
Artificial cognitive control with self-x capabilities:
A case study of a micro-manufacturing process
Rodolfo E. Haber*, Carmelo Juanes, Raúl del Toro, Gerardo Beruvides

A B S T R A C T

Nowadays, even though cognitive control architectures form an important area of research, there are
many constraints on the broad application of cognitive control at an industrial level and very few
systematic approaches truly inspired by biological processes, from the perspective of control
engineering. Thus, our main purpose here is the emulation of human socio-cognitive skills, so as to
approach control engineering problems in an effective way at an industrial level. The artificial cognitive
control architecture that we propose, based on the shared circuits model of socio-cognitive skills, seeks to
overcome limitations from the perspectives of computer science, neuroscience and systems engineering.
The design and implementation of artificial cognitive control architecture is focused on four key areas: (i)
self-optimization and self-leaning capabilities by estimation of distribution and reinforcement-learning
mechanisms; (ii) portability and scalability based on low-cost computing platforms; (iii) connectivity
based on middleware; and (iv) model-driven approaches. The results of simulation and real-time
application to force control of micro-manufacturing processes are presented as a proof of concept. The
proof of concept of force control yields good transient responses, short settling times and acceptable
steady-state error. The artificial cognitive control architecture built into a low-cost computing platform
demonstrates the suitability of its implementation in an industrial setup.

1. Introduction

There is an abundant literature on artificial cognitive archi­
tectures in the fields of sensory motor control and robotics,
although the actual application of artificial cognitive architectures
in industry is still embryonic. Hybrid cognitive architecture that
relies on the integration of emergent and cognitivist approaches
using evolutionary strategies is proposed in [1] with a cognitive
level controlled by artificial immune systems based on genetic
algorithms. Bannat et al. [2] presented a seminal paper on how
artificial cognition can be applied in production systems. The
authors noted that self-optimizing and self-learning control
systems are a crucial factor for cognitive systems and identified
important gaps such as the individual worker internal model.
Sanchez-Boza et al. [3] proposed an artificial cognitive control
architecture based on the shared circuit model (SCM). Its main

drawback is a lack of systematic procedures for learning and
optimization in the proposed five-layer architecture.

The way in which neuro-physiological mechanisms that
reinforce learning and cognitive control are integrated in the
brain to produce efficient behavior has yet to be understood with
sufficient clarity for effective systems to be modeled [4]. Never­
theless, reinforcement learning has been explored in artificial
cognitive control by means of computational models to control
robotic systems [5]. Recent studies corroborate what has been
known for a long time: automatic and flexible decision-making
procedures are the cornerstone to reduce human intervention in
the presence of complexity, uncertainty, background noise, and
large data volumes typical of production systems [6,7]. Recent
investigations have also shown how feedback information
provides data on the environment and the system to the cognitive
controller, which it needs to activate Q-learning and dynamic
optimization in the cognitive tracking of radar benchmarks [8].

New initiatives are now emerging that apply the results of
investigations in the field of artificial cognitive systems in response
to specific challenges in industry and services [8]. Recent results in
disciplines such as the neurosciences, psychology, artificial
intelligence, robotics and other studies related to new machines
and intelligent processes have begun to approach the foundation of

a computational theory of intelligence [9,10]. Thus, the main
purpose of this study is to emulate human socio-cognitive skills, so
as to approach control engineering problems in an effective way at
an industrial level. An integrated cognitive architecture from a
control perspective can be defined as a system that is able to
reproduce all aspects of behavior, while remaining constant across
different domains and knowledge bases [11,12]. Integrated
cognitive architectures that seek to imitate the major capabilities
of human intelligence have been used to explain a wide spectrum
of human behavior [13]. Moreover, numerous publications reflect
the current pace of its progress in the field of cognitive science, all
of which cannot be summarized in the context of the present study
[14].

Nevertheless, all of that research is based on the role of internal
(direct and inverse) models in cognitive tasks. From a physiological
point of view, the connection between the paradigm of internal
control and brain-cerebellum connectivity has been advanced as a
basis for explaining human intelligence [15]. Research has
corroborated this link as a key component of human intelligence
from a functional point of view [16]. Moreover, the use of internal
models to explain some socio-cognitive skills based on human
experience is evident from a psychological point of view [17].

Despite the importance of cognitive architectures as a research
area, strategies for the application of artificial cognitive control at
an industrial level have many constraints and there are very few
formal reviews on control engineering [18,19]. Moreover, relevant
aspects of cognitive control architectures have yet to be sufficiently
well addressed: firstly, self-learning and self-optimization based
on interaction; secondly, procedures for assessing cognitive
architectures are limited and their availability is often restricted.
Several cognitive architectures are used in many applications,
although their implementations with few exceptions are not
publicly available. Assessment of their evaluation criteria and
performance indices is therefore not easy for control engineering
and computers in industry. Such a task would require associating
and defining figures of merit related to transient behavior, dynamic
and steady state systems, and control effort, among others, all of
which hinders any comparison of the present-day capabilities and
the performance of these architectures. Finally, many cognitive
architectures lack biological inspiration. It is essential that
computational implementation of architectures have both biolog­
ical and psychological roots in real applications. Computational
architectures are at present somewhat limited to cognitive
"psychological" validity. The architecture presented in this paper
is inspired in neuroscience [20] in conjunction with control
engineering strategies and methods [21].

Micro-scale manufacturing is a clear example of a dynamic
system operating in an environment characterized by continuous
change, being a perfect stage to proof new cognitive control
strategy. In this scenario, one of the main objectives is the
development of technologies and algorithms that enable faster,
self-organized, self-optimized behavior process control systems.
These manufacturing processes are characterized by the presence
of nonlinear and time-variant dynamics that emerge from the
behavior of temperature, forces, torques and other representative
variables; characteristics that increase the functional complexity
of micromanufacturing and the functional requirements and
precision of sensors, actuators and computing resources [22,23].

In this study, we describe artificial cognitive control architec­
ture with self-optimization and self-leaning capabilities and its
simulation and real-time application to the force control of micro
manufacturing processes as a proof of concept. The architecture,
based on the model of socio-cognitive skills, overcomes the
limitations of the neuroscientific approach [24-26] and takes the
principles of simplicity and scalability into account. A further
challenge is to implement the architecture in a portable

programming language for its assessment and validation in
simulated and real micro-manufacturing processes.

To the best of the authors' knowledge, the main contributions of
this paper rely on three main pillars. While most cognitive
architectures include new systems of perception, the first pillar of
this computational architecture in this paper, inspired and fed by
recent progress in neuroscience, is human-like perception and
real-time interaction with the environment. The second pillar is
related to the design and implementation of self-learning and self-
optimization capabilities for industrial computing. The architec­
ture introduces specific methods for reinforcement learning and
heuristic optimization. The third pillar is built around the
assessment computational and cost suitability of the cognitive
architecture. Its implementation in a low-cost computational
platform aims to facilitate public domain availability and
technology transfer in industry.

Following this introduction, the paper has the following
structure: a brief review of certain artificial cognitive architectures
is presented in Section 2. Mechanisms for enabling self-optimi­
zation and learning in the artificial cognitive architecture are then
presented in Section 3. The design concepts and implementation
procedures of the proposed artificial cognitive architecture are
described in Section 4. Simulation and results in a real application
to a microdrilling processes are shown in Section 5. Finally, some
concluding remarks on the experimental results and future
investigations are outlined in Section 6.

2. Artificial cognitive architectures

It would be difficult to summarize and review all the well-
known cognitive architectures, suchas BDI [27], ICARUS [28], SOAR
[29], CLARION [30,31], PASAR [32], and LIDA [33], among others,
which control a number of neuro-computational mechanisms
[34]. Different criteria such as properties and features, agent
capacities, factors in the environment, generality, psychological
validity and effectiveness have in various cases formed the basis
for their comparisons. Vernon et al. [35] conducted a review of
various cognitive architectures such as SOAR, ICARUS, ACT-R and
others, which was limited to an analysis of relevant design aspects.

The artificial cognitive control architecture that we propose,
based on the shared circuits model of socio-cognitive skills [17],
seeks to overcome limitations from the perspectives of computer
science, neuroscience and systems engineering. Sánchez-Boza
et al. [36] reported an initial attempt to design an artificial
cognitive control system, although with two main limitations: a
lack of specific procedures for enabling self-capacities such as self-
optimization and learning and non-generalizable computational
systems that could be deployed on low-cost computing platforms.

