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A B S T R A C T 

Nowadays, even though cognitive control architectures form an important area of research, there are 
many constraints on the broad application of cognitive control at an industrial level and very few 
systematic approaches truly inspired by biological processes, from the perspective of control 
engineering. Thus, our main purpose here is the emulation of human socio-cognitive skills, so as to 
approach control engineering problems in an effective way at an industrial level. The artificial cognitive 
control architecture that we propose, based on the shared circuits model of socio-cognitive skills, seeks to 
overcome limitations from the perspectives of computer science, neuroscience and systems engineering. 
The design and implementation of artificial cognitive control architecture is focused on four key areas: (i) 
self-optimization and self-leaning capabilities by estimation of distribution and reinforcement-learning 
mechanisms; (ii) portability and scalability based on low-cost computing platforms; (iii) connectivity 
based on middleware; and (iv) model-driven approaches. The results of simulation and real-time 
application to force control of micro-manufacturing processes are presented as a proof of concept. The 
proof of concept of force control yields good transient responses, short settling times and acceptable 
steady-state error. The artificial cognitive control architecture built into a low-cost computing platform 
demonstrates the suitability of its implementation in an industrial setup. 

1. Introduction 

There is an abundant literature on artificial cognitive archi­
tectures in the fields of sensory motor control and robotics, 
although the actual application of artificial cognitive architectures 
in industry is still embryonic. Hybrid cognitive architecture that 
relies on the integration of emergent and cognitivist approaches 
using evolutionary strategies is proposed in [1] with a cognitive 
level controlled by artificial immune systems based on genetic 
algorithms. Bannat et al. [2] presented a seminal paper on how 
artificial cognition can be applied in production systems. The 
authors noted that self-optimizing and self-learning control 
systems are a crucial factor for cognitive systems and identified 
important gaps such as the individual worker internal model. 
Sanchez-Boza et al. [3] proposed an artificial cognitive control 
architecture based on the shared circuit model (SCM). Its main 

drawback is a lack of systematic procedures for learning and 
optimization in the proposed five-layer architecture. 

The way in which neuro-physiological mechanisms that 
reinforce learning and cognitive control are integrated in the 
brain to produce efficient behavior has yet to be understood with 
sufficient clarity for effective systems to be modeled [4]. Never­
theless, reinforcement learning has been explored in artificial 
cognitive control by means of computational models to control 
robotic systems [5]. Recent studies corroborate what has been 
known for a long time: automatic and flexible decision-making 
procedures are the cornerstone to reduce human intervention in 
the presence of complexity, uncertainty, background noise, and 
large data volumes typical of production systems [6,7]. Recent 
investigations have also shown how feedback information 
provides data on the environment and the system to the cognitive 
controller, which it needs to activate Q-learning and dynamic 
optimization in the cognitive tracking of radar benchmarks [8]. 

New initiatives are now emerging that apply the results of 
investigations in the field of artificial cognitive systems in response 
to specific challenges in industry and services [8]. Recent results in 
disciplines such as the neurosciences, psychology, artificial 
intelligence, robotics and other studies related to new machines 
and intelligent processes have begun to approach the foundation of 



a computational theory of intelligence [9,10]. Thus, the main 
purpose of this study is to emulate human socio-cognitive skills, so 
as to approach control engineering problems in an effective way at 
an industrial level. An integrated cognitive architecture from a 
control perspective can be defined as a system that is able to 
reproduce all aspects of behavior, while remaining constant across 
different domains and knowledge bases [11,12]. Integrated 
cognitive architectures that seek to imitate the major capabilities 
of human intelligence have been used to explain a wide spectrum 
of human behavior [13]. Moreover, numerous publications reflect 
the current pace of its progress in the field of cognitive science, all 
of which cannot be summarized in the context of the present study 
[14]. 

Nevertheless, all of that research is based on the role of internal 
(direct and inverse) models in cognitive tasks. From a physiological 
point of view, the connection between the paradigm of internal 
control and brain-cerebellum connectivity has been advanced as a 
basis for explaining human intelligence [15]. Research has 
corroborated this link as a key component of human intelligence 
from a functional point of view [16]. Moreover, the use of internal 
models to explain some socio-cognitive skills based on human 
experience is evident from a psychological point of view [17]. 

Despite the importance of cognitive architectures as a research 
area, strategies for the application of artificial cognitive control at 
an industrial level have many constraints and there are very few 
formal reviews on control engineering [18,19]. Moreover, relevant 
aspects of cognitive control architectures have yet to be sufficiently 
well addressed: firstly, self-learning and self-optimization based 
on interaction; secondly, procedures for assessing cognitive 
architectures are limited and their availability is often restricted. 
Several cognitive architectures are used in many applications, 
although their implementations with few exceptions are not 
publicly available. Assessment of their evaluation criteria and 
performance indices is therefore not easy for control engineering 
and computers in industry. Such a task would require associating 
and defining figures of merit related to transient behavior, dynamic 
and steady state systems, and control effort, among others, all of 
which hinders any comparison of the present-day capabilities and 
the performance of these architectures. Finally, many cognitive 
architectures lack biological inspiration. It is essential that 
computational implementation of architectures have both biolog­
ical and psychological roots in real applications. Computational 
architectures are at present somewhat limited to cognitive 
"psychological" validity. The architecture presented in this paper 
is inspired in neuroscience [20] in conjunction with control 
engineering strategies and methods [21]. 

Micro-scale manufacturing is a clear example of a dynamic 
system operating in an environment characterized by continuous 
change, being a perfect stage to proof new cognitive control 
strategy. In this scenario, one of the main objectives is the 
development of technologies and algorithms that enable faster, 
self-organized, self-optimized behavior process control systems. 
These manufacturing processes are characterized by the presence 
of nonlinear and time-variant dynamics that emerge from the 
behavior of temperature, forces, torques and other representative 
variables; characteristics that increase the functional complexity 
of micromanufacturing and the functional requirements and 
precision of sensors, actuators and computing resources [22,23]. 

In this study, we describe artificial cognitive control architec­
ture with self-optimization and self-leaning capabilities and its 
simulation and real-time application to the force control of micro 
manufacturing processes as a proof of concept. The architecture, 
based on the model of socio-cognitive skills, overcomes the 
limitations of the neuroscientific approach [24-26] and takes the 
principles of simplicity and scalability into account. A further 
challenge is to implement the architecture in a portable 

programming language for its assessment and validation in 
simulated and real micro-manufacturing processes. 

To the best of the authors' knowledge, the main contributions of 
this paper rely on three main pillars. While most cognitive 
architectures include new systems of perception, the first pillar of 
this computational architecture in this paper, inspired and fed by 
recent progress in neuroscience, is human-like perception and 
real-time interaction with the environment. The second pillar is 
related to the design and implementation of self-learning and self-
optimization capabilities for industrial computing. The architec­
ture introduces specific methods for reinforcement learning and 
heuristic optimization. The third pillar is built around the 
assessment computational and cost suitability of the cognitive 
architecture. Its implementation in a low-cost computational 
platform aims to facilitate public domain availability and 
technology transfer in industry. 

