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Abstract: Topology control is an effective method for improving the performance of wireless
sensor networks (WSNs). Many topology control algorithms can achieve high energy efficiency
by dynamically changing the transmission range of nodes. However, these algorithms prefer to
choose short multihop communication links rather than the long directly communication links which
also energy efficient probabilistic. Note that these fact, in this paper, we propose a mathematic model
to explore the probability that the long directly communication links are more energy efficient than
the short links. We investigate the properties of this probability and find out the optimal transmission
range which has highest probability of energy efficient. Based on this conclusion, we propose the
energy efficient and reliable topology control algorithm (ERTC) to maintain the r-range for the nodes
instead of the k-connection; moreover, ERTC can achieve energy efficient and network connection at
the same time.
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1. Introduction

Wireless sensor networks (WSNs) have become more and more widely used and important
in recent years. The properties of WSNs—which contain hundreds or thousands of sensors—are
limited by the energy, the bandwidth, the capability of computing, etc. Moreover, in most applications,
the WSNs are arranged in the remote area where changing the sensor nodes always impossible or
inconvenient, so how to save the node energy and prolong the network lifetime is important for WSN.
There are many algorithms have been proposed to improve the network reliable and energy efficient for
WSN. One remarkable approach is topology control. Topology control has been proposed to address
many problems in WSNs by adding or deleting nodes/links according to certain algorithms. The aim
of topology control is to reduce energy consumption and preserve other fundamental properties for
the network at the same time [1], such as network connectivity, reliability, fault-tolerant, coverage, etc.

In WSNs, topology control can be implemented in three approaches [2]: (1) Power Adjustment
Approach: minimizing the transmission power by adjusting the transmission range of node; in this
approach, the long distance communication links will be eliminated while the short links will be
chosen; (2) Power Model Management: controlling the feature of the operating mode to reduce
energy consumption; there are four operating modes: sleep mode, idle mode, transmission mode,
and receiving mode; since the energy consumption during the transmission mode and receiving
mode is generally higher than that in the sleep mode [3], so switching the redundant nodes into
sleep mode can save energy obviously [4]; (3) Clustering Approach [5]: selecting a set of nodes
in the network to construct an efficiently hierarchical topology; the clusterheads are restricted to
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certain tasks like collecting data, processing packets, or forwarding packets to non-clusterheads; the
non-clusterheads nodes collect data and transmit the data packets to the clusterheads. In this paper,
we mainly concentrate on the first one, i.e., the power adjustment approach.

To the power adjustment approach, on one hand, for reducing interference and energy
consumption, each node transmits packets with relative low power [6]. The algorithms are generally
localized, i.e., each node uses only the information that is one or two hops away. The problem of
minimizing the total energy consumption for the whole network is NP-hard in both two and three
dimensional space [7,8]. In addition, if the WSN consists thousands of nodes, it is difficult to calculate
the optimal transmission ranges for transmitting the packets to the concerned nodes [3]. On the other
hand, even reducing the transmission range of nodes is the most common and effective approach
to control the network topology and reduce the energy consumption in WSN, but in this paper we
will show that the long directly communication links can probabilistically spend less energy than the
short indirectly communication links, i.e., it is probabilistic when reducing the energy consumption of
network by reducing transmission range.

Motivated by these, in this paper, we explore the probability of reducing energy consumption
by reducing the transmission range, and investigate the properties of this probability under different
scenarios. Based on the conclusions, we propose an energy efficient and reliable topology control
algorithm (ERTC) which meets the requirements of network connection and energy efficient at the
same time. The contributions of this paper are as follows:

• we propose a mathematic probability model for energy consumption analysis when applying
the transmission power adjustment approach. To the best of our knowledge, this is the first
probability analysis model for this kind of issue;

• we analyze the probability model in detail and explore the features of this model under different
network parameters;

• we propose an ERTC based on these conclusions, which maintain the r-range of the node instead
of the k-connection and can adapt the network dynamic.

The rest parts of the paper are organization as follows: in Section 2, we will introduce the related
works of the and topology control; Section 3 will provide the network model and state the problems
which will be investigated in this paper; we will introduce the probability model and analysis the
properties of this model in Section 4; in Section 5, we will introduce the ERTC method in detail;
Section 6 explores the performance of ERTC based on simulation; in Section 7, we conclude this paper.