The SCM approach is supported on a layered structure that
reflects socio-cognitive skills (i.e., imitation, deliberation, and
mindreading) by means of control mechanisms such as mirroring,
and simulation. Basically, SCM is based on the observation of the
human brain. The first kind of behavior is covered by the action of
SCM layer 1, while the behavior described in the forward model is
covered by SCM layer 2. Layer 4 of the scheme is in charge of
controlling when one type of behavior or another should be
performed.

A further behavior is imitation that, in addition to playing an
important role in both human sociability and development, are a
means of learning. Imitative learning takes place when mirroring
the actions of others in response to the circumstances. The
observer first copies previously observed input/output associa­
tions, in order to perform this task, which inhibits the mirroring
mechanism. SCM represents this mirroring capacity in its layer
3. The interaction between layer 3 and the inhibition control

Layer 2 Predictive simulation of Effects

Layer 4 Output Inhibition

external feedback loop

target exogenous input

L
Layer 5 Counterfactual Input Simulation

Input signal

Layer 1 Comparator Instrumental Mapping Layer 3 Mirroring: Priming, Emulation...

Layer 4 Output Inhibition

Fig. 1. Conceptual scheme of the shared circuits model approach based on [17].

performed by layer 4 serves to emulate the agent's capability to
distinguish self from others.

SCM also describes, from a functional point of view, the way in
which the agent can carry out the cognitive skill of mindreading.
This capacity is emulated by the operation of layer 5, which is in
charge of simulating other possible related inputs that are external
(exogenous) to the agent. A layer-based scheme of SCM is depicted
in Fig. 1.

A modified shared circuits model (MSCM) based on Hurley's
work is proposed in [17]. Five modules were constructed made up
of one or more processes performed by the SCM layers. The MSCM
proposal defines each module in terms of an emulative cognitive
ability. MSCM embodied a computational infrastructure that is
plausible from a neuroscientific and psychological perspective, but
which lacks a generalizable approach with optimization and
learning mechanisms. More details about the five modules and the
overall performance can be found in [3]. The main drawbacks are:

- A tailored design of the architecture without a systematic
methodology means that it is not extendable to other types of
processes or even to other execution configurations.

- A lack of computational strategies to enable self-optimization
and learning. These strategies improve the performance of the
artificial cognitive control system facing different situations.

- Module-driven architecture is mapped from Hurley's layer
concept, but is solely based on a single type of model. For
instance, only fuzzy models can be used in the single loop
configuration.

3. Mechanisms for learning and self-optimization

In this section, we present the algorithms that we have used to
enable the auto-optimization and learning. We then describe the
original algorithms on which they are based and the modifications
or specific assumptions introduced to re-design them.

Reinforcement learning belongs to a category of unsupervised
learning techniques [37]. It is a learning paradigm with learning by
rewards/penalties with some interesting applications for control­
ling complex systems, so as to maximize numerical performance
measures that express a long-term objective. The analysis of all
available reinforcement learning methods is beyond the scope
of this paper, although [38] offers a fairly comprehensive catalog of
learning problems with a description of an important number
of state-of-the-art algorithms.

This work is centered on the Q-learning algorithm, which is a
model-free reinforcement learning technique. The main rationale
behind this choice is the simplicity of its approach, its model-free
feature and the good results of this algorithm reported in the
literature. Q-learning can be used to find an optimal action-
selection policy for any given (finite) Markov decision process. It
performs by learning an action-value function that ultimately
generates the expected utility of taking a given action in a given
state and it then follows the optimal policy. When such an action-
value function is learned, the optimal policy can be constructed by
simply selecting the action with the highest value in each state.
Additionally, Q-learning can handle problems with stochastic
transitions and rewards, with no further adaptation.

The literature is very rich with a wide range of deterministic
and stochastic methods for solving optimization problems. Many
optimization methods can be applied for this task ranging from
genetic algorithms to particle swarm optimization [39,40]. Optimal
tuning of the parameters, rather than the optimization of the
structure or topology, is adopted in the cognitive architecture
within the broad possibilities of optimization, which is computa­
tionally simpler and sometimes brings better results than
nonlinear systems [41]. One of the main applications of these
techniques is the optimal setting of controller parameters (scaling
factors or gains) for non-trivial and sometimes intractable tasks
[42].

Evolutionary algorithms (EAs) have demonstrated their suit­
ability as a method for multiobjective optimization. EAs maintain a
family of solutions during the optimization process, which have
the potential to store a set of simultaneous trade-off solutions with
the potential to exploit the synergies of a parallel search across all
possible solutions. However, EAs are usually experimentally
evaluated using various test problems, because an analytical
assessment of their behavior is very complicated. Thus, their
performance on random problems cannot be guaranteed prior to
application [43,44].

The optimal setting of fuzzy controller strategies based on
stochastic gradient-based optimization is reported in different
works [45-47]. However, many of these optimization techniques
have yet to be applied in real industrial processes, due to the high
complexity of optimization algorithms, the need to define
appropriate cost functions and performance indices, appropriate
behavior and/or the lack of empirical formulas for use in industry.

The estimation of distribution algorithms (EDAs) has emerged
in the middle ground between Monte-Carlo simulation and EAs. In
EDAs, a probabilistic model is built, based on elite individuals,

which is subsequently sampled to produce a new population of
better individuals. A positive aspect of EDAs is that the fusion of
prior information into the optimization procedure is straightfor­
ward, thereby reducing convergence time when such information
is available. From a computational cost viewpoint, the amount of
heuristics compared with other gradient-free optimization meth­
ods is reduced, which means that, in practice, many heuristic
optimization methods are not used [48].

For all the above reasons, we selected the so-called Cross
Entropy method (CE) [49,50], as the main optimization algorithm
for the artificial cognitive control architecture. The most attractive
feature of cross entropy is that, for a certain family of instrumental
densities, the updating rules can be analytically calculated, making
them extremely efficient and fast. Moreover the theoretical
background to CE enables theoretical studies of the method,
which can provide sound guidelines on the applicability of this
algorithm in artificial cognitive architectures.

3.1. Learning

Q-learning is one of the most intensively used reinforcement
learning techniques, frequently used to find an optimal policy for
Markov decision processes. The problem model, the Markov
Decision Problem, consists of an agent, a number of S states and a
set of actions per state A. By performing an action eA, the agent can
move from one state to another. Executing an action in a specific
state provides the agent with a reward. The goal of the agent is to
maximize its total reward. It does this by learning the best action
for each state. Therefore the algorithm has a function which
calculates the Quality of a state-action combination, Q: S x A^U

Before learning has started, () can return any fixed value, chosen
by the designer of the problem. Then, each time the agent selects
an action, it receives its rewards and enters the new state. The core
of the algorithm is a simple value iteration update. It assumes the
old value and makes a correction based on the new information:

QM(stlat) = Q. t(s t,a t)+at(s t,a t)(K t+i +yraaxQ t(s t + , ,a)
a€A

-Q*(st,at)) (1)

where st is the state in time t; at is the action taken in time t; Rt+i is
the reward received after performing action at is the learning rate
and y ¡s the discount factor which trades off the importance of
sooner versus later rewards.

Normally, Q-learning is executed in an episodic manner where
an episode ends when state st+i is a final state. However, Q-learning
can also learn in non-episodic tasks. It may be noted that Q-
learning does not specify a method to select the action to perform
in each state. However there are several policies to select an action,
i.e., the well-known e-greedy or softmax policies.

In the cognitive architecture, the state is a set of parameters of
the model/models, thus each state is identified unequivocally with
a set of parameters:

* ~ (KM'',...,<>) (2)

So, the actions to change from one state to another are those
that change at least one parameter of the set
(K<f\K%\ ...,K§). Thus, the Q-values function is Q(st, at) = Q[st).

The continuous space of the variables is discretized for
simplicity as already reported in [51]. So, each parameter K¡ has
its own limits [Kj"m,/(!""*] determined by the model to which the
parameter belongs. Then, if there are M possible values of each
parameter, the range of values of this parameter will be:

i/min _ i/max
K — K^in K — K +— — K — ÍC!Tlax (3)

As a consequence of the above function, the space of states with
a dimension of MN is finite. Due to the restrictions of a real
environment, we cannot take long steps in a specific parameter at a
given moment of time. Thus our actions will be limited to comply
with this restriction.