Following this introduction, the paper has the following 
structure: a brief review of certain artificial cognitive architectures 
is presented in Section 2. Mechanisms for enabling self-optimi­
zation and learning in the artificial cognitive architecture are then 
presented in Section 3. The design concepts and implementation 
procedures of the proposed artificial cognitive architecture are 
described in Section 4. Simulation and results in a real application 
to a microdrilling processes are shown in Section 5. Finally, some 
concluding remarks on the experimental results and future 
investigations are outlined in Section 6. 

2. Artificial cognitive architectures 

It would be difficult to summarize and review all the well-
known cognitive architectures, suchas BDI [27], ICARUS [28], SOAR 
[29], CLARION [30,31 ], PASAR [32], and LIDA [33], among others, 
which control a number of neuro-computational mechanisms 
[34]. Different criteria such as properties and features, agent 
capacities, factors in the environment, generality, psychological 
validity and effectiveness have in various cases formed the basis 
for their comparisons. Vernon et al. [35] conducted a review of 
various cognitive architectures such as SOAR, ICARUS, ACT-R and 
others, which was limited to an analysis of relevant design aspects. 

The artificial cognitive control architecture that we propose, 
based on the shared circuits model of socio-cognitive skills [17], 
seeks to overcome limitations from the perspectives of computer 
science, neuroscience and systems engineering. Sánchez-Boza 
et al. [36] reported an initial attempt to design an artificial 
cognitive control system, although with two main limitations: a 
lack of specific procedures for enabling self-capacities such as self-
optimization and learning and non-generalizable computational 
systems that could be deployed on low-cost computing platforms. 

The SCM approach is supported on a layered structure that 
reflects socio-cognitive skills (i.e., imitation, deliberation, and 
mindreading) by means of control mechanisms such as mirroring, 
and simulation. Basically, SCM is based on the observation of the 
human brain. The first kind of behavior is covered by the action of 
SCM layer 1, while the behavior described in the forward model is 
covered by SCM layer 2. Layer 4 of the scheme is in charge of 
controlling when one type of behavior or another should be 
performed. 

A further behavior is imitation that, in addition to playing an 
important role in both human sociability and development, are a 
means of learning. Imitative learning takes place when mirroring 
the actions of others in response to the circumstances. The 
observer first copies previously observed input/output associa­
tions, in order to perform this task, which inhibits the mirroring 
mechanism. SCM represents this mirroring capacity in its layer 
3. The interaction between layer 3 and the inhibition control 
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Fig. 1. Conceptual scheme of the shared circuits model approach based on [17]. 

performed by layer 4 serves to emulate the agent's capability to 
distinguish self from others. 

SCM also describes, from a functional point of view, the way in 
which the agent can carry out the cognitive skill of mindreading. 
This capacity is emulated by the operation of layer 5, which is in 
charge of simulating other possible related inputs that are external 
(exogenous) to the agent. A layer-based scheme of SCM is depicted 
in Fig. 1. 

A modified shared circuits model (MSCM) based on Hurley's 
work is proposed in [17]. Five modules were constructed made up 
of one or more processes performed by the SCM layers. The MSCM 
proposal defines each module in terms of an emulative cognitive 
ability. MSCM embodied a computational infrastructure that is 
plausible from a neuroscientific and psychological perspective, but 
which lacks a generalizable approach with optimization and 
learning mechanisms. More details about the five modules and the 
overall performance can be found in [3]. The main drawbacks are: 

- A tailored design of the architecture without a systematic 
methodology means that it is not extendable to other types of 
processes or even to other execution configurations. 

- A lack of computational strategies to enable self-optimization 
and learning. These strategies improve the performance of the 
artificial cognitive control system facing different situations. 

- Module-driven architecture is mapped from Hurley's layer 
concept, but is solely based on a single type of model. For 
instance, only fuzzy models can be used in the single loop 
configuration. 

3. Mechanisms for learning and self-optimization 

In this section, we present the algorithms that we have used to 
enable the auto-optimization and learning. We then describe the 
original algorithms on which they are based and the modifications 
or specific assumptions introduced to re-design them. 

Reinforcement learning belongs to a category of unsupervised 
learning techniques [37]. It is a learning paradigm with learning by 
rewards/penalties with some interesting applications for control­
ling complex systems, so as to maximize numerical performance 
measures that express a long-term objective. The analysis of all 
available reinforcement learning methods is beyond the scope 
of this paper, although [38] offers a fairly comprehensive catalog of 
learning problems with a description of an important number 
of state-of-the-art algorithms. 

This work is centered on the Q-learning algorithm, which is a 
model-free reinforcement learning technique. The main rationale 
behind this choice is the simplicity of its approach, its model-free 
feature and the good results of this algorithm reported in the 
literature. Q-learning can be used to find an optimal action-
selection policy for any given (finite) Markov decision process. It 
performs by learning an action-value function that ultimately 
generates the expected utility of taking a given action in a given 
state and it then follows the optimal policy. When such an action-
value function is learned, the optimal policy can be constructed by 
simply selecting the action with the highest value in each state. 
Additionally, Q-learning can handle problems with stochastic 
transitions and rewards, with no further adaptation. 

The literature is very rich with a wide range of deterministic 
and stochastic methods for solving optimization problems. Many 
optimization methods can be applied for this task ranging from 
genetic algorithms to particle swarm optimization [39,40]. Optimal 
tuning of the parameters, rather than the optimization of the 
structure or topology, is adopted in the cognitive architecture 
within the broad possibilities of optimization, which is computa­
tionally simpler and sometimes brings better results than 
nonlinear systems [41]. One of the main applications of these 
techniques is the optimal setting of controller parameters (scaling 
factors or gains) for non-trivial and sometimes intractable tasks 
[42]. 

Evolutionary algorithms (EAs) have demonstrated their suit­
ability as a method for multiobjective optimization. EAs maintain a 
family of solutions during the optimization process, which have 
the potential to store a set of simultaneous trade-off solutions with 
the potential to exploit the synergies of a parallel search across all 
possible solutions. However, EAs are usually experimentally 
evaluated using various test problems, because an analytical 
assessment of their behavior is very complicated. Thus, their 
performance on random problems cannot be guaranteed prior to 
application [43,44]. 

The optimal setting of fuzzy controller strategies based on 
stochastic gradient-based optimization is reported in different 
works [45-47]. However, many of these optimization techniques 
have yet to be applied in real industrial processes, due to the high 
complexity of optimization algorithms, the need to define 
appropriate cost functions and performance indices, appropriate 
behavior and/or the lack of empirical formulas for use in industry. 