2. Related Works

The latest surveys of network topology control algorithms can be found in [2,9–11]. The primary
goals of topology control are to guarantee the network connection and reduce the energy consumption
as far as possible. Many heuristic algorithms have been proposed, such as, Local Minimum Spanning
Tree (LMST) [12], Local Tree-based Reliable Topology (LTRT) [6], A1 [13], Poly [14], Centralized Robust
Topology Control Algorithm (CRTCA) [15], Cooperative topology control scheme with Opportunistic
Interference Cancelation (COIC) [16], Local Mean Neighbor (LMN) [17], Local Mean Algorithm
(LMA) [17], Smart Boundary Yao Gabriel Graph (SBYaoGG) [18], BRASP [19], etc. Almost all of
these protocols regard topology control as a technique in which nodes dynamically change their
transmission ranges to gain energy efficient and network connection. In [12], each node builds its
own LMST independently and only on-tree nodes that one-hop away are kept in the final topology.
Considering the fact that the LMST always constructs one-connected network in the final topology,
in [6], the authors propose LTRT algorithm, which combines the idea of LMST and Tree-based Reliable
Topology (TRT) together to guarantee k-edge connectivity in the resulting topology. LTRT can maintain
the network connection at low computational cost and energy consumption. In [19], due to the lossy
links in the real environment (which can provide only probabilistic connection), the authors propose
a novel probabilistic network model, in which the network connectivity is metered by the network
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reachability. The authors explore the minimal transmission power for each node when the network
reachability is above a given threshold. Based on the conclusion, the authors propose BRASP algorithm
to improve the energy efficiency and reduce the average node degree. A1 assumes the network
topology as a connected network and finds a set of active nodes to form connected dominating set
(CDS) [13]. This algorithm can form a reduced topology while keeping the network connection and
coverage at the same time. In addition, A1 forms the CDS which comprising high energy nodes in
a single phase construction process and a set of active nodes for energy efficiency and better sensing
coverage, respectively. Similarly with A1, Poly [14] is also the algorithm based on CDS. In Poly,
the network is modeled as a connected graph. The protocol can turn off the unnecessary node and
keep the network connection and coverage at the same time. LMN and LMA are the two typical
power adjustment topology control algorithms [17]. In LMA, all the nodes can get their node degree.
The algorithm sets the minimum threshold and maximum threshold for this number; if the node degree
is less than the minimum threshold, the transmission range will be increased; otherwise, transmission
range will be reduced. The principle of LMN is similar with LMA, but LMN does not set the maximum
and minimum thresholds for the node degree. In LMN, the nodes use the mean neighbors’ node
degree as the threshold to adjust the transmission ranges.

3. Network Model and Problem Statement

In general, there are three models can express the connection mode between nodes, which are
shown in Figure 1 [20]. Figure 1a illustrates the k nearest neighbor model; each node in this model has
constant node degree and maintains the node degree by changing communication range dynamically.
Figure 1b illustrates the disc model; in this model, the transmission range is modeled as a disk with
radius r; the nodes connect with other nodes that fall into its communication range. Figure 1c illustrates
the Erdos-Renyi random graph that connects any two nodes by the same probability which is not
appropriate in WSNs. Disc model is more plausible in WSN since obtaining k neighbors is not always
feasible due to the communication range limitation [20]. Therefore, in this paper, we only interested
in the Disc model. The nodes in this model are uniform distributed and fixed; moreover, the nodes
have different initial transmission ranges and can change their transmission ranges from zero to
the maximum.
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Figure 1. Different network models: (a) k nearest neighbor model; (b) disc model; and (c) 

Erdos-Renyi random graph. 
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  The distance-power gradient; 

uvP  The energy required to transmit data from node u to node v; 

  The probability of energy efficient when applying the power adjustment topology control algorithm. 

Figure 1. Different network models: (a) k nearest neighbor model; (b) disc model; and (c) Erdos-Renyi
random graph.

The notations and network definitions used in this paper are as follows:

n The node number of the whole network;
r The Euclidean distance between two nodes u and v, in this paper, we also use r to represent the

initial transmission range;
γ The distance-power gradient;

Puv The energy required to transmit data from node u to node v;
ρ The probability of energy efficient when applying the power adjustment topology control algorithm.
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Definition 1. The communication range of node u is defined as the area where other nodes can receive u’s
packet correctly.