For a given state st <-> (K^, KÍp,..., K¡p), its available actions will

be those that change st to st+1 <-> (K1
(t+1),K<t+1),... ,K^t+1)), where:

K¡'+r) e [max(K¡nin,K¡') + step), min(Kf3*,KÍ° + step)} (4)

In cognitive architectures, as in any hierarchical approach there
are different time scales (bandwidths). The learning procedure
runs at a lower frequency than the control mechanism, which
resembles a cascade concept, because the process has to run for a
sufficient length of time, in order for correct learning to take place.
Taking this factor into account, if the control mechanism has a
sampling time to control of pControz. the learning has to be
performed at least ten times slower than the control, i.e.,
Piearning= Spcontrol* where SeN, <5>10. The reward function is
defined as:

f+500 if 4>(t)< 0.05
K = ^ + 1 0 0 if 0.05 < <p(t) < 0.1 (5)

[-100-0(f) ifOA<(p(t)

where the performance index associated with the action that is
taken, (p(t), has the following expression:

in which, 4>t is the reference value in time t + i • pCOna-oi and y'p is
the output of the process in time t+i • pCOntroi with the parameter
set (K\'' ,K%\ ... ,K$). As we can see, <p(t) is the mean square error
evaluated in [t, t+i-pcontro/].

Taking into account these modifications, the function to update
the Q-values is:

Qt+iOt+i) = Qt(st+i) + at(Rt+i + ymaxQt(st+2) - Qt(st+i)) (7)
a€A

For the sake of simplicity, we used the e-greedy policy in this
first approach, to choose an action, because it is sufficient in almost
all scenarios. The e-greedy policy algorithm is shown in Fig. 2.A11
the steps in the modified Q-learning algorithm are presented in
Fig. 3.

3.2. Self-optimization capability

Let X be a random variable defined in the space % and / : % —> R
a score function. The CE method seeks to find x' such that

y> = /(x') = min f{x) (8)
A t /

The algorithm transforms this problem into an associated
stochastic problem by defining a family of random variables with
density function g(x, v), v e T and solving it as the simulation of a
rare event, where the event is sampling around the optimum of
/. The algorithm can be summarized as follows:

1. Initialize v0.
2. Generate a sample of size N, (x¡)1<j<w, from the density function

g(x, vt). Let / , > / 2 > • • • > /N , 7i~e {f(x¡)}, 1 < ¡ < N be the
corresponding ordered score values and Yt = f\PN\-

3. Update vt to

1 N

vt+i = argmin-^/ { y< y t } (/ (x[)) • \ng(x\,vt) (9)

4. Repeat from step 2 until convergence or ending criterion.

Algorithm l:e-greedy police algorithm

1 r = ramdom()

2 i f><£

3 Take a random action between all possible actions.

4 else

5 Take the action that produces the state with most g-values.

6 end

Fig. 2. Algorithm for e-greedy policy.

Algorithm 2: Modified g-learning algorithm

1 Initialize Q(s,) arbitrary (or with a fixed value obtained with
some method)

2 Initialize soto an arbitrary or fixed state

3 repeat

4

5

6

7

8

9

10

foreach step do

Choose a, using the G-greedy police algorithm;

Perform action a, and change to s,+r,

Wait S'Pcomroi and recieve R;

Update Q-values with equation (7);

•?;<—Sm',

end

11 until s, is a terminal state;

Fig. 3. Modified Q-learning algorithm.

5. Assuming that convergence has been reached at t=t', the
random variable defined by the density function g(x, vt<) should
have all of its mass concentrated on x'.

Step 3 is performed using the best [pN\ samples, also called elite
samples. The sampling density function needed in the 2nd step is
usually unknown, but in most cases it can be assumed to be a
normal distribution function. In this case, v represents the mean \x
and the standard deviation of the normal distribution is a. The
solution of the equation is simply the sample mean ¡It and sample
deviation dt of the elite samples. It also follows that the mean
should converge to x' and the deviation should converge to zero. A
smoothing parameter a for the mean vector and dynamic
smoothing pt for the deviation are applied, in order to prevent
the occurrences of 0 s and 1 s in the parameter vectors.

At+i = «At+i + O - «)£ t
<7t+l = j6t<Tt+i + (1 - Pt)ot

. - />u-iy
(10)

where 0.4 < a < 0.9, 0.6 < ft < 0.9, 2 < q < 7.
Finally, constrained optimization problems will be addressed

from an engineering viewpoint, which therefore means imposing
boundaries on the distribution function for the generation of
samples, to ensure that sampling is from within the appropriate
region.

4. Design and implementation of the artificial cognitive
architecture

In this section, we will present the design of the artificial
cognitive architecture together with the requirement analysis. We

will then explain the main details of our implementation without
entering into deep explanations. Having presented our artificial
cognitive architecture in detail we then present an instantiation of
the architecture to validate its design and implementation.

4.1. Design and implementation

The artificial cognitive architecture should comply with both
functional (FR) and non-functional (NFR) requirements. The main
functional requirements can be summarized as follows.

FR1 Control architecture: the main function of this architecture is
to control processes; the implementation of the architecture
must allow the user to assign a process to the architecture and
prepare the architecture to control it.

FR2 Models: the architecture has several models that serve to
control a process with different procedures. There are four
types of models: single loop models, direct and inverse models,
and simulation models. The configuration of direct and inverse
models resembles the internal model control paradigm well-
known in the Control Engineering community, but also
claimed as the main explanation and rationale behind
brain-cerebellum interaction [16].

FR3 Modes: the architecture must run in different modes. A mode
is defined by a preset configuration of the different elements of
the architecture (models, reference values and process entity)
to control a process. A mechanism enables the application to
switch between modes while running. Switching can be
smoothed out by a first-order filter to guarantee a seamless
transition from one mode to another one.

FR4 Adaptation: the application must provide a component for
selecting models required by a specific mode. The choice of
component may be to accomplish different objectives.

FR5 Optimization: the architecture must provide functionality for
optimal setting of control models on the basis of a simulation
model of the physical process. With this action, the architec­
ture will be able to improve its behavior while running
different processes.

FR6 Online learning: similar to optimization, the architecture
should provide a mechanism to execute a learning algorithm
during the regulation process. Once again, this mechanism
will improve the behavior of the overall system.

FR7 Objectives: the architecture must ensure that the user inserts
the objectives to be achieved, e.g., productivity, performance,
etc.

FR8 Data types: the architecture must allow different data types,
such as integer, double or string.

The main non-functional requirements are described as follows.

NFR1 Middleware: the architecture shall be quite generic and
flexible to allow the user to use it over a middleware, for
instance, the user may wish to use the architecture to control
a process in a different place, i.e., to distribute the
architecture to control remote process.

NFR2 Extensibility: the architecture shall be designed to ease the
tasks of adding models, control algorithms, optimization and
learning mechanisms, etc.

In order to comply with the above-mentioned requirements, we
have designed an object-oriented library. Along with the general
classes and interfaces, some classes are provided to ease the
instantiation tasks of the architecture. The following will briefly
explain the most important concepts of this library, contained in
the COGNETCON packages with different functions http://gamhe.
eu/downloads/?route=.%2FCognetcon. So as to assess the main

http://gamhe

objective
input

module 0

A -

Js

- e — • module a

module 1
imitate

u" s ' .

module 3

imitate
u2 > T I

simulate
jmy

deljberate

simulate
y* ^

module 5

process

module 2

y3

y

y2

+JE
+/C

+J!
+/V

+J
^ i V

module 4

riplihpratp.
imitate •

s imi i larp;

Fig. 4. Overall scheme of the modified shared circuits model (MSCM) [3].

Cognitive Level

ref. inputs
(setpoints)

exec. conf.
changes

Executive Level

Exec. Management

i-th Configuration

control
actions

Low frequency

Process /
system

state

High frequency

control
inputs.

Cognitive Level
I Goal I
[management!"