The estimation of distribution algorithms (EDAs) has emerged 
in the middle ground between Monte-Carlo simulation and EAs. In 
EDAs, a probabilistic model is built, based on elite individuals, 



which is subsequently sampled to produce a new population of 
better individuals. A positive aspect of EDAs is that the fusion of 
prior information into the optimization procedure is straightfor­
ward, thereby reducing convergence time when such information 
is available. From a computational cost viewpoint, the amount of 
heuristics compared with other gradient-free optimization meth­
ods is reduced, which means that, in practice, many heuristic 
optimization methods are not used [48]. 

For all the above reasons, we selected the so-called Cross 
Entropy method (CE) [49,50], as the main optimization algorithm 
for the artificial cognitive control architecture. The most attractive 
feature of cross entropy is that, for a certain family of instrumental 
densities, the updating rules can be analytically calculated, making 
them extremely efficient and fast. Moreover the theoretical 
background to CE enables theoretical studies of the method, 
which can provide sound guidelines on the applicability of this 
algorithm in artificial cognitive architectures. 

3.1. Learning 

Q-learning is one of the most intensively used reinforcement 
learning techniques, frequently used to find an optimal policy for 
Markov decision processes. The problem model, the Markov 
Decision Problem, consists of an agent, a number of S states and a 
set of actions per state A. By performing an action eA, the agent can 
move from one state to another. Executing an action in a specific 
state provides the agent with a reward. The goal of the agent is to 
maximize its total reward. It does this by learning the best action 
for each state. Therefore the algorithm has a function which 
calculates the Quality of a state-action combination, Q: S x A^U 

Before learning has started, () can return any fixed value, chosen 
by the designer of the problem. Then, each time the agent selects 
an action, it receives its rewards and enters the new state. The core 
of the algorithm is a simple value iteration update. It assumes the 
old value and makes a correction based on the new information: 

QM(stlat) = Q. t(s t,a t)+at(s t,a t)(K t+i +yraaxQ t(s t + , ,a) 
a€A 

-Q*(st,at)) (1) 

where st is the state in time t; at is the action taken in time t; Rt+i is 
the reward received after performing action at is the learning rate 
and y ¡s the discount factor which trades off the importance of 
sooner versus later rewards. 

Normally, Q-learning is executed in an episodic manner where 
an episode ends when state st+i is a final state. However, Q-learning 
can also learn in non-episodic tasks. It may be noted that Q-
learning does not specify a method to select the action to perform 
in each state. However there are several policies to select an action, 
i.e., the well-known e-greedy or softmax policies. 

In the cognitive architecture, the state is a set of parameters of 
the model/models, thus each state is identified unequivocally with 
a set of parameters: 

* ~ (KM'',...,<>) (2) 

So, the actions to change from one state to another are those 
that change at least one parameter of the set 
(K<f\K%\ ...,K§). Thus, the Q-values function is Q(st, at) = Q[st). 

The continuous space of the variables is discretized for 
simplicity as already reported in [51]. So, each parameter K¡ has 
its own limits [Kj"m,/(!""*] determined by the model to which the 
parameter belongs. Then, if there are M possible values of each 
parameter, the range of values of this parameter will be: 

i/min _ i/max 
K — K^in K — K +— — K — ÍC!Tlax (3) 

As a consequence of the above function, the space of states with 
a dimension of MN is finite. Due to the restrictions of a real 
environment, we cannot take long steps in a specific parameter at a 
given moment of time. Thus our actions will be limited to comply 
with this restriction. 

For a given state st <-> (K^, KÍp,..., K¡p), its available actions will 

be those that change st to st+1 <-> (K1
(t+1),K<t+1),... ,K^t+1)), where: 

K¡'+r) e [max(K¡nin,K¡') + step), min(Kf3*,KÍ° + step)} (4) 

In cognitive architectures, as in any hierarchical approach there 
are different time scales (bandwidths). The learning procedure 
runs at a lower frequency than the control mechanism, which 
resembles a cascade concept, because the process has to run for a 
sufficient length of time, in order for correct learning to take place. 
Taking this factor into account, if the control mechanism has a 
sampling time to control of pControz. the learning has to be 
performed at least ten times slower than the control, i.e., 
Piearning= Spcontrol* where SeN, <5>10. The reward function is 
defined as: 

f+500 if 4>(t)< 0.05 
K = ^ + 1 0 0 if 0.05 < <p(t) < 0.1 (5) 

[ -100-0(f ) ifOA<(p(t) 

where the performance index associated with the action that is 
taken, (p(t), has the following expression: 

in which, 4>t is the reference value in time t + i • pCOna-oi and y'p is 
the output of the process in time t+i • pCOntroi with the parameter 
set (K\'' ,K%\ ... ,K$). As we can see, <p(t) is the mean square error 
evaluated in [t, t+i-pcontro/]. 

Taking into account these modifications, the function to update 
the Q-values is: 

Qt+iOt+i) = Qt(st+i) + at(Rt+i + ymaxQt(st+2) - Qt(st+i)) (7) 
a€A 

For the sake of simplicity, we used the e-greedy policy in this 
first approach, to choose an action, because it is sufficient in almost 
all scenarios. The e-greedy policy algorithm is shown in Fig. 2.A11 
the steps in the modified Q-learning algorithm are presented in 
Fig. 3. 

3.2. Self-optimization capability 

Let X be a random variable defined in the space % and / : % —> R 
a score function. The CE method seeks to find x' such that 

y> = /(x') = min f{x) (8) 
A t / 

The algorithm transforms this problem into an associated 
stochastic problem by defining a family of random variables with 
density function g(x, v), v e T and solving it as the simulation of a 
rare event, where the event is sampling around the optimum of 
/. The algorithm can be summarized as follows: 

1. Initialize v0. 
2. Generate a sample of size N, (x¡)1<j<w, from the density function 

g(x, vt). Let / , > / 2 > • • • > /N , 7i~e {f(x¡)}, 1 < ¡ < N be the 
corresponding ordered score values and Yt = f\PN\-

3. Update vt to 

1 N 

vt+i = argmin-^/ { y< y t } ( / (x[)) • \ng(x\,vt) (9) 

4. Repeat from step 2 until convergence or ending criterion. 



Algorithm l:e-greedy police algorithm 

1 r = ramdom() 

2 i f><£ 

3 Take a random action between all possible actions. 

4 else 

5 Take the action that produces the state with most g-values. 

6 end 

Fig. 2. Algorithm for e-greedy policy. 

Algorithm 2: Modified g-learning algorithm 

1 Initialize Q(s,) arbitrary (or with a fixed value obtained with 
some method) 

2 Initialize soto an arbitrary or fixed state 

3 repeat 

4 

5 

6 

7 

8 

9 

10 

foreach step do 

Choose a, using the G-greedy police algorithm; 

Perform action a, and change to s,+r, 

Wait S'Pcomroi and recieve R; 

Update Q-values with equation (7); 

•?;<—Sm', 

end 

11 until s, is a terminal state; 

Fig. 3. Modified Q-learning algorithm. 

5. Assuming that convergence has been reached at t=t', the 
random variable defined by the density function g(x, vt<) should 
have all of its mass concentrated on x'. 