In this paper, the communication ranges of nodes are circles, but may not be the same. Moreover,
the transmission range can be changed from zero to maximum.

Definition 2. The energy Puv required to transmit data packet from node u to node v is defined as rγ, where r is
the Euclidean distance between node u and node v, and γ is a constant called the distance-power gradient whose
typical value is between 2 and 4 [21–23].

Definition 3. The neighbors of node u are defined as the nodes which can receive the packet from node u and can
reply message to node u.

Consequently, as shown in Figure 2, according to the definition of the neighbors, if node v is
the neighbor of node u, then the node u is also the neighbor of node v. In Figure 2, even the node m
locates in the communication range of node u, but it can not send packet to node u due to the small
transmission range, so node m is not the neighbor of node u. Node v is the neighbor node of node u,
since node u also locates in the transmission range of node v.
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Figure 2. Definition of communication range and neighbor.

Definition 4. r-range of the node is defined as the optimal transmission range which has high probability of
energy efficient.

Like the definition of k-connection for the network reliability and considering the probability that
reduce the energy consumption by reducing the transmission range, if the nodes can maintain the
optimal transmission range, i.e., r-range, the probability of energy efficient will be high.

As discussed in Section 2, many energy efficient topology control algorithms change the
transmission range dynamically to gain energy efficient, but they fail to give the strict proof of
whether this approach always effective or not; if not, what is the probability of this issue, and how to
improve this probability? In this paper, we will analyze these issues in detail.

4. Probability Analysis

Theorem 1. After the transmission range adjustment, the probability that the energy consumption is less than

the previous one is ρ = 2
r2

∫ r
0 (r

γ − xγ)
1
γ dx− 1.

Proof. In WSN, supposing that node v is the neighbor of node u. when node u transmits packet to node
v, the energy consumption is related to the distance between two nodes, which can be expressed as:

Puv1 ∝ rγ, (1)
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where r is the Euclidean distance between node u and node v, γ is the distance-power gradient that
depending on the characteristics of the communication medium (2 ≤ γ ≤ 4, γ ≥ 2 for outdoor
propagation modes [23]); Puv1 is the power needed for link between node u and node v.

If the transmission ranges of node u and node v are reduced based on the topology control
algorithm, then node u and node v cannot communicate directly, which is shown in Figure 3.
As a result, node n will be chosen as the relay node, where node n is the neighbor of both node
u and node v. Thus, the energy needed to transmit packets from node u to node v will be:

Puv2 ∝ r1
γ + r2

γ, (2)

where r1 is the Euclidean distance between node u and node n, r2 is the Euclidean distance between
node n and node v; Puv2 is the power needed for communicating between node u and node v by using
relay node n.
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Therefore, the issues we need to solve are when Puv2 is smaller than Puv1 and what is the probability
that Puv2 smaller than Puv1. For exploring these issues, we define the Energy efficient Dominating Sets
(EDS) as follows: 

Puv1 ≥ Puv2

r1 + r2 ≥ r
0 < r1 ≤ r
0 < r2 ≤ r

, (3)

where the first constraint means the energy consumption after power adjustment is smaller than the
previous one; the second constraint make sure node u still can communication with node v by using
a relay node; the third and the fourth constraints guarantee the transmission ranges of each nodes are
smaller than the previous. The EDS is shown in Figure 4.
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According the definition of EDS and the principle of linear programming, the EDS is the shadow
area in Figure 4. The area ABC means the whole values which satisfy the second, third, and fourth
constraints in Equation (3); the area

>
AB is the set that the energy consumption is smaller than the

previous. Therefore, the probability that the energy consumption is less than the previous one is the
proportion of area

>
AB in area ABC, which can be calculated as:

ρ =
2
r2

∫ r

0
(rγ − xγ)

1
γ dx− 1, (4)

where x is the transmission range of nodes and 0 < x < r.

Lemma 1. With the increasing of γ (2 ≤ γ ≤ 4), the probability ρ will increase from 0.5708 to 0.8541.