Evaluation U
Optimal
searching

j Organization^

Adaptation

Auxiliar Exec. Management

Model 1 Model 2 Model 3

ref. inputs
(setpoints)

model
parameters

model
parameters

mode change

model change

status

ref. inputs
(setpoints)

parameters

mode chanqe

model chanqe

Executive Level

Execution Management

Model 1

h ...

Model 2

Model i

Model n

contn
actior

Fig. 5. Overall diagram of the artificial cognitive architecture and the corresponding cognitive and executive levels.

differences in the implementation of the artificial cognitive control
architecture the overall scheme of the MSCM architecture [3] and
the scheme of the new design and implementation of the artificial
cognitive control architecture are shown in Fig. 4 and Fig. 5,
respectively.

A detailed description of the cognitive and the executive levels is
shown in Fig. 5 to gain a better understanding of the interconnec­
tion between the different parts of the architecture. There is a
mirror of the execution level at the cognitive level, necessary for
organization, adaptation, and learning mechanisms that make use of

real-time simulations. Otherwise these mechanisms would have to
use the processing time of the execution unit, thereby limiting real­
time performance.

On the other hand, in the executive unit, the most important
input is the exec.conf.changes that serve to introduce modifications
both in configuration and parameters. Parameter modifications
change the parameters of a particular model (model ¡) from the
learning mechanism and changes to its configuration can be of two
types: new assignment of a model to a specific mode or switching
between modes.

Therefore, the new implementation of the architecture is driven
by the concept of the model, at the lowest level, and the concept of
type of models. Module 1 corresponds to a single loop model (i.e.,
simple feedback control loop), Module 2 matches with direct type
model (i.e., direct or forward dynamic of the system), and Module
3 is identified with inverse type model (i.e., inverse dynamic of the
system). Therefore, the architecture is designed so that the user can
easily add more types of models, which can lead also to other types
of functioning modes. Now, it is necessary to address the concept of
executing modes that is the mechanism for defining how to
connect the different types of models for a certain operating mode
of architecture. For the sake of clarity, only three operating modes
are considered which are single feedback control, inverse control
and internal model control with the novelty of incorporating self-
optimization and self-learning. Similarly, Haykin et al. [52] have
also considered three main operating modes. The implementation
of the above architecture is coded in Java, which guarantees greater
portability between different operating systems.

Note that the type of model is only described in the operating
modes and not the model itself. The adaptation is in charge of
choosing the type of model for each mode depending on the main
process characteristics, know-how and available models. The
organization mechanism is responsible for switching between
execution modes without deciding on the type of model used for
each mode. Therefore adaptation is responsible for the transition
between running modes and Execution Configuration, which is the
concept that permits the interconnection of models in Execution
Management. Learning is performed in MSCM through Module 2,
while here it is done by a specific component that enables learning
in all models of the architecture. A further component of the
architecture, Optimal Searching, is in charge of optimization on the
basis of simulation-type models (e.g., any computational represen­
tation of the controlled system that resembles well-known output-
error models). Therefore, the ability to emulate Module 5 can be
carried out by simulation-type models.

The organization procedure is essential to enable the artificial
cognitive control to change from one execution mode (e.g., single
loop) to another one (e.g., inverse model for inverse control). The
overall scheme for organization is shown in Fig. 6. For the sake of
clarity, inverse model enables the inverse control mode that
corresponds to anticipation and mirroring for priming, emulation
and imitation from the viewpoint of neuroscience. The combination
of direct and inverse models enables the internal model control that
corresponds to the mindreading effect and the roots for emulating
socio-cognitive skills from the perspective of neuroscience.

The initialization procedure starts with the optimal setting of
parameters of each model (inverse model, direct model, single loop
model) on the basis of the cross entropy method introduced in
Section 3.1 and the simulation model of the process. Indeed, self-
optimization is a basic step that can serve to carry out other tasks
beyond this one. The use of an error-based performance index and
a rough model of the process is enough to perform this task as it is
shown later in the proof of concept of the artificial cognitive
control system in Section 5.2.

Moreover, necessary variables for learning and organization
will be initialized such as the Q-learning tables and the
performance index table, in order to be later applied to set
the initial conditions in the organization as well as to choose the
appropriate execution mode. The performance index table is also
updated using a forgetting factor.

The self-organization procedure during each execution cycle
consists of eight main steps which are also depicted in Fig. 6. First,
the system checks if the control signal (action) has yielded the
expected results according to the performance index, if so, the
artificial cognitive control remains in this execution mode (e.g.,
single loop control). If the execution mode does not achieve

Algorithm 3: Self-organization algorithm

1 if Is the last action successful?

2 Maintain the last mode

3 else

4

5

6

7

8

9

10

11

12

13

14

15 end

if Is learning active for that mode?

if Has it been learning for enough time?

Update the performance indices table

Obtain the possible actions

Choose the best action

else

I Wait for another cycle

end

else

end

activate learning for that mode

Fig. 6. Organization procedure for enabling the artificial cognitive control system.

appropriate results it is necessary to verify if the learning is
enabled, otherwise, it is activated. The duration of the learning (set
by the user) should be checked in the third step. The performance
index table is updated with the real-time computed value with a
forgetting factor. All possible control signals (actions) are then
computed and the control signal that produces the best behavior
(i.e., the best performance index) is taken from the table.

4.2. Instantiation and deployment

Both the design and the implementation of the architecture
require an instantiation for its validation. We will try to replicate
the configuration, making an instantiation with three modes of
operation that control a micro-drilling process. Certain specific
assumptions are implicit in this instantiation, so that that the
artificial cognitive architecture can be deployed in low-cost
computing platforms. Under this rationale, an analysis of the best
available middleware to enable networked, transparent, portable
and reliable communication, and low-cost computing platforms is
necessary to select the best one for the instantiation.

4.2.2. Middleware
The scientific community is currently at work to connect and to

integrate sensors with other devices that will improve factory
production. One key issue in the endeavor is the long-distance
monitoring and control of complex plants, which requires
synergetic strategies that link smart devices and communication
technologies with advanced computational methods [53]. The
solution chosen for this work employs distributed object-
computing middleware, which enables common network pro­
gramming tasks to be automated, regardless of other consider­
ations such as what communication protocols and networks are
used to interconnect the distributed objects.

The first middleware option analyzed was Common Object
Request Broker Architecture (CORBA). CORBA technology provides
a clear opportunity for process monitoring and strategic process
control. In real-time CORBA (RT-CORBA) specification, mecha­
nisms and policies are defined to control processor resources,
communication resources and memory resources to support the
real-time distributed requirements of the application fields
[54]. The second option was ZeroC Ice that provides a simple

and easy-to-understand communication solution. Yet, despite its
simplicity, Ice is flexible enough to accommodate even the most
demanding and mission-critical applications. A comparison with
other popular distributed computing solutions can be found here
[55]. One of the most important features of Ice is its enhanced set of
services, such as event distribution, firewall transversal with
authentication and filtering, automatic persistence, automatic
application deployment and monitoring, and automatic software
distribution and patching. All services can be replicated for fault
tolerance, so as to avoid the introduction of any single point of
failure. The use of these services greatly reduces development
time, because they eliminate the need to create distribution
infrastructure as part of the application development. The third
solution that was explored, Java Remote Method Invocation (RMI),
enables the programmer to create distributed Java technology-
based applications, in which the methods of remote Java objects
can be invoked from other Java virtual machines, possibly on
different hosts. RMI uses object serialization to marshal and
unmarshal parameters and does not truncate types, supporting
true object-oriented polymorphism.

Although the design and application of artificial cognitive
control architecture based on middleware is essential, because the
middleware facilitates communication between different hosts,
the design of the architecture and its development is done in a
middleware-free manner; independent of the middleware chosen
to enable communication. ZeroC Ice was selected for the
implementation, on the basis of good results previously reported
in the literature, its advantages in relation to CORBA, its versatility
and ease of use [56]. Three distributed units were considered in the
deployment of the artificial cognitive control architecture, on the
basis of the design and specificities of the case study with regard to
proprietary software.

Cognitive unit: This unit contains the components of the
cognitive level: learning and optimization mechanisms, organiza­
tion logic, execution logic and the application itself. It is expected
that this unit will be deployed in a low-cost computational
hardware.

Executive unit: This unit contains the models that are used in
the single loop, direct, inverse and simulation modes of the
architecture. Once again, the unit is expected to be deployed in
a low-cost computational hardware.