Step 3 is performed using the best [pN\ samples, also called elite 
samples. The sampling density function needed in the 2nd step is 
usually unknown, but in most cases it can be assumed to be a 
normal distribution function. In this case, v represents the mean \x 
and the standard deviation of the normal distribution is a. The 
solution of the equation is simply the sample mean ¡It and sample 
deviation dt of the elite samples. It also follows that the mean 
should converge to x' and the deviation should converge to zero. A 
smoothing parameter a for the mean vector and dynamic 
smoothing pt for the deviation are applied, in order to prevent 
the occurrences of 0 s and 1 s in the parameter vectors. 

At+i = «At+i + O - «)£ t 
<7t+l = j6t<Tt+i + (1 - Pt)ot 

. - />u-iy 
(10) 

where 0.4 < a < 0.9, 0.6 < ft < 0.9, 2 < q < 7. 
Finally, constrained optimization problems will be addressed 

from an engineering viewpoint, which therefore means imposing 
boundaries on the distribution function for the generation of 
samples, to ensure that sampling is from within the appropriate 
region. 

4. Design and implementation of the artificial cognitive 
architecture 

In this section, we will present the design of the artificial 
cognitive architecture together with the requirement analysis. We 

will then explain the main details of our implementation without 
entering into deep explanations. Having presented our artificial 
cognitive architecture in detail we then present an instantiation of 
the architecture to validate its design and implementation. 

4.1. Design and implementation 

The artificial cognitive architecture should comply with both 
functional (FR) and non-functional (NFR) requirements. The main 
functional requirements can be summarized as follows. 

FR1 Control architecture: the main function of this architecture is 
to control processes; the implementation of the architecture 
must allow the user to assign a process to the architecture and 
prepare the architecture to control it. 

FR2 Models: the architecture has several models that serve to 
control a process with different procedures. There are four 
types of models: single loop models, direct and inverse models, 
and simulation models. The configuration of direct and inverse 
models resembles the internal model control paradigm well-
known in the Control Engineering community, but also 
claimed as the main explanation and rationale behind 
brain-cerebellum interaction [16]. 

FR3 Modes: the architecture must run in different modes. A mode 
is defined by a preset configuration of the different elements of 
the architecture (models, reference values and process entity) 
to control a process. A mechanism enables the application to 
switch between modes while running. Switching can be 
smoothed out by a first-order filter to guarantee a seamless 
transition from one mode to another one. 

FR4 Adaptation: the application must provide a component for 
selecting models required by a specific mode. The choice of 
component may be to accomplish different objectives. 

FR5 Optimization: the architecture must provide functionality for 
optimal setting of control models on the basis of a simulation 
model of the physical process. With this action, the architec­
ture will be able to improve its behavior while running 
different processes. 

FR6 Online learning: similar to optimization, the architecture 
should provide a mechanism to execute a learning algorithm 
during the regulation process. Once again, this mechanism 
will improve the behavior of the overall system. 

FR7 Objectives: the architecture must ensure that the user inserts 
the objectives to be achieved, e.g., productivity, performance, 
etc. 

FR8 Data types: the architecture must allow different data types, 
such as integer, double or string. 

The main non-functional requirements are described as follows. 

NFR1 Middleware: the architecture shall be quite generic and 
flexible to allow the user to use it over a middleware, for 
instance, the user may wish to use the architecture to control 
a process in a different place, i.e., to distribute the 
architecture to control remote process. 

NFR2 Extensibility: the architecture shall be designed to ease the 
tasks of adding models, control algorithms, optimization and 
learning mechanisms, etc. 

In order to comply with the above-mentioned requirements, we 
have designed an object-oriented library. Along with the general 
classes and interfaces, some classes are provided to ease the 
instantiation tasks of the architecture. The following will briefly 
explain the most important concepts of this library, contained in 
the COGNETCON packages with different functions http://gamhe. 
eu/downloads/?route=.%2FCognetcon. So as to assess the main 

http://gamhe
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Fig. 4. Overall scheme of the modified shared circuits model (MSCM) [3]. 
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Fig. 5. Overall diagram of the artificial cognitive architecture and the corresponding cognitive and executive levels. 

differences in the implementation of the artificial cognitive control 
architecture the overall scheme of the MSCM architecture [3] and 
the scheme of the new design and implementation of the artificial 
cognitive control architecture are shown in Fig. 4 and Fig. 5, 
respectively. 

A detailed description of the cognitive and the executive levels is 
shown in Fig. 5 to gain a better understanding of the interconnec­
tion between the different parts of the architecture. There is a 
mirror of the execution level at the cognitive level, necessary for 
organization, adaptation, and learning mechanisms that make use of 

real-time simulations. Otherwise these mechanisms would have to 
use the processing time of the execution unit, thereby limiting real­
time performance. 

On the other hand, in the executive unit, the most important 
input is the exec.conf.changes that serve to introduce modifications 
both in configuration and parameters. Parameter modifications 
change the parameters of a particular model (model ¡) from the 
learning mechanism and changes to its configuration can be of two 
types: new assignment of a model to a specific mode or switching 
between modes. 



Therefore, the new implementation of the architecture is driven 
by the concept of the model, at the lowest level, and the concept of 
type of models. Module 1 corresponds to a single loop model (i.e., 
simple feedback control loop), Module 2 matches with direct type 
model (i.e., direct or forward dynamic of the system), and Module 
3 is identified with inverse type model (i.e., inverse dynamic of the 
system). Therefore, the architecture is designed so that the user can 
easily add more types of models, which can lead also to other types 
of functioning modes. Now, it is necessary to address the concept of 
executing modes that is the mechanism for defining how to 
connect the different types of models for a certain operating mode 
of architecture. For the sake of clarity, only three operating modes 
are considered which are single feedback control, inverse control 
and internal model control with the novelty of incorporating self-
optimization and self-learning. Similarly, Haykin et al. [52] have 
also considered three main operating modes. The implementation 
of the above architecture is coded in Java, which guarantees greater 
portability between different operating systems. 

Note that the type of model is only described in the operating 
modes and not the model itself. The adaptation is in charge of 
choosing the type of model for each mode depending on the main 
process characteristics, know-how and available models. The 
organization mechanism is responsible for switching between 
execution modes without deciding on the type of model used for 
each mode. Therefore adaptation is responsible for the transition 
between running modes and Execution Configuration, which is the 
concept that permits the interconnection of models in Execution 
Management. Learning is performed in MSCM through Module 2, 
while here it is done by a specific component that enables learning 
in all models of the architecture. A further component of the 
architecture, Optimal Searching, is in charge of optimization on the 
basis of simulation-type models (e.g., any computational represen­
tation of the controlled system that resembles well-known output-
error models). Therefore, the ability to emulate Module 5 can be 
carried out by simulation-type models. 