Proof. Considering the first derivative function of ρ on γ:

ρ′γ =
d[ 2

r2

∫ r
0 (r

γ − xγ)
1
γ dx− 1]

dγ
, (5)

In order to simplify the denotation, we define:

f (γ) = (rγ − xγ)
1
γ , (6)

Therefore, Equation (5) can be rewritten as:

ρ′γ =
d[ 2

r2

∫ r
0 f (γ)dx− 1]

dγ
, (7)

Since 0 < x < r, so if we can prove f (γ) is an increasing function, then we can conclude that ρ(γ)
is also the increasing function with γ. The first derivative function of f (γ) on γ is:

f ′(γ) = e
1
γ (rγ−xγ) · γ·

1
rγ−xγ ·(r

γln(r)−xγlnx)−ln(rγ−xγ)
γ2

> e
1
γ (rγ−xγ) · ln(rγ)−ln(rγ−xγ)

γ2 > 0
, (8)

As f ′(γ) > 0, so f (γ) is an increasing function. Thus, the probability ρ will increase with the
increasing of γ. In addition, the maximum and minimum values of ρ are as follows:

ρmin = ρ2 = 0.5708, (9)

ρmax = ρ4 = 0.8541, (10)

This can also be found in Figure 5.
As shown in Figure 5, with the increasing of γ, the probability ρ increases. The maximum value of

ρ is 0.8741 and the minimum value is only 0.5708. This demonstrates that the algorithm which reduces
the energy consumption by adjusting the transmission range is probabilistic, i.e., short transmission
range does not mean small energy consumption. The reason why the probability increases with the
increasing of γ is that with the increasing of γ, the energy consumption is more and more seriously
effected by the distance between two nodes, which can be concluded from Equation (1); so if the
transmission range changes, the energy consumption will be changed obviously.
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Lemma 2. With constant γ, the probability ρ will keep constant with the variation of the initial transmission
range r.

Proof. We can prove this conclusion by simulation. The result can be found in Figure 6.

Figure 6 illustrates that with the increasing of r, the probability ρ will keep constant. In addition,
when γ increases, the probability increases, too; and the bigger the γ, the small increasing rate is, which
is consistent with the conclusion of Lemma 1 (shown in Figure 5).
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The Lemma 2 indicates that the probability is nothing to do with the initial transmission range,
i.e., no matter what r is, with constant γ, the probability will be the same.

Lemma 3. With fixed value of γ, when the transmission range is (1/2)1/γr, the probability ρe can get the
maximum value.

Proof. When applying the power adjustment topology control algorithm, the EDS of r1 and r2 are
shown in Equation (3) and Figure 4. Thus, similar with the definition of EDS, the Un-EDS of r1 and r2

can be shown as follows: 
Puv1 ≤ Puv2

r1 + r2 ≥ r
0 < r1 ≤ r
0 < r2 ≤ r

, (11)
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The meanings of each constraint are similar with Equation (3). The values which satisfy Un-EDS
mean that the energy consumption of WSN does not decrease after reducing the transmission range.
Therefore, how to reduce the size of Un-EDS is an effective method to increase the probability of energy
efficient. A possible way is to eliminate some values of r1 and r2 from Un-EDS. Therefore, the new
probability of energy efficient will be:

ρe =

∫ r
0 (r

γ − xγ)
1
γ dx− r2/2

r2/2− (r− r1)(r− r2)
, (12)

where s = (r− r1)(r− r2) is the eliminated Un-EDS.
According the principle of linear programming, when r1 and r2 are in the boundary of Un-EDS,

the eliminated Un-EDS s can get the maximum value, i.e., the probability ρe can get the maximum
value, which can be found in Equation (12). This means that r1 and r2 should satisfy the constraint
as follows:

r2 = (rγ − r1
γ)1/γ, (13)

The first derivative function of s and r2 on r1 can be expressed as:

s′r1
=

ds
dr1

= r2 − r + (r1 − r)r′2r1
, (14)

r′2r1
=

dr2

dr1
= −rγ−1

1 (rγ − rγ1 )
1−γ
γ , (15)

Substitute Equation (15) into Equation (14), when s′r1
= 0, the eliminated Un-EDS s can get

the extremum value when r1 = (1/2)1/γr. Furthermore, when 0 < r1 < (1/2)1/γr, s′r1
> 0; when

(1/2)1/γr < r1 < r, s′r1
< 0; so s((1/2)1/γr) is the maximum value of s. This conclusion also can be

found in Figure 7. In Figure 7, we set the initial transmission range r to 1, i.e., r = 1 in this simulation.
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When the probability ρe get the maximum value, the values of r1 are 0.7r, 0.8r, and 0.85r where
γ = 2, γ = 3, and γ = 4, respectively. The maximum value of ρe in Figure 7 is consistent with the
conclusion in Table 1, which are got from Equations (4) and (12).
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Table 1. Probabilities before and after optimizing.