Process unit: A distributed process is needed, because that is
one of the objectives, i.e., the control of a physical process.

The Ice specification file is programmed with this description
and parses it with the slice2java program. This program will
generate several auxiliary classes needed by ZeroC Ice for
communication over the net. In addition to the common use of
Ice, IceGrid, is an important service that enables clients to discover
the corresponding servers. Acting in an intermediary role, IceGrid
decouples clients from their servers and is intended to improve the
performance and reliability of applications through support for
replication, load balancing and automatic fail over. The program
needed to execute the IceGrid registry process, icegridregistry, and
the program to run a server, icegridnode are both provided with the
Ice installation package.

4.2.2. Low-cost computing platforms
Various state-of-the-art low-cost computing alternatives were

analyzed, to choose the most suitable one to meet our objectives
for deployment in a low-cost computational platform with
artificial cognitive control. We reviewed three of the most popular
low-cost computing platforms reported in the literature: Raspber­
ry Pi Model B, HummingBoard-i2 and BeagleBone Black. These
computing platforms also have forums which share posts from the
community of users that help others to make efficient use of the
hardware.

Raspberry Pi is a low cost, credit-card sized computer capable of
everything expected from a desktop computer, from browsing the
Internet and playing high-definition videos, to the use of
spreadsheets, word-processing, and gaming [57]. It is a small
versatile low-cost device with a 700 MHz Single-Core ARM v6 and
512 MB SDRAM that enables users of all ages to explore computing,
and to learn programming languages such as Scratch and Python.
Raspberry Pi can interact with the environment and devices in a
wide range of digital maker projects, from gaming machines [58] to
open-source voice computing [59].

The HummingBoard-i2 and Raspberry Pi both share a very
similar layout and configuration, making transition projects
between both of them very easy. The former represents a good
choice, if users are looking for a more powerful option with a
1.0 GHz Dual-Core ARM v7 and 1GB SDRAM at over twice the cost
of Raspberry PI.

BeagleBone Black is suitable for users looking for a little more
power that Raspberry Pi, an easier set up, easier commercialization,
or users who have a need to interface with many external sensors.
Its configuration consists of an AM335X 1 GHz ARM Cortex-A8 and
512 MB of DDR3 RAM at a similar cost to Raspberry PI.

World-wide support for a low-cost computing platform to
facilitate implementation and to solve deployment problems and,
less importantly, the cost of the platform, drove our decision­
making process. A large user community provides ample support
for trouble shooting when using the platform. We finally chose
Raspberry Pi Model B, partly because it is the most popular
platform with an active user community.

4.3. Tools for modeling and implementation

UML is a general-purpose modeling language in the field of
software engineering, which is designed to provide a standard
means of visualizing the system design. It was applied to re­
designed and to implement the artificial cognitive architecture
[60]. Java was selected as the programming language, because of its
universal portability in different environments. In addition, the
Real Time Specification for Java (RTSJ) provides an advantage when
we want to extend our work to a full real time environment [61].

Having completed the UML-based design, the next step is the
implementation of the architecture was the selection of Eclipse, as
the integrated development environment (IDE) that facilitates
work with Java. We also used SWIG [62], an interface compiler that
connects programs written in C and C++ with several languages
such as Perl, Python or Java. SWIG permits the re-use of models
programmed in C/C++ and performs its tasks through the Java
Native Interface (JNI) framework that enables assembly and
communication between the Java Virtual Machine (JVM) and
programs written in C, C++.

5. Real application experiment

The setup of the real application experiment to validate the
artificial cognitive architecture is presented in the following
section. The main results obtained after running real-time
experiments are also discussed.

5.2. Experiment setup

Due to the small dimensions involved in the microdrilling
processes, the control is very difficult to carry out online. For this
kind of processes, the use of online indirect monitoring is
particularly important. Measurable process signals such as forces,
vibration, acoustic emission and motor current have been often
used for this purpose. Online quality control systems can provide
real-time information, which can be supplied as a feedback to CNC

Table 1
Equivalence between the MSCM modules [3] and the proposed architecture.

Modified SCM modules [3] Proposed architecture

Module 0. Objective management
Module A. Performance index computation
Module 1. Basic adaptive feedback control
Module 2. Simulation prediction of effects for improved control
Module 3. Mirroring for priming, emulation and imitation
Module 4. Management of monitored output inhibition
Module 5. Counterfactual input simulation
Not available
Not available
Not available

Goal management
Performance indices computation
Modes and models (single loop)
Modes and models (direct or forward models)
Modes and models (inverse models)
Organization
Operating modes and models
Adaptation
Optimal searching/optimization (simulation models)
Learning (simulation models)

Fig. 7. Setup of the industrial environment for microdrilling processes.

for online adjusting cutting parameters. These kind of systems has
been proposed for conventional machining. Monitoring and
control systems have been also proposed in order to adaptively
modify the cutting parameters in real-time for guaranteeing the
geometric quality [63].

In the experimental study, the instantiation was tested in an
industrial environment. All cutting operations were done on a Kern
Evo Ultra-Precision Machine Centre (see Table 1), equipped with a
Heidenhain ÍTNC540 CNC. Maximum spindle speed (n) and feed
rate (f) were 50,000 rpm and 16,000 mm/min, respectively. The
experimental platform included a cutting force sensor on three
axes, two vibration sensors for y, z axes and a laser sensor for
measuring variations in tool length and radius. The measurement of
cutting force signals was done with a multi-component dynamom­
eter. A Kistler sensor (MiniDyn 9256C1) was used on thez-axis, with
a bandwidth of up to 5 kHz. The vibration signals were measured by
two accelerometers attached with wax to both the y and the z-axes
of the work piece. Tool length was measured on-line with a laser
sensor. This high precision visible red-light laser is a state-of-the-
art measurement system, fully up to date and commercially
available. All the sensor signals were fed into a NI 6251 National
Instruments data-acquisition card, with a sampling rate of 50 kHz,
and were processed with a National Instruments high-performance
PXI-8187 embedded controller. The position of the tool tip (x, y, z)
was obtained via the ethernet connection of the CNC of the
machine, using a sampling frequency every 12 ms (83.33 Hz). Fig. 7
shows the platform with its main devices that are labeled.

Raspberry Pi (Pi 1) and Rasberry Pi (Pi 2) run the cognitive and
executive part of the architecture, respectively. Process host has

the mission of retrieving the process outputs from the KERN Evo
machine and sending them to the architecture via ZeroC Ice, as
well as receiving the action control from the architecture and
sending it to the KERN Evo machine. As shown in the picture,
communication between Process host and KERN Evo is done over
the Ethernet. The Icegrid registry program is permanently running
on the Registry host to enable the different hosts to identify each
other. Finally, the Client host can use the developed graphical user
interface to interact with the different components. The deploy­
ment of all components in the architecture is shown in Fig. 8(a)
and (b).

5.2. Results

We controlled microdrilling process force in this experimental
setup. Several experiments were performed to validate the design
and implementation of the artificial cognitive architecture. The
experiment consisted of single and consecutive (10 holes) 0.5 mm
drilling operations at a spindle speed of 10,000 rpm and a feedrate
of 100 mm/min. First, in order to assess each control mode (i.e.,
single loop, inverse control and internal model control) only one
drilling action was carried out.

The control strategies summarized in Table 2 were selected to
perform the proof of concept of the artificial cognitive control. It
does not mean that other control strategies cannot be selected. The
user can define and configure models and control strategies in the
artificial cognitive control architecture. The main rationale for
using fuzzy and neuro-fuzzy approaches can be briefly summa­
rized as follows.

Neuro-fuzzy systems combine their ability to accurately model
any nonlinear function, an excellent learning capacity, and an
ability to represent human thought and robustness in the presence
of noise and process uncertainty. These characteristics are
essential to deal with uncertainties, nonlinearities, and time-
varying behavior. Some neuro-fuzzy systems cannot be applied to
real-time process control, mainly because of the computational
cost involved and because they are unable to meet the control
system's requirements.