The organization procedure is essential to enable the artificial 
cognitive control to change from one execution mode (e.g., single 
loop) to another one (e.g., inverse model for inverse control). The 
overall scheme for organization is shown in Fig. 6. For the sake of 
clarity, inverse model enables the inverse control mode that 
corresponds to anticipation and mirroring for priming, emulation 
and imitation from the viewpoint of neuroscience. The combination 
of direct and inverse models enables the internal model control that 
corresponds to the mindreading effect and the roots for emulating 
socio-cognitive skills from the perspective of neuroscience. 

The initialization procedure starts with the optimal setting of 
parameters of each model (inverse model, direct model, single loop 
model) on the basis of the cross entropy method introduced in 
Section 3.1 and the simulation model of the process. Indeed, self-
optimization is a basic step that can serve to carry out other tasks 
beyond this one. The use of an error-based performance index and 
a rough model of the process is enough to perform this task as it is 
shown later in the proof of concept of the artificial cognitive 
control system in Section 5.2. 

Moreover, necessary variables for learning and organization 
will be initialized such as the Q-learning tables and the 
performance index table, in order to be later applied to set 
the initial conditions in the organization as well as to choose the 
appropriate execution mode. The performance index table is also 
updated using a forgetting factor. 

The self-organization procedure during each execution cycle 
consists of eight main steps which are also depicted in Fig. 6. First, 
the system checks if the control signal (action) has yielded the 
expected results according to the performance index, if so, the 
artificial cognitive control remains in this execution mode (e.g., 
single loop control). If the execution mode does not achieve 

Algorithm 3: Self-organization algorithm 

1 if Is the last action successful? 

2 Maintain the last mode 

3 else 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 end 

if Is learning active for that mode? 

if Has it been learning for enough time? 

Update the performance indices table 

Obtain the possible actions 

Choose the best action 

else 

I Wait for another cycle 

end 

else 

end 

activate learning for that mode 

Fig. 6. Organization procedure for enabling the artificial cognitive control system. 

appropriate results it is necessary to verify if the learning is 
enabled, otherwise, it is activated. The duration of the learning (set 
by the user) should be checked in the third step. The performance 
index table is updated with the real-time computed value with a 
forgetting factor. All possible control signals (actions) are then 
computed and the control signal that produces the best behavior 
(i.e., the best performance index) is taken from the table. 

4.2. Instantiation and deployment 

Both the design and the implementation of the architecture 
require an instantiation for its validation. We will try to replicate 
the configuration, making an instantiation with three modes of 
operation that control a micro-drilling process. Certain specific 
assumptions are implicit in this instantiation, so that that the 
artificial cognitive architecture can be deployed in low-cost 
computing platforms. Under this rationale, an analysis of the best 
available middleware to enable networked, transparent, portable 
and reliable communication, and low-cost computing platforms is 
necessary to select the best one for the instantiation. 

4.2.2. Middleware 
The scientific community is currently at work to connect and to 

integrate sensors with other devices that will improve factory 
production. One key issue in the endeavor is the long-distance 
monitoring and control of complex plants, which requires 
synergetic strategies that link smart devices and communication 
technologies with advanced computational methods [53]. The 
solution chosen for this work employs distributed object-
computing middleware, which enables common network pro­
gramming tasks to be automated, regardless of other consider­
ations such as what communication protocols and networks are 
used to interconnect the distributed objects. 

The first middleware option analyzed was Common Object 
Request Broker Architecture (CORBA). CORBA technology provides 
a clear opportunity for process monitoring and strategic process 
control. In real-time CORBA (RT-CORBA) specification, mecha­
nisms and policies are defined to control processor resources, 
communication resources and memory resources to support the 
real-time distributed requirements of the application fields 
[54]. The second option was ZeroC Ice that provides a simple 



and easy-to-understand communication solution. Yet, despite its 
simplicity, Ice is flexible enough to accommodate even the most 
demanding and mission-critical applications. A comparison with 
other popular distributed computing solutions can be found here 
[55]. One of the most important features of Ice is its enhanced set of 
services, such as event distribution, firewall transversal with 
authentication and filtering, automatic persistence, automatic 
application deployment and monitoring, and automatic software 
distribution and patching. All services can be replicated for fault 
tolerance, so as to avoid the introduction of any single point of 
failure. The use of these services greatly reduces development 
time, because they eliminate the need to create distribution 
infrastructure as part of the application development. The third 
solution that was explored, Java Remote Method Invocation (RMI), 
enables the programmer to create distributed Java technology-
based applications, in which the methods of remote Java objects 
can be invoked from other Java virtual machines, possibly on 
different hosts. RMI uses object serialization to marshal and 
unmarshal parameters and does not truncate types, supporting 
true object-oriented polymorphism. 

Although the design and application of artificial cognitive 
control architecture based on middleware is essential, because the 
middleware facilitates communication between different hosts, 
the design of the architecture and its development is done in a 
middleware-free manner; independent of the middleware chosen 
to enable communication. ZeroC Ice was selected for the 
implementation, on the basis of good results previously reported 
in the literature, its advantages in relation to CORBA, its versatility 
and ease of use [56]. Three distributed units were considered in the 
deployment of the artificial cognitive control architecture, on the 
basis of the design and specificities of the case study with regard to 
proprietary software. 

Cognitive unit: This unit contains the components of the 
cognitive level: learning and optimization mechanisms, organiza­
tion logic, execution logic and the application itself. It is expected 
that this unit will be deployed in a low-cost computational 
hardware. 

Executive unit: This unit contains the models that are used in 
the single loop, direct, inverse and simulation modes of the 
architecture. Once again, the unit is expected to be deployed in 
a low-cost computational hardware. 

Process unit: A distributed process is needed, because that is 
one of the objectives, i.e., the control of a physical process. 

The Ice specification file is programmed with this description 
and parses it with the slice2java program. This program will 
generate several auxiliary classes needed by ZeroC Ice for 
communication over the net. In addition to the common use of 
Ice, IceGrid, is an important service that enables clients to discover 
the corresponding servers. Acting in an intermediary role, IceGrid 
decouples clients from their servers and is intended to improve the 
performance and reliability of applications through support for 
replication, load balancing and automatic fail over. The program 
needed to execute the IceGrid registry process, icegridregistry, and 
the program to run a server, icegridnode are both provided with the 
Ice installation package. 

4.2.2. Low-cost computing platforms 
Various state-of-the-art low-cost computing alternatives were 

analyzed, to choose the most suitable one to meet our objectives 
for deployment in a low-cost computational platform with 
artificial cognitive control. We reviewed three of the most popular 
low-cost computing platforms reported in the literature: Raspber­
ry Pi Model B, HummingBoard-i2 and BeagleBone Black. These 
computing platforms also have forums which share posts from the 
community of users that help others to make efficient use of the 
hardware. 