Value of γ
Probabilities

r1 ρe ρ

γ = 2 0.7071 0.689 0.5708
γ = 3 0.7937 0.8379 0.7666
γ = 4 0.8409 0.8996 0.8541

From Table 1, we can find that after eliminating some values from the Un-EDS, the probabilities of
energy efficient increase obviously: 11% when γ = 2, 7% when γ = 3, and 5% when γ = 4. Thus, in the
power adjustment based topology control algorithm, we can use (1/2)1/γr as the optimal transmission
range of nodes.

5. Energy Efficient and Reliable Topology Control Protocol

In Section 4, we proved that the optimal transmission range for getting high probability of energy
efficient is (1/2)1/γr. In this section, we propose an energy efficient and reliable topology control
protocol based on this conclusion.

In Section 4, we have explored the probability of energy efficient by reducing the transmission
range in power adjustment based topology control algorithm. For guaranteeing the network
connection, in this paper, we introduce the conclusions in [24] into our algorithm as the constraints of
network reliable. In [24], the authors prove that when every node connects to its nearest 5.1774logn
neighbors, the network is asymptotic connectivity (the asymptotic connectivity means that when the
number of neighbor nodes is larger than m, then the probability that the network is connected is
asymptotic to 1); when each node connects to less than 0.074logn nearest neighbors, the network is
asymptotic disconnectivity (the asymptotic disconnectivity means that when the number of neighbor
nodes is smaller than k, then the probability that the network is disconnected is asymptotic to 1).
The simulation result also shows that if the number of neighbors larger than 1.5logn, the probability of
connectedness increases rapidly to 1 for a modest number of nodes (e.g., n ≈ 30). Therefore, in ERTC,
1.5logn will be used as the lower limitation of the neighbors number, i.e., the node degree.

There are two stages in the ERTC: (1) neighbor information collection; (2) transmission
range adjustment.

5.1. Neighbor Information Collection

In this section, node i broadcast HELLO message mi using initial transmission range ri to calculate
the node degree and the distances to the neighbor nodes. As shown in Section 3, the transmission range
is a circle, but may not same for each node. The HELLO message mi includes the transmission power
Pi, the source node ID Ii, and the version number vsi which is used to decide whether the received
HELLO message is a new one or not. When the neighbor nodes receive this HELLO message, firstly,
comparing the node ID Ii in the HELLO message mi with the node IDs that in the neighbors-list; if the
node ID already exist, then check the version number vsi to find out whether this HELLO message is
a new one or not; if not, the HELLO message will be dropped immediately; otherwise, updating the
neighbor-list; in case the node ID Ii does not exist in the neighbors-list, then adding the node ID to
the neighbors-list. The distances dij between two nodes are calculated when the node i receives the
HELLO message mj from the neighbor nodes by using received signal strength indicator (RSSI) [25,26].
When the node i receive the HELLO message mj from other nodes, they will update the neighbors-list
based on the same principle which described above and calculate the node degree N1i.

As shown in Lemma 4, the optimal transmission range for node i is (1/2)1/γri, when the source
node i receive the HELLO message mj from the neighbor nodes, it will compare the distance dij with

(1/2)1/γri; the number of neighbor nodes whose distances to the source node i are smaller than
(1/2)1/γri will be the node degree of node i with transmission range (1/2)1/γri, which is N2i.
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5.2. Transmission Range Adjustment

In this stage, the node i adjusts their transmission range according the node degree N1i and
N2i. As discussed in Section 3, the optimal transmission range for energy efficient is (1/2)1/γri and
for guaranteeing the network connection, the lower limitation of the neighbors number is 1.5logn;
therefore, for meeting the requirements of both the energy efficient and the network reliability, the
node degree N1i and N2i should be compared with 1.5logn for deciding the transmission range of node
i. There are three relationships between the node degree and the lower limitation of neighbor numbers
in ERTC: (1) N2i ≥ 1.5logn; (2) N2i ≤ 1.5logn ≤ N1i; and (3) N1i ≤ 1.5logn; different relationships will
have different transmission range adjustment strategies:

(i) when N2i ≥ 1.5logn, it means that when the transmission range of node i is (1/2)1/γri, it has the
highest probability to satisfy the requirements of both the energy efficient and network connection.
Therefore, the transmission range of node i is reduced to (1/2)1/γri, which is reasonable.