One hybrid strategy that has been successfully applied is the
ANFIS system, due to its computational simplicity and suitability
for real-time applications [64]. A complete review of neuro-fuzzy
and new fuzzy inference systems [65] goes beyond the scope of
this paper, although a thorough study should be carried out in a
near future. The use of a fuzzy control system for the single loop is
fully justified on the basis of the nature of micromanufacturing
processes. The last decades have witnessed plenty of successful
industrial applications of fuzzy controllers as well as dozens of

Process host

t$
KERN Evo

Client

ZeroC
Ice Pi 2

Registry

b)

Fig. 8. (a) Overall view of the industrial setup, (b) schematic diagram of the architecture of artificial cognitive control.

12

10

S 6

— Inverse&Dlrect models (ANFIS)
Inverse model (ANFIS)
single loop (Fuzzy control)

40 50
samples

— Inverse&dlrect models
Inverse model
single loop

40 50
samples

Fig. 9. Behavior of the drilling force (a) and the control signal (feed rate) (b) for each execution mode isolated on the basis of the simulation.

Table 2
Algorithms implemented for each execution mode.

Implemented algorithms Single loop Direct model Inverse model

Algorithm
System
Inputs
Outputs
Membership functions type
Number of membership functions
Inference system
Number of rules
Defuzzification
Iterations
Learning rate
Training algorithms
Training data set
Validation data set

Fuzzy Logic
Two-input/single output
Error (e) and change in Error (de)
Feed rate (J)
Triangular-shaped
7
Mamdani
49
Center of area

ANFIS
Single-input/single output
Feed rate (J)
Force (F)
Gaussian
3
Takagi-Sugeno
9
Weighted average
100
0.01
GENFIS 2
62 samples
82 samples

ANFIS
Single-input/single output
Force (F)
Feed rate (J)
Gaussian
3
Takagi-Sugeno
9
Weighted average
100
0.01
GENFIS 2
62 samples
82 samples

books and surveys on this topic. New research trends and
industrial application of fuzzy control are well addressed in [66].

Fig. 9 depicts the results of the simulation of each control mode.
In order to carry out this simulation the model of the microdilling
process represented in Eq. (11) is considered as well the influence
of noise represented by (12). Based on the technical knowledge of
the process an input and output system is considered using the
following variables: input is the feed rate (/) and output, the
cutting force (F). For the study an approximate representation of
the process behavior was used. The linear model represented via
difference equation is expressed accordingly:
F(fc) = a, • /(/<) + o2 • f(k - 1) + o3 • /(/< - 2) + a4 • /(/< - 3)

where/(fe) is the feed rate and F(fe) is the cutting force at fe-instant.
The coefficients of the difference equation are Oi = 0.004322,
o2 = 0.02467, o3 = 0.008623, o4 = 0.00002178, b, =-2.447,
i)2 = 1.993 and b3 = -0.5406.

This model roughly describes the dynamic behavior of the
drilling process and it has been verified experimentally. However,
model parameters depend on the workpiece material, cutting
conditions, and tool wear. Therefore, model coefficients are time
variant and variables of cutting conditions, workpiece material and
tool wear. A disturbance d(t) (12) or noise input is included, in
order to better replicate a real industrial process:

- f>i • F(fc - 1) + f>2 • F(fe - 2) + f>3 • F(fe - 3) (11)
d(t) = A • (sin(2<»t) + sin(3ft)t) + sin(4<wt) + sin(5<wt)) (12)

60
samples

120

120

110

100

ID

ra 90

80

70

60

single loop (Fuzzy control)
Inverse model (ANFIS)

— Dlrect&lnverse models (ANFIS)
-^^Wlthout control

b) 20 40 60
samples

80 100 120

Fig. 10. Behavior of the drilling force (a) and the control signal (feed rate) (b) for each execution mode isolated from real time experiments.

Table 3
Performance indices for real time experiments.

Controller

CNC alone (without control)
Single loop (fuzzy control)
Inverse model (inverse control)
Inverse and direct models (IMC control)

ISE

559.79
338.45
380.40
418.81

AAE

1207.39
628.23
706.76
742.48

MSE

25.66
17.62
19.13
20.26

Ovt (%)

12.15
7.16
5.71
6.74

where &> = 7.61 rad/s. This frequency corresponds to the greatest
frequency of the poles of the third-order system model of the
drilling process given in (11). The amplitude of the disturbance is
A = 10 (about 10% of additive noise).

Fig. 9 shows the behavior of drilling force in real time for three
modes (single loop, inverse control and internal model control) of
operations as well as the behavior of the drilling force without
control (i.e., at constant feed rate). Each control mode is running
isolated in each microdrilling operation. For the sake of space, the
experimental results depicted in Fig. 9 are running after the
optimal setting of parameters on the basis of the cross entropy
method. The dynamic response for the three operating modes is
appropriate after running the initialization of the artificial
cognitive control system. The optimal setting of parameters for
each control modes is performed using the rough model of the
process (11) and the mean square error performance index
(Fig. 10).

Table 3 shows a comparative study of the single loop operating
mode with the inverse model (i.e., inverse control) and the inverse
and direct models (i.e., internal model control). The integral of
square error (ISE), the average of absolute error (AAE), the mean
square error (MSE) and the overshoot (OVt) are used. The error

performance indices of the single loop are better than the other
controllers whereas the inverse control (inverse model) yields the
better overshoot. It is important to remark that the microdrilling
process is non-linear and time variant process, and therefore the
performance of each control mode may deteriorate due to
nonlinearities, uncertainty and time-variant behavior of the
process.

Experimental results using the platform shown in Fig. 8 are
shown in Figs. 11 and 12.

Fig. 11 shows the behavior of the drilling force when the
learning is activated for the inverse model (i.e., inverse control
mode). The drilling of 10 holes is performed, in order to show the
influence of reinforcement learning on improving the performance
of the inverse model. Initially the response is very poor and the
system cannot reach the set point. The behavior of the drilling force
is quite good from the 7th hole due to reinforcement learning.

Fig. 12 shows the behavior of the drilling process of nine holes.
The single loop mode (i.e., the fuzzy control) is functioning in the
first three holes. After that, the poor performance index motivates
the change to the internal model control where direct and inverse
models are activated. This is a clear case study where the single
loop is deteriorating due to the influence of disturbance such as

10. ! .,„ \ a J fk iw4 . -

6 - -

4 - -

2 -

n i i i

a) '
500 1000 1500 2000

samples

100

90

_ 80

70

60

50

40

|4i_

b)
500 1000 1500 2000

samples

Fig. 11. Reinforcement learning for the inverse model in real-time microdrilling of 10 holes of 0.5 mm diameter, (a) behavior of the drilling force, (b) control signal represented
by the feed rate.

10 nT h fíñ ñ'ñf\ Hi

. I UJ \ I; I I; U U ÜJ I I: LJ ! I
i i i i i i i

a)
200 400 600 800

samples
1000 1200 1400

110-

100-

g 90-
m
ra
Í 80
ID
HI

LL

70-

60-

50 b)

-I
!

ill
i

if
Vtfy

!

fVvx

I !

(WM—!— W^V k^w, l/w

i i i

200 400 600 800
samples

1000 1200 1400

Fig. 12. Behavior of the drilling force (a) and the control signal (b) in the nine holes of 0.5 mm.

tool wear and the artificial cognitive control tries to find an
adequate solution by changing the execution mode. The dynamic
response and the performance index are then better in the new
execution mode and the system remains in this mode. Therefore,
the organization strategy depicted in Fig. 6 and described in the
Section 4.1 is adequate for this case study.

There are some issues to be analyzed. The offsets in the dynamic
response shown in Figs. 11 and 12 are the result of the influence of
air for tool refrigeration when the force is measured. This negative
effect is not easily removed because it is not a constant value. The
second issue is the parametrization of the threshold in the
performance index to change from one mode to another one, which
depends mainly on the application. The log files of the organization
shown in Figs. 11 and 12 are depicted in Annex I.

6. Conclusions and future work

This paper has presented the design and implementation of an
artificial cognitive control system in a low-cost computing
platform with self-optimization and self-learning capabilities.
Firstly, an instantiation of the artificial cognitive architecture has
been designed and developed. For the sake of clarity and to provide
new capabilities to the architecture, the optimization procedure
ran on the cross-entropy algorithm and the online learning
mechanism on the Q-learning algorithm, both of which were
designed and implemented in the architecture.