Raspberry Pi is a low cost, credit-card sized computer capable of 
everything expected from a desktop computer, from browsing the 
Internet and playing high-definition videos, to the use of 
spreadsheets, word-processing, and gaming [57]. It is a small 
versatile low-cost device with a 700 MHz Single-Core ARM v6 and 
512 MB SDRAM that enables users of all ages to explore computing, 
and to learn programming languages such as Scratch and Python. 
Raspberry Pi can interact with the environment and devices in a 
wide range of digital maker projects, from gaming machines [58] to 
open-source voice computing [59]. 

The HummingBoard-i2 and Raspberry Pi both share a very 
similar layout and configuration, making transition projects 
between both of them very easy. The former represents a good 
choice, if users are looking for a more powerful option with a 
1.0 GHz Dual-Core ARM v7 and 1GB SDRAM at over twice the cost 
of Raspberry PI. 

BeagleBone Black is suitable for users looking for a little more 
power that Raspberry Pi, an easier set up, easier commercialization, 
or users who have a need to interface with many external sensors. 
Its configuration consists of an AM335X 1 GHz ARM Cortex-A8 and 
512 MB of DDR3 RAM at a similar cost to Raspberry PI. 

World-wide support for a low-cost computing platform to 
facilitate implementation and to solve deployment problems and, 
less importantly, the cost of the platform, drove our decision­
making process. A large user community provides ample support 
for trouble shooting when using the platform. We finally chose 
Raspberry Pi Model B, partly because it is the most popular 
platform with an active user community. 

4.3. Tools for modeling and implementation 

UML is a general-purpose modeling language in the field of 
software engineering, which is designed to provide a standard 
means of visualizing the system design. It was applied to re­
designed and to implement the artificial cognitive architecture 
[60]. Java was selected as the programming language, because of its 
universal portability in different environments. In addition, the 
Real Time Specification for Java (RTSJ) provides an advantage when 
we want to extend our work to a full real time environment [61 ]. 

Having completed the UML-based design, the next step is the 
implementation of the architecture was the selection of Eclipse, as 
the integrated development environment (IDE) that facilitates 
work with Java. We also used SWIG [62], an interface compiler that 
connects programs written in C and C++ with several languages 
such as Perl, Python or Java. SWIG permits the re-use of models 
programmed in C/C++ and performs its tasks through the Java 
Native Interface (JNI) framework that enables assembly and 
communication between the Java Virtual Machine (JVM) and 
programs written in C, C++. 

5. Real application experiment 

The setup of the real application experiment to validate the 
artificial cognitive architecture is presented in the following 
section. The main results obtained after running real-time 
experiments are also discussed. 

5.2. Experiment setup 

Due to the small dimensions involved in the microdrilling 
processes, the control is very difficult to carry out online. For this 
kind of processes, the use of online indirect monitoring is 
particularly important. Measurable process signals such as forces, 
vibration, acoustic emission and motor current have been often 
used for this purpose. Online quality control systems can provide 
real-time information, which can be supplied as a feedback to CNC 



Table 1 
Equivalence between the MSCM modules [3] and the proposed architecture. 

Modified SCM modules [3] Proposed architecture 

Module 0. Objective management 
Module A. Performance index computation 
Module 1. Basic adaptive feedback control 
Module 2. Simulation prediction of effects for improved control 
Module 3. Mirroring for priming, emulation and imitation 
Module 4. Management of monitored output inhibition 
Module 5. Counterfactual input simulation 
Not available 
Not available 
Not available 

Goal management 
Performance indices computation 
Modes and models (single loop) 
Modes and models (direct or forward models) 
Modes and models (inverse models) 
Organization 
Operating modes and models 
Adaptation 
Optimal searching/optimization (simulation models) 
Learning (simulation models) 

Fig. 7. Setup of the industrial environment for microdrilling processes. 

for online adjusting cutting parameters. These kind of systems has 
been proposed for conventional machining. Monitoring and 
control systems have been also proposed in order to adaptively 
modify the cutting parameters in real-time for guaranteeing the 
geometric quality [63]. 

In the experimental study, the instantiation was tested in an 
industrial environment. All cutting operations were done on a Kern 
Evo Ultra-Precision Machine Centre (see Table 1), equipped with a 
Heidenhain ÍTNC540 CNC. Maximum spindle speed (n) and feed 
rate (f) were 50,000 rpm and 16,000 mm/min, respectively. The 
experimental platform included a cutting force sensor on three 
axes, two vibration sensors for y, z axes and a laser sensor for 
measuring variations in tool length and radius. The measurement of 
cutting force signals was done with a multi-component dynamom­
eter. A Kistler sensor (MiniDyn 9256C1) was used on thez-axis, with 
a bandwidth of up to 5 kHz. The vibration signals were measured by 
two accelerometers attached with wax to both the y and the z-axes 
of the work piece. Tool length was measured on-line with a laser 
sensor. This high precision visible red-light laser is a state-of-the-
art measurement system, fully up to date and commercially 
available. All the sensor signals were fed into a NI 6251 National 
Instruments data-acquisition card, with a sampling rate of 50 kHz, 
and were processed with a National Instruments high-performance 
PXI-8187 embedded controller. The position of the tool tip (x, y, z) 
was obtained via the ethernet connection of the CNC of the 
machine, using a sampling frequency every 12 ms (83.33 Hz). Fig. 7 
shows the platform with its main devices that are labeled. 

Raspberry Pi (Pi 1) and Rasberry Pi (Pi 2) run the cognitive and 
executive part of the architecture, respectively. Process host has 

the mission of retrieving the process outputs from the KERN Evo 
machine and sending them to the architecture via ZeroC Ice, as 
well as receiving the action control from the architecture and 
sending it to the KERN Evo machine. As shown in the picture, 
communication between Process host and KERN Evo is done over 
the Ethernet. The Icegrid registry program is permanently running 
on the Registry host to enable the different hosts to identify each 
other. Finally, the Client host can use the developed graphical user 
interface to interact with the different components. The deploy­
ment of all components in the architecture is shown in Fig. 8(a) 
and (b). 

5.2. Results 

We controlled microdrilling process force in this experimental 
setup. Several experiments were performed to validate the design 
and implementation of the artificial cognitive architecture. The 
experiment consisted of single and consecutive (10 holes) 0.5 mm 
drilling operations at a spindle speed of 10,000 rpm and a feedrate 
of 100 mm/min. First, in order to assess each control mode (i.e., 
single loop, inverse control and internal model control) only one 
drilling action was carried out. 

The control strategies summarized in Table 2 were selected to 
perform the proof of concept of the artificial cognitive control. It 
does not mean that other control strategies cannot be selected. The 
user can define and configure models and control strategies in the 
artificial cognitive control architecture. The main rationale for 
using fuzzy and neuro-fuzzy approaches can be briefly summa­
rized as follows. 



Neuro-fuzzy systems combine their ability to accurately model 
any nonlinear function, an excellent learning capacity, and an 
ability to represent human thought and robustness in the presence 
of noise and process uncertainty. These characteristics are 
essential to deal with uncertainties, nonlinearities, and time-
varying behavior. Some neuro-fuzzy systems cannot be applied to 
real-time process control, mainly because of the computational 
cost involved and because they are unable to meet the control 
system's requirements. 