(ii) when N2i ≤ 1.5logn ≤ N1i, this means that when the transmission range of node i is ri, the
network connection can be satisfied; however, when the transmission range is (1/2)1/γri, it can
not meet the requirement of network connection. As shown in Figure 7, when the transmission
range is close to (1/2)1/γri, the probability is close to the highest probability, too. In addition,
considering the node in ERTC is uniform distributed, so the node degree ni is proportional
with the coverage area πr2

i ; therefore, the transmission range in this situation can be set to
((1.5logn)/N2i)

1/2 · (1/2)1/γri.
(iii) when N1i ≤ 1.5logn, this means the initial transmission range of node i ri can not meet the

requirement of network connection. Therefore, the transmission range should be increased.
Similar with the reason in (ii), the transmission range closer to (1/2)1/γri has higher probability
of energy efficient than that far from (1/2)1/γri and considering the node distribution in ERTC is
uniform, so the transmission range in this range can be set to ((1.5logn)/N1i)

1/2 · ri.

The process of the ERTC is:

Energy Efficient and Reliable Topology Control Algorithm (ERTC)
1. ERTC:
Input:
2. The length of the configuration area, Border_length;
3. The number of the nodes in the network, n;
4. The value of distance-power gradient, γ;
Ensure:
5. Broadcast the HELLO message mi with initial transmission range ri;
6. Receive the HELLO message mj;
7. Update the neighbors-list;
8. Calculate the node degree N1i;
9. Compare the distance between node i and the neighbor nodes with (1/2)1/γri;
10. Calculate the node degree N2i;
11. if N2i ≥ 1.5logn then

TR = (1/2)1/γri;
12. else if N2i ≤ 1.5logn ≤ N1i then

TR = ((1.5logn)/N2i)
1/2 · (1/2)1/γri;

13. else
TR = ((1.5logn)/N1i)

1/2 · ri;
14. end if
15. ri = TR;
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As shown in the table above, the runtime complexity for ERTC is O(n), which is the same as the
runtime complexity of LMA and LMN [17]. Therefore, the ERTC can improve the network performance
without increasing the algorithm complexity seriously.

6. Simulation and Discussion

In this section, we will evaluate the performance of ERTC and discuss the properties in detail.
ERTC is power adjustment based topology control algorithm; we compare the performance of

ERTC with LMA and LMN in this paper. The reasons why the LMA and LMN are chosen as the
contrasts are: (1) the ERTC is most similar to LMA and LMN and can be regarded as the extensional of
LMN and LMA based on the theory analysis in Section 4; (2) LMN and LMA are the two typical and
basic power adjustment based topology control algorithms. As a contrast, we use NONE (in which
there is no topology control algorithm used) as the control group.

The topology control algorithms that will be simulated in this section are as follows.

• NONE: without using topology control algorithm, i.e., forming the network topology randomly
and do not control the network topology artificially.

• LMA: in LMA, there are two node degree thresholds: the minimum threshold and maximum
threshold. If the node degree is smaller than the minimum threshold, the node will increase the
transmission range by certain factor Ainc; otherwise, reducing the transmission ranges by Adec.
The nodes in which the node degrees are between the minimum threshold and the maximum
threshold will not change their transmission ranges.

• LMN: in LMN, each node collects the neighbor information from their neighbors, and calculates
the average neighbors’ node degree. The value will be set as the node degree threshold. If the
node degree is large than this threshold, the transmission range will be reduced; otherwise, it will
be increased.

• ERTC: the algorithm proposed in this paper.

6.1. The Properties of Energy Efficient and Reliable Topology Control Algorithm

In this section, the performance and properties of ERTC will be discussed in detail. We built
the simulation platform by MATLAB. The simulation parameters are presented as follows: (1) the
node number: 50–200; (2) distribution range: 1 km × 1 km; (3) initial transmission range: 0–200 m;
(4) distance-power gradient: γ = 3; (5) simulation time: 3000 s; (6) initial energy supply: 100 J;
(7) transmit power: 0–1 mW; (8) receive power: 0.5 mW; (9) transmission rate: 10 kbit/s.