In addition, classes were developed that provide this instantia­
tion with the ability to run in a distributed manner. The overall

assessment of the instantiation was performed in a simulation
study and a real manufacturing environment, both of which
yielded very promising results. Beyond the case-study on force
control for microdrilling processes and the results that have been
presented, the artificial cognitive control architecture built on a
low-cost platform hardware has demonstrated the suitability of
the implementation in an industrial setup. The functional and non­
functional requirements are fully satisfied by means of a simple
instantiation configured with middleware.

This research work has provided an important starting point to
address the main challenge of an artificial cognitive approach
embedded in low-cost hardware industrial computing on the basis
of low-cost hardware. Fully aware of the preliminary nature of this
study and the demanding work ahead to achieve effective artificial
cognitive architecture in industrial environments, our subsequent
objectives in the near future are to design a practical goal
management procedure, to add further models to the repository
for more complex tests, and to improve the way in which our
instantiation can execute the components for improved perfor­
mance on this new low-cost computing platform.

Acknowledgements

This work was supported by the Spanish Ministry of Economy
and Competitiveness through its DPI2012-3 5504 CONMICRO
project and FEDER funds. The authors wish also to thank Fernando
Castaño for the support in the realization of experiments and
processing data from experiments.

Annex I

Log file for the reinforcement leaning of the inverse model.

ANTICIPATI0N=8.332111986229894
5.0
Performance Index (MSE): 3.7769246696735976
Finishing drilling No.- 1
ORGANIZATION BEGINS
Performance Index (MSE): 6.020674866392445
Finishing drilling No.- 2
Performance Index (MSE):_learning: 5.696279190950438
NEXT ACTION: ExecutionNode(InverseAnfis(config/inverso_nuevo.ini)):
{Kin(DOUBLE)=0.748, meanOut(DOUBLE)=52.286} |
Performance Index (MSE): 5.696279190950438
Finishing drilling No.- 3
Performance Index (MSE):_learning: 3.3474918433763614
NEXT ACTION: ExecutionNode(InverseAnfis(config/inverso_nuevo.ini)):
{Kin(DOUBLE)=0.748, meanOut(DOUBLE)=59.286} |
ORGANIZATION BEGINS
Performance Index (MSE):Table: {ANTICIPATION=3.8459538576617147} Be
ANTICIPATION
Performance Index (MSE): 3.3474918433763614
Finishing drilling No.- 4
Performance Index (MSE): 1.988387380851299
Finishing drilling No.- 5
ORGANIZATION BEGINS
Performance Index (MSE): 1.6155887571517007
Finishing drilling No.- 6
Performance Index (MSE):_learning: 1.2995309378912394
NEXT ACTION: ExecutionNode(InverseAnfis(config/inverso_nuevo.ini)):
{Kin(DOUBLE)=0.748, meanOut(DOUBLE)=66.286} |
Performance Index (MSE): 1.2995309378912394
Finishing drilling No.- 7
Performance Index (MSE):_learning: 1.6727367117380498
NEXT ACTION: ExecutionNode(InverseAnfis(config/inverso_nuevo.ini)):
{Kin(DOUBLE)=0.748, meanOut(DOUBLE)=73.286} |
ORGANIZATION BEGINS
Performance Index (MSE):Table: {ANTICIPATIONS.8900584263304163} Be
ANTICIPATION
Performance Index (MSE): 1.6727367117380498
Finishing drilling No.- 8
Performance Index (MSE): 0.8872413435935801
Finishing drilling No.- 9
ORGANIZATION BEGINS
The last mode (ANTICIPATION was successful
Performance Index (MSE): 0.4017396251815698
Finishing drilling No.- 10

Log file for the organization.

{ANTICIPATIONS. 866602 87 82 47 334 8, SINGLE LOOP=0 . 8771843826592491,
ANTICIPATION+MIRRORING=0.8653732453405826}
5.0
ORGANIZATION BEGINS
The last mode (SINGLE LOOP was successful
Performance Index (MSE): 0.45003959833218005
Finishing drilling No.- 1
Performance Index (MSE): 0.43637194274581015
Finishing drilling No.- 2
ORGANIZATION BEGINS
Performance Index (MSE(Table: {ANTICIPATIONS.8666028782473348, SINGLE

LOOP=l.0575288999477688, ANTICIPATION+MIRRORING=0.8653732453405826}
Best: ANTICIPATION+MIRRORING
Changing to ANTICIPATION+MIRRORING
Performance Index (MSE): 1.1202816580791999
Finishing drilling No.- 3
Performance Index (MSE): 0.9572464140536598
Finishing drilling No.- 4
ORGANIZATION BEGINS
Performance Index (MSE(Table: {ANTICIPATIONS.8666028782473348, SINGLE

LOOP=l.0575288999477688, ANTICIPATION+MIRRORING=0.7269170584936862}
Best: ANTICIPATION+MIRRORING
Performance Index (MSE): 0.7115330377329199
Finishing drilling No.- 5
Performance Index (MSE): 0.27312344216621987
Finishing drilling No.- 6
ORGANIZATION BEGINS
The last mode (ANTICIPATION+MIRRORING was successful
Performance Index (MSE): 0.2892327149771201
Finishing drilling No.- 7
Performance Index (MSE): 0.5820603007558
Finishing drilling No.- 8
ORGANIZATION BEGINS
The last mode (ANTICIPATION+MIRRORING was successful
Performance Index (MSE): 0.44294246181988994
Finishing drilling No.- 9
Performance Index (MSE): 0.3704961754985
Finishing drilling No.- 10
ORGANIZATION BEGINS
The last mode (ANTICIPATION+MIRRORING was successful
Performance Index (MSE): 0.3704961754985
Finishing drilling No.- 11

References

[1] O.J. Romero Lopez, Self-organized and evolvable cognitive architecture for
intelligent agents and multi-agent systems, in: C. DiChic, C. Cotta, M. Ebner, A.
Ekart, A.I. Esparcía Alcazar, C.K. Goh, J.J. Merelo, F. Neri, M. Preuss, J. Togelius,
G.N. Yannakakis (Eds.), Applications of Evolutionary Computation, Ft I,
Proceedings, 2010, pp. 392-401.

[2] A Bannat, T. Bautze, M. Beetz, J. Blume, K. Diepold, C. Ertelt, F. Geiger, T.
Gmeiner, T. Gyger, A. Knoll, C. Lau, C. Lenz, M. Ostgathe, G. Reinhart, W.
Roesel, T. Ruehr, A Schuboe, K. Shea, I. Stork Genannt Wersborg, S. Stork W.
Tekouo, F. Wallhoff, M. Wiesbeck M.F. Zaeh, Artificial cognition in production
systems, IEEE Trans. Autom. Sci. Eng. 8 (2011) 148-174.

[3] A Sanchez Boza, R Haber Guerra, A. Gajate, Artificial cognitive control system
based on the shared circuits model of sociocognitive capacities. A first
approach, Eng. Appl. Artif. Intell. 24 (2011) 209-219.

[4] M. Bazhenov, R. Huerta, B.H. Smith, A computational framework for
understanding decision making through integration of basic learning rules,
J. Neurosci. 33 (2013) 5686-5697.

[5] M. Khamassi, S. Lallée, P. Enel, E. Procyk, P.F. Dominey, Robot cognitive control
with a neurophysiologically inspired reinforcement learning model, Front.
Neurorobotics (2011) 1-14.

[6] D. Bruckner, H. Zeilinger, D. Dietrich, Cognitive automation survey of novel
artificial general intelligence methods for the automation of human technical
environments, IEEE Trans. Ind. Inform. 8 (2012) 206-215.

[7] S. Borgo, An ontological approach for reliable data integration in the industrial
domain, Comput. Ind. 65 (2014) 1242-1252.

[8] M. Fatemi, S. Haykin, Cognitive control: theory and application, IEEE Access 2
(2014)698-710.

[9] J. Albus, Toward a computational theory of mind, J. Mind Theory. Rigor Cogn.
Sci. (2009)1-38.

[10] T. Meystel, On intelligence control, learning and hierarchies, IEEE Control Syst.
Mag. (1994) 63-74.

[11] J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, Y. Ojn, An
integrated theory of the mind, Psychol. Rev. (2004) 1036-1060.