One hybrid strategy that has been successfully applied is the 
ANFIS system, due to its computational simplicity and suitability 
for real-time applications [64]. A complete review of neuro-fuzzy 
and new fuzzy inference systems [65] goes beyond the scope of 
this paper, although a thorough study should be carried out in a 
near future. The use of a fuzzy control system for the single loop is 
fully justified on the basis of the nature of micromanufacturing 
processes. The last decades have witnessed plenty of successful 
industrial applications of fuzzy controllers as well as dozens of 

Process host 

t$ 
KERN Evo 

Client 

ZeroC 
Ice Pi 2 

Registry 

b) 

Fig. 8. (a) Overall view of the industrial setup, (b) schematic diagram of the architecture of artificial cognitive control. 
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Fig. 9. Behavior of the drilling force (a) and the control signal (feed rate) (b) for each execution mode isolated on the basis of the simulation. 



Table 2 
Algorithms implemented for each execution mode. 

Implemented algorithms Single loop Direct model Inverse model 

Algorithm 
System 
Inputs 
Outputs 
Membership functions type 
Number of membership functions 
Inference system 
Number of rules 
Defuzzification 
Iterations 
Learning rate 
Training algorithms 
Training data set 
Validation data set 

Fuzzy Logic 
Two-input/single output 
Error (e) and change in Error (de) 
Feed rate (J) 
Triangular-shaped 
7 
Mamdani 
49 
Center of area 

ANFIS 
Single-input/single output 
Feed rate (J) 
Force (F) 
Gaussian 
3 
Takagi-Sugeno 
9 
Weighted average 
100 
0.01 
GENFIS 2 
62 samples 
82 samples 

ANFIS 
Single-input/single output 
Force (F) 
Feed rate (J) 
Gaussian 
3 
Takagi-Sugeno 
9 
Weighted average 
100 
0.01 
GENFIS 2 
62 samples 
82 samples 

books and surveys on this topic. New research trends and 
industrial application of fuzzy control are well addressed in [66]. 

Fig. 9 depicts the results of the simulation of each control mode. 
In order to carry out this simulation the model of the microdilling 
process represented in Eq. (11) is considered as well the influence 
of noise represented by (12). Based on the technical knowledge of 
the process an input and output system is considered using the 
following variables: input is the feed rate (/) and output, the 
cutting force (F). For the study an approximate representation of 
the process behavior was used. The linear model represented via 
difference equation is expressed accordingly: 
F(fc) = a, • /(/<) + o2 • f(k - 1) + o3 • /(/< - 2) + a4 • /(/< - 3) 

where/(fe) is the feed rate and F(fe) is the cutting force at fe-instant. 
The coefficients of the difference equation are Oi = 0.004322, 
o2 = 0.02467, o3 = 0.008623, o4 = 0.00002178, b, =-2.447, 
i)2 = 1.993 and b3 = -0.5406. 

This model roughly describes the dynamic behavior of the 
drilling process and it has been verified experimentally. However, 
model parameters depend on the workpiece material, cutting 
conditions, and tool wear. Therefore, model coefficients are time 
variant and variables of cutting conditions, workpiece material and 
tool wear. A disturbance d(t) (12) or noise input is included, in 
order to better replicate a real industrial process: 

- f>i • F(fc - 1) + f>2 • F(fe - 2) + f>3 • F(fe - 3) (11) 
d(t) = A • (sin(2<»t) + sin(3ft)t) + sin(4<wt) + sin(5<wt)) (12) 
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Fig. 10. Behavior of the drilling force (a) and the control signal (feed rate) (b) for each execution mode isolated from real time experiments. 



Table 3 
Performance indices for real time experiments. 

Controller 

CNC alone (without control) 
Single loop (fuzzy control) 
Inverse model (inverse control) 
Inverse and direct models (IMC control) 

ISE 

559.79 
338.45 
380.40 
418.81 

AAE 

1207.39 
628.23 
706.76 
742.48 

MSE 

25.66 
17.62 
19.13 
20.26 

Ovt (%) 

12.15 
7.16 
5.71 
6.74 

where &> = 7.61 rad/s. This frequency corresponds to the greatest 
frequency of the poles of the third-order system model of the 
drilling process given in (11). The amplitude of the disturbance is 
A = 10 (about 10% of additive noise). 

Fig. 9 shows the behavior of drilling force in real time for three 
modes (single loop, inverse control and internal model control) of 
operations as well as the behavior of the drilling force without 
control (i.e., at constant feed rate). Each control mode is running 
isolated in each microdrilling operation. For the sake of space, the 
experimental results depicted in Fig. 9 are running after the 
optimal setting of parameters on the basis of the cross entropy 
method. The dynamic response for the three operating modes is 
appropriate after running the initialization of the artificial 
cognitive control system. The optimal setting of parameters for 
each control modes is performed using the rough model of the 
process (11) and the mean square error performance index 
(Fig. 10). 

Table 3 shows a comparative study of the single loop operating 
mode with the inverse model (i.e., inverse control) and the inverse 
and direct models (i.e., internal model control). The integral of 
square error (ISE), the average of absolute error (AAE), the mean 
square error (MSE) and the overshoot (OVt) are used. The error 

performance indices of the single loop are better than the other 
controllers whereas the inverse control (inverse model) yields the 
better overshoot. It is important to remark that the microdrilling 
process is non-linear and time variant process, and therefore the 
performance of each control mode may deteriorate due to 
nonlinearities, uncertainty and time-variant behavior of the 
process. 

Experimental results using the platform shown in Fig. 8 are 
shown in Figs. 11 and 12. 

Fig. 11 shows the behavior of the drilling force when the 
learning is activated for the inverse model (i.e., inverse control 
mode). The drilling of 10 holes is performed, in order to show the 
influence of reinforcement learning on improving the performance 
of the inverse model. Initially the response is very poor and the 
system cannot reach the set point. The behavior of the drilling force 
is quite good from the 7th hole due to reinforcement learning. 

Fig. 12 shows the behavior of the drilling process of nine holes. 
The single loop mode (i.e., the fuzzy control) is functioning in the 
first three holes. After that, the poor performance index motivates 
the change to the internal model control where direct and inverse 
models are activated. This is a clear case study where the single 
loop is deteriorating due to the influence of disturbance such as 

10. ! .,„ \ a J fk iw4 . -

6 - -

4 - -

2 -

n i i i 

a) ' 
500 1000 1500 2000 

samples 

100 

90 

_ 80 

70 

60 

50 

40 

|4i_ 

b) 
500 1000 1500 2000 

samples 

Fig. 11. Reinforcement learning for the inverse model in real-time microdrilling of 10 holes of 0.5 mm diameter, (a) behavior of the drilling force, (b) control signal represented 
by the feed rate. 
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Fig. 12. Behavior of the drilling force (a) and the control signal (b) in the nine holes of 0.5 mm. 

tool wear and the artificial cognitive control tries to find an 
adequate solution by changing the execution mode. The dynamic 
response and the performance index are then better in the new 
execution mode and the system remains in this mode. Therefore, 
the organization strategy depicted in Fig. 6 and described in the 
Section 4.1 is adequate for this case study. 