In Figure 8, the network is formed randomly (Figure 8a) and by the ERTC (Figure 8b), respectively.
From Figure 8, we can clearly find that the ERTC reduces the number of communication links of
the original network and guarantees the network connection at the same time. The communication
links in Figure 8b are less than that in Figure 8a, which means that after using the ERTC, the energy
consumption will be reduced. The node degree in Figure 8b is obviously smaller than that in Figure 8a;
the conclusion can be found in Figure 9, too.

Figure 9 shows the node degree of the original network and the network which uses the ERTC.
From Figure 9, we can conclude that with the increasing of the node number, the overall trend of
node degree is increasing. However, the node degree does not always increase with the rising of the
node number, e.g., as shown in Figure 8, when the node number is 100, 105, 110, and 120, the node
degree does not keep increasing when the node number rises. The reason is that the network is created
randomly, so the node degree oscillates near the average node degree; however, the overall trend is
increasing. The increasing trend in ERTC is similar with the original one, but node degrees are smaller
than that. In addition, when the node number is large than 100, the increasing rate of the original
network is faster than that in ERTC. Furthermore, as shown by the blue points in Figure 9, with the
increasing of the node number, the increasing trends are different between the original network and
ERTC. The reason of this issue will be explained in the next section. Moreover, in Figure 9, the node
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degree in ERTC is larger than the minimum node degree threshold, so the network connection can be
guaranteed. This is consistent with the conclusion in Figure 8b.
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Figure 8. The simulation result: (a) NONE; and (b) energy efficient and reliable topology control 

algorithm (ERTC). * The X-axis and Y-axis means the node distribution area. 
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Figure 8. The simulation result: (a) NONE; and (b) energy efficient and reliable topology control 

algorithm (ERTC). * The X-axis and Y-axis means the node distribution area. 
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Figure 10 shows the numbers of nodes that use different transmission range adjustment strategies
(introduced in Section 5) to adjust the transmission range. Since the number of nodes which use the
rule (i) is pretty huge, so in Figure 10, we show the logarithm value of this number. In Figure 10, with
the increasing of the node number, the nodes which use the rule (i) to adjust their transmission range
has the similar increasing trend with the average node degree shown in Figure 9. Additionally, in
Figure 10, the number of nodes use rule (i) is huge, and the number of nodes that use rule (ii) and
rule (iii) are quite small. Since most transmission ranges will be set to (1/2)1/γr (which is the optimal
transmission range), so the network will have high probability to reduce the energy consumption.

Due to the randomly formation of the network and the small number of nodes which use rule (ii)
and rule (iii), in Figure 10, the statistic characteristics of these values are not regularly, so we can not
get a clear trend from these data.

The inconformity shown in Figure 9 (by the blue points) can be explained by the conclusion in
Figure 10. In Figure 10, the number of communication links that use rule (ii) when node numbers are
170, 175, and 180 are 0, 5, and 0, respectively; to the rule (iii), this numbers are 6, 0, and 0, respectively.
Note that when the node number is 175, there are more nodes decrease the transmission ranges than
that when the node numbers are 170 and 180; and when the node number is 170, there is more nodes
increase the transmission ranges than that when the node numbers are 175 and 180, so in Figure 9, the
node degree increasing trends of the blue points are different with that in the black points.
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6.2. Compare the Performance of Energy Efficient and Reliabile Topology Control Algorithm with Other
Topology Control Protocols

In this section, the performance of ERTC will be compared with two typical transmission power
adjustment based topology control algorithms: LMA and LMN. The principles of LMA and LMN have
been introduced at the beginning of Section 6.

