain is 
compensated by the increased spine density that this 
strain exhibits as compared with the LEW strain. 
Thus, these structural differences could be related to 
differences in neuron conductivity and function, and 
this could be an explanation for the better perfor
mance in the radial maze that LEW rats display 
compared with the F344 strain (Fole et al. 2011). 
As we have previously shown, LTP depotentiation is 
impaired in the F344 strain (Miguens et al. 2011), 
perhaps as a consequence of the high spine density 
and/or the shorter spines in this strain under basal 
conditions. 

Strain-specific cocaine-induced effects on compartment-specific 
plasticity 

To assess the effects of cocaine self-administration on 
the morphological characteristics of the dendritic 
processes, we have analyzed the volume and surface 
area of the dendrite as a function of the distance to 
the apical trunk. We detected that these dendritic pa
rameters are increased at the segments comprised be
tween 30 and 50 μm from the apical trunk in LEW 
cocaine self-administered animals when compared 
with their saline self-administered counterparts 
(Fig. 2b and c). However, no differences were found 
in F344 rats as a consequence of cocaine treatment. 
This suggests that structural plasticity in LEW rats is 
more sensitive to cocaine effects than in the F344 
strain, which seems to be more resistant. The 



Figure 6 Correlation analyses between dendritic and spine morphology in the proximal part of the dendrite. The correlations between den
dritic volume and the different parameters of spine morphology analyzed are shown for F344 (saline, green dots; cocaine, blue dots) and LEW 
rats (saline, orange dots; cocaine, red dots). Significant correlations were classified as weak [Spearman’s rho (ρ) value lower than 0.40], moderate 
(0.4 < ρ < 0.7) and strong (ρ > 0.7). Points represent the averaged values of 5–7 dendrites obtained in each animal over a distance spanning 30, 
40 and 50 μm from dendritic shaft of the apical dendrite (n = 15–18 distance points) 

peculiar correlations between the different parameters 
of spine size and dendritic volume in the dendrite 
proximal segments were only found after cocaine 
self-administration in the LEW strain, and they were 
not evident in any other condition. This result could 
be indicative of a spino-dendritic coupling that occurs 
as a consequence of cocaine treatment in this strain. 

It has been suggested that spino-dendritic cross-talk 
could be implicated in long-lasting Ca2+ transients 
that occur simultaneously in neighboring spines. This 
results in overlap of the microdomains, providing a 
coincidence detection mechanism for metabotropic 
glutamate receptor-mediated activity (Schmidt et al. 
2007). With regard to this, it has recently been 



Figure 7 Schematic diagram and summary of the main results. The figure illustrates the more important morphological strain differences be

fore and after cocaine self-administration in CA1 dendrites and spines. As we stated in the Introduction section, it is important to note that LEW 

rats are more sensitive to the reinstating effects of cocaine after setting similar cocaine self-administration than F344 rats (Miguens et al. 2013) 

shown that metabotropic glutamate receptors play a 
key role in protein synthesis-dependent LTP cocaine-
induced facilitation in the LEW strain (Fole et al. 
2014). 

The analysis of cocaine self-administration effects in 
the averaged spine head volume, head diameter and 
spine length in the whole dendrite revealed an in
triguing result: Spine head volume and diameter in 
F344 rats were decreased after cocaine self-
administration, a reduction that seems to be especially 
pronounced in the ‘stubby’ and ‘thin’ spine subtypes. 
It has been reported that induction of hippocampal 
LTD resulted in decreased spine head volume and di
ameter and that decreased spine head volume corre
lates with decreased synaptic strength (Okamoto 
et al. 2004; Zhou, Homma & Poo 2004). Thus, this 
decrease in spine head volume in F344 cocaine self-

administered rats could be involved in the different 
sensitivity to cocaine-induced reinstatement (Miguens 
et al. 2013) that is shown by this ‘addiction-resistant’ 
strain with respect to the LEW ‘addiction-prone’ 
strain. 

Subsequently, we analyzed these parameters based 
on the frequency distribution of spines in the entire 
dendrite. We observed that cocaine self-administered 
LEW rats have a higher percentage of spines with 
larger head volume as well as a higher percentage 
of longer spines compared with LEW saline animals 
—values similar to F344 saline self-administered rats. 
By contrast, in F344 rats, the reduction in spine head 
volume after cocaine self-administration (Fig. 4d) was 
related to a lower percentage of larger spines. These 
changes could be also related to functional consider
ations: Spine volumes are proportional to the areas 



of postsynaptic densities, and spine head volume is di
rectly related to the strength of synaptic currents 
(Harris & Stevens 1989; Schikorski & Stevens 1997; 
Arellano et al. 2007a). Thus, an increased frequency 
of spines with larger head volume in the LEW strain 
after cocaine self-administration would be expected to 
be related to augmented synaptic strength. According 
to Matsuzaki et al. (2004) and Kasai et al. (2010), 
small dendritic spines are preferential sites for long-
term potentiation induction, whereas large spines 
might represent physical traces of long-term memory. 
Thus, our results suggest a possible role of dendritic 
volume as a regulatory factor in the actions that co
caine could have in context memories during cocaine 
self-administration in the LEW strain. In this regard, 
it has been suggested that the alteration of the 
surface-to-volume ratio of the dendrite could have a 
pronounced effect on the local amplitude of chemical 
signals (Helmchen 2008). As seen in the present 
study, this ratio was altered in cocaine self-
administered LEW rats in the proximal segment of 
the dendrite (Fig. 2d). It is possible that the increase 
in the dendritic volume and spine density after co
caine self-administration in the LEW strain was also 
related to enhanced conductivity in CA1 hippocam-
pal neurons. This would be in agreement at the 
physiological level with the LTP cocaine-induced fa
cilitation that was observed in this strain (Del Olmo 
et al. 2006), and at the behavioral level with the im
proved performance of LEW rats in the Morris water 
maze after cocaine self-administration (Del Olmo 
et al. 2007). 

All these data suggest that the potentiation of pre-
synaptic inputs to this region of the hippocampus 
could be operating during cocaine self-administration 
in LEW rats. The CA1 subfield is the primary output 
of the hippocampal circuit, and the collaterals of api
cal dendrites receive their main inputs from hippocam-
pal subfield CA3 (Amaral & Witter 1989). The CA3 
plays a central role in driving sharp wave-associated 
population events and the associated memory replay 
in CA1 (Csicsvari et al. 2000; Sullivan et al. 2011). 
Therefore, it is tempting to speculate that CA3–CA1 
coupling could be involved in potentiating drug con
text memories during cocaine self-administration in 
the LEW strain. Moreover, the lack of this phenome
non in the F344 strain may be related to a protective 
role in the aforementioned differences in cocaine-
induced reinstatement between these two strains of 
rats (Miguens et al. 2013). Underlying differences in 
the structural plasticity of this loop may also be impli
cated in the reported differences in spatial learning be
tween these two genetically different strains of rats. 
Elucidating the presynaptic origin of cocaine-induced 

dendritic and spine plasticity in the hippocampus is 
of paramount importance and should be considered a 
priority for future studies. 

Overall, the findings of this work suggest that genetic 
differences in cocaine-induced neural structural plasticity 
in the CA1 field of the hippocampus may be related to dif
ferences in the memory processing of drug reward cues 
that could explain the differential individual vulnerability 
to cocaine addiction. 
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