There are some issues to be analyzed. The offsets in the dynamic 
response shown in Figs. 11 and 12 are the result of the influence of 
air for tool refrigeration when the force is measured. This negative 
effect is not easily removed because it is not a constant value. The 
second issue is the parametrization of the threshold in the 
performance index to change from one mode to another one, which 
depends mainly on the application. The log files of the organization 
shown in Figs. 11 and 12 are depicted in Annex I. 

6. Conclusions and future work 

This paper has presented the design and implementation of an 
artificial cognitive control system in a low-cost computing 
platform with self-optimization and self-learning capabilities. 
Firstly, an instantiation of the artificial cognitive architecture has 
been designed and developed. For the sake of clarity and to provide 
new capabilities to the architecture, the optimization procedure 
ran on the cross-entropy algorithm and the online learning 
mechanism on the Q-learning algorithm, both of which were 
designed and implemented in the architecture. 

In addition, classes were developed that provide this instantia­
tion with the ability to run in a distributed manner. The overall 

assessment of the instantiation was performed in a simulation 
study and a real manufacturing environment, both of which 
yielded very promising results. Beyond the case-study on force 
control for microdrilling processes and the results that have been 
presented, the artificial cognitive control architecture built on a 
low-cost platform hardware has demonstrated the suitability of 
the implementation in an industrial setup. The functional and non­
functional requirements are fully satisfied by means of a simple 
instantiation configured with middleware. 

This research work has provided an important starting point to 
address the main challenge of an artificial cognitive approach 
embedded in low-cost hardware industrial computing on the basis 
of low-cost hardware. Fully aware of the preliminary nature of this 
study and the demanding work ahead to achieve effective artificial 
cognitive architecture in industrial environments, our subsequent 
objectives in the near future are to design a practical goal 
management procedure, to add further models to the repository 
for more complex tests, and to improve the way in which our 
instantiation can execute the components for improved perfor­
mance on this new low-cost computing platform. 
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Annex I 

Log file for the reinforcement leaning of the inverse model. 

ANTICIPATI0N=8.332111986229894 
5.0 
Performance Index (MSE): 3.7769246696735976 
Finishing drilling No.- 1 
ORGANIZATION BEGINS 
Performance Index (MSE): 6.020674866392445 
Finishing drilling No.- 2 
Performance Index (MSE):_learning: 5.696279190950438 
NEXT ACTION: ExecutionNode(InverseAnfis(config/inverso_nuevo.ini)): 
{Kin(DOUBLE)=0.748, meanOut(DOUBLE)=52.286} | 
Performance Index (MSE): 5.696279190950438 
Finishing drilling No.- 3 
Performance Index (MSE):_learning: 3.3474918433763614 
NEXT ACTION: ExecutionNode(InverseAnfis(config/inverso_nuevo.ini)): 
{Kin(DOUBLE)=0.748, meanOut(DOUBLE)=59.286} | 
ORGANIZATION BEGINS 
Performance Index (MSE):Table: {ANTICIPATION=3.8459538576617147} Be 
ANTICIPATION 
Performance Index (MSE): 3.3474918433763614 
Finishing drilling No.- 4 
Performance Index (MSE): 1.988387380851299 
Finishing drilling No.- 5 
ORGANIZATION BEGINS 
Performance Index (MSE): 1.6155887571517007 
Finishing drilling No.- 6 
Performance Index (MSE):_learning: 1.2995309378912394 
NEXT ACTION: ExecutionNode(InverseAnfis(config/inverso_nuevo.ini)): 
{Kin(DOUBLE)=0.748, meanOut(DOUBLE)=66.286} | 
Performance Index (MSE): 1.2995309378912394 
Finishing drilling No.- 7 
Performance Index (MSE):_learning: 1.6727367117380498 
NEXT ACTION: ExecutionNode(InverseAnfis(config/inverso_nuevo.ini)): 
{Kin(DOUBLE)=0.748, meanOut(DOUBLE)=73.286} | 
ORGANIZATION BEGINS 
Performance Index (MSE):Table: {ANTICIPATIONS.8900584263304163} Be 
ANTICIPATION 
Performance Index (MSE): 1.6727367117380498 
Finishing drilling No.- 8 
Performance Index (MSE): 0.8872413435935801 
Finishing drilling No.- 9 
ORGANIZATION BEGINS 
The last mode (ANTICIPATION was successful 
Performance Index (MSE): 0.4017396251815698 
Finishing drilling No.- 10 

Log file for the organization. 



{ANTICIPATIONS. 866602 87 82 47 334 8, SINGLE LOOP=0 . 8771843826592491, 
ANTICIPATION+MIRRORING=0.8653732453405826} 
5.0 
ORGANIZATION BEGINS 
The last mode (SINGLE LOOP was successful 
Performance Index (MSE): 0.45003959833218005 
Finishing drilling No.- 1 
Performance Index (MSE): 0.43637194274581015 
Finishing drilling No.- 2 
ORGANIZATION BEGINS 
Performance Index (MSE(Table: {ANTICIPATIONS.8666028782473348, SINGLE 

LOOP=l.0575288999477688, ANTICIPATION+MIRRORING=0.8653732453405826} 
Best: ANTICIPATION+MIRRORING 
Changing to ANTICIPATION+MIRRORING 
Performance Index (MSE): 1.1202816580791999 
Finishing drilling No.- 3 
Performance Index (MSE): 0.9572464140536598 
Finishing drilling No.- 4 
ORGANIZATION BEGINS 
Performance Index (MSE(Table: {ANTICIPATIONS.8666028782473348, SINGLE 

LOOP=l.0575288999477688, ANTICIPATION+MIRRORING=0.7269170584936862} 
Best: ANTICIPATION+MIRRORING 
Performance Index (MSE): 0.7115330377329199 
Finishing drilling No.- 5 
Performance Index (MSE): 0.27312344216621987 
Finishing drilling No.- 6 
ORGANIZATION BEGINS 
The last mode (ANTICIPATION+MIRRORING was successful 
Performance Index (MSE): 0.2892327149771201 
Finishing drilling No.- 7 
Performance Index (MSE): 0.5820603007558 
Finishing drilling No.- 8 
ORGANIZATION BEGINS 
The last mode (ANTICIPATION+MIRRORING was successful 
Performance Index (MSE): 0.44294246181988994 
Finishing drilling No.- 9 
Performance Index (MSE): 0.3704961754985 
Finishing drilling No.- 10 
ORGANIZATION BEGINS 
The last mode (ANTICIPATION+MIRRORING was successful 
Performance Index (MSE): 0.3704961754985 
Finishing drilling No.- 11 
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