Figure 11 indicates that the number of communication links in ERTC is the smallest, which can
be found in Figure 11b. In Figure 11c,d, different color lines are used to represent different kinds of
communication links. In Figure 11c, the black links represent the communication links that have been
increased, while the blue lines mean the communication links which have been reduced. Similarly, in
Figure 11d, the black lines indicate that the communication range are not changed, the red lines mean
the communication links are increased, and the blue lines show the communication links are reduced.Energies 2016, 9, 841 14 of 17 
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Figure 11. The simulation result: (a) NONE; (b) ERTC; (c) Local Mean Neighbor (LMN); and  

(d) Local Mean Algorithm (LMA). * The X-axis and Y-axis means the node distribution area. 
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Both the LMA and LMN do not take the energy consumption into consideration. Moreover,
since the maximum and minimum thresholds of node degrees in LMA are set by users without
strict definition, the network topology will change greatly under different thresholds. In ERTC, the
node degree thresholds are variation with different network conditions (such as the node numbers,
the different topology, etc.), which aims to maintain r-range instead of k-connection for the nodes.
Furthermore, as shown in Figures 11b and 13, the protocol can meet the requirements of network
connection and energy efficient at the same time in ERTC.

Figure 12 shows the node degrees of different algorithms under different scenarios. The node
degree of ERTC increases with the increasing of node number, and the trend is similar with that of
the original network. For LMA, the node degree will keep oscillating between 8 and 11. The reason is
that the minimum and maximum node degree thresholds have been set to 8 and 11 in this simulation.
However, the performance of LMA is affected by the value of thresholds greatly. The node degree
trend is totally different in LMN, it looks randomly with the increasing of the node number. This is
because the LMN decides the node degree only based on their neighbors’ average node degree, which
is easy to fall into the locally optimal solutions. However, the overall node degree trend in LMN
is increasing.
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In Figure 12, when the node number smaller than 140, the node degree of ERTC is smaller than
that of LMA; otherwise, when the node number is larger than 145, the node degree of ERTC is large
than LMA. The reason is that ERTC does not maintain constant node degree which is popular in the
topology control algorithm to guarantee network connection. Maintaining constant neighbors can not
reflect the dynamic of WSN, so it can not guarantee that the node works at the optimal transmission
range which is energy efficient with high probability. As a result, in ERTC, the algorithm maintains the
r-range for the node rather than the k-connection. The r-range is the optimal transmission range with
high probability of energy efficient. In addition, although LMA has stable node degree, the network
performance of LMA is seriously affected by the node degree thresholds. Moreover, how to set the
node degree threshold has not been discussed strictly in LMA.

Figure 13 displays the energy consumption in different topology control algorithms.
From Figure 13, we can conclude that the energy consumption of ERTC is the smallest in these
algorithms, and ERTC saves approximately 67.4% energy compare with none topology control network.
The energy consumption in LMA and LMN are larger than ERTC; moreover, due to LMN can maintain
the node degree in a stable level, so the energy consumption is smaller than LMA. However, the node
degree in LMN cannot adapt the topology changing.
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In Section 4, we proved that when the transmission range of node i is (1/2)1/γri, then the
probability that the communication link is energy efficient is highest than others. Correspondingly,
in Figure 13, the ERTC whose transmission range is related to (1/2)1/γri consumes less energy than
other topology control algorithms. This demonstrates that the conclusion that we get in Section 4 is
effective in reducing the energy consumption for WSN. Additionally, as shown in [24], when the node
degree is larger than 1.5logn, the network is connected with high probability (nearly 1). In Figures 8b
and 9, when the node degree in ERTC is larger than 1.5logn, then the network is connected as shown in
Figure 8b. Therefore, the simulation results show that the theoretical analyses are correct and effective.

7. Conclusions

In this paper, for diminishing the energy consumption of WSN as far as possible, first, we
propose a probability model for energy efficient in WSN; second, we analyze the properties of the
probability model and find out the optimal transmission range; finally, we propose an ERTC based on
the conclusions in Section 4, which maintains r-range for the nodes instead of k-connection. To the
best of our knowledge, this paper is the first one that provides the strict mathematic analysis model
for these kinds of issues. In addition, in this paper, we also investigate the performance of ERTC
and compare the performance with LMN and LMA, which are the typical power adjustment based
topology control algorithms.

We have proved that when the transmission ranges are changed, the probability of energy efficient

is ρ = 2
r2

∫ r
0 (r

γ − xγ)
1
γ dx− 1, which varies with the distance-power gradient γ and keeps constant

with different r, i.e., the probability is nothing to do with the initial transmission range. The probability
varies from 0.5708 to 0.8541. We have also proved that when the transmission range is (1/2)1/γr, the
probability ρ will get the maximum value. In this paper, we also propose an ERTC algotithm, which
can guarantee both the energy efficient and network connection at the same time.
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