[12] A Newell, Unified Theories of Cognition, Harvard University Press, 1994.
[13] P. Langley, J.E. Laird, S. Rogers, Cognitive architectures: research issues and

challenges, Cogn. Syst Res. 10 (2009) 141-160.
[14] M. Rabinovich, I. Tristan, P. Varona, Neural dynamics of attentional cross-

modality control, PLOS ONE 8 (2013).
[15] RR. Llinas, S. Roy, The 'prediction imperative' as the basis for self-awareness,

Philos. Trans. R Soc. B Biol. Sci. (2009) 1301-1307.
[16] M. Ito, Control of mental activities by internal models in the cerebellum, Nat.

Rev. Neurosci. (2008) 304-313.
[17] S. Hurley, The shared circuits model (SCM): how control, mirroring, and

simulation can enable imitation, deliberation, and mindreading, Behav. Brain
Sci. (2008), 1-22, 52-58.

[18] M. Minsky, The Emotion Machine, 2006.
[19] S. Kopácsi, G.L. Kovács, J. Nacsa, Some aspects of dynamic 3D representation

and control of industrial processes via the Internet, Comput. Ind. 64 (2013)
1282-1289.

[20] H. Imamizu, M. Kawato, Brain mechanisms for predictive control by switching
internal models: implications for higher-order cognitive functions, Psychol.
Res. 73 (2009) 527-544.

[21] A Sanchez Boza, R Haber Guerra, A First Approach to an Artificial Networked
Cognitive Control System Based on the Shared Circuits Model of
Sociocognitive Capacities, Connectionist Models of Behavior and Cognition,
World Scientific Publishing, 2011.

[22] R-E. Precup, P. Angelov, B.S.J. Costa, M. Sayed-Mouchaweh, An overview on
fault diagnosis and nature-inspired optimal control of industrial process
applications, Comput. Ind. (2015).

[23] N. Chungoora, RI. Young, G. Gunendran, C. Palmer, Z. Usman, N.A Anjum,
A-F. Cutting-Decelle, J.A. Harding, K. Case, A model-driven ontology
approach for manufacturing system interoperability and knowledge sharing,
Comput. Ind. 64 (2013) 392-401.

J.I.M. Carpendale, C. Lewis, Mirroring cannot account for understanding action,
Behav. Brain Sci. (2008) 23-24.
T. Makino, Failure, instead of inhibition, should be monitored for the
distinction of self/other and actual/possible actions, Behav. Brain Sci. (2008)
32-33.
D. Kit, D.H. Ballard, B. Sullivan, C.A. Rothkopf, A hierarchical modular
architecture for embodied cognition, Multisens. Res. 26 (2013) 177-204.
M.E. Bratman, D.J. Israel, M.E. Pollack Plans and Resource-Bounded Practical
Reasoning, John Wiley & Sons, 1988, pp. 349-355.
P. Langley, Cognitive architectures and general intelligent systems, AI Mag.
(2006) 33-34.
J.F. Lehman, J. Laird, P. Rosenbloom, A Gentle Introduction to Soar, An
Architecture for Human Cognition, 1998, 211-253.
R Sun, E. Merrill, T. Peterson, From implicit skills to explicit knowledge: a
bottom-up model of skill learning, Cogn. Sci. (2001) 203-244.
R Sun, X. Zhang, Accounting for a variety of reasoning data within a cognitive
architecture, J. Exp. Theor. Artif. Intell. (2006) 169-191.
Z. Mathews, S. Bermudez i Badia, P.F.M.J. Verschure, PASAR: an integrated
model of prediction, anticipation, sensation, attention and response for
artificial sensorimotor systems, Inf. Sci. 186 (2012) 1-19.
S. Franklin, T. Madl, S. D'Mello, J. Snaider, LIDA: a systems-level architecture
for cognition, emotion, and learning, IEEE Trans. Auton. Ment. Dev. 6 (2014)
19-41.
V. Cutsuridis, J.G. Taylor, A cognitive control architecture for the perception-
action cycle in robots and agents, Cogn. Comput. 5 (2013) 383-395.
D. Vernon, G. Metta, G. Sandini, A survey of artificial cognitive systems:
implications for the autonomous development of mental capabilities in
computational agents, IEEE Trans. Evol. Comput. (2007) 151-180.
A.S. Boza, RH. Guerra, A first approach to artificial cognitive control system
implementation based on the shared circuits model of sociocognitive
capacities, ICIC Express Letters 4 (2010) 1741-1746.
LP. Kaelbling, M.L Littman, A.W. Moore, Reinforcement learning: A survey,
Journal of Artificial Intelligence Research 4 (1996) 237-285.
C. Szepesvári, Algorithms for reinforcement learning, Synthesis Lectures on
Artificial Intelligence and Machine Learning 4 (2010) 1-103.
Y. Wang, Y. Yang, Particle swarm optimization with preference order ranking
for multi-objective optimization, Information Sciences 179 (2009) 1944-1959.
J. Zhang, J. Zhuang, H. Du, S. Wang, Self-organizing genetic algorithm based
tuning of PID controllers, Information Sciences 179 (2009) 1007-1018.
I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting
processes, Comput. Ind. Eng. 50 (2006) 15-34.
RE. Haber, RM. Del Toro, A. Gajate, Optimal fuzzy control system using the
cross-entropy method. A case study of a drilling process, Inf. Sci. 180 (2010)
2777-2792.
E. Zitzler, K. Deb, L Thiele, Comparison of multiobjective evolutionary
algorithms: empirical results, Evol. Comput. 8 (2000) 173-195.
S. Huband, P. Hingston, L Barone, L While, A review of multiobjective test
problems and a scalable test problem toolkit, IEEE Trans. Evol. Comput. 10
(2006) 477-506.
RE. Precup, R.C. David, E.M. Petriu, M.B. Radac, S. Preitl, Adaptive GSA-based
optimal tuning of PI controlled servo systems with reduced process
parametric sensitivity, robust stability and controller robustness, IEEE Trans.
Cybern. 44 (2014) 1997-2009.
RE. Precup, R.C. David, E.M. Petriu, S. Preitl, M.B. R?dac, Fuzzy logic-based
adaptive gravitational search algorithm for optimal tuning of fuzzy-controlled
servo systems, IET Control Theory Appl. 7 (2013) 99-107.
S. Barchinezhad, E. Mahdi, A new fuzzy and correlation based feature selection
method for multiclass problems, Int. J. Artif. Intell. 12 (2014) 24-41.
T. Chen, K. Tang, G. Chen, X. Yao, Analysis of computational time of simple
estimation of distribution algorithms, IEEE Trans. Evol. Comput. 14 (2010)
1-22.
R Rubinstein, A stochastic minimum cross-entropy method for combinatorial
optimization and rare-event estimation, Methodol. Comput. Appl. Probab. 7
(2005) 5-50.
R Rubinstein, Semi-iterative minimum cross-entropy algorithms for rare-
events, counting, combinatorial and integer programming, Methodol. Comput.
Appl. Probab. 10 (2008) 121-178.
H. Boubertakh, M. Tadjine, P.-Y. Glorennec, S. Labiod, Tuning fuzzy PD and PI
controllers using reinforcement learning, ISA Trans. 49 (2010) 543-551.
S. Hay kin, M. Fatemi, P. Setoodeh, Y. Xue, Cognitive control, Proc. IEEE 100
(2012)3156-3169.
K. Park, L Heuiseok Design and implementation of knowledge sharing system
using smart devices, Int. J. Artif. Intell. 13 (2015) 1-7.
D.C. Schmidt, D.L Levine, S. Mungee, The design of the TAO real-time object
request broker, Comput. Commun. 21 (1998) 294-324.
M. Henning, Choosing Middleware: Why Performance and Scalability Do (and
Do Not) Matter, 2009.
J.F. Koning, C.J.M. Heemskerk P. Schoen, D. Smedinga, AH. Boode, D.T.
Hamilton, Evaluating ITER remote handling middleware concepts, Fusion Eng.
Des. 88(2013)2146-2150.
Raspberry Pi model B specifications, http://docs-europe.electrocomponents.
com/webdocs/127d/0900766b8127da4b.pdf.
CNET: Create a retro game console with the Raspberry Pi, http://www.cnet.
com/how-to/create-a-retro-game-console-with-the-raspberry-pi.

[59] Meet Jasper: open-source voice computing, http://www.raspberrypi.org/
meet-jasper-open-source-voice-computing.

[60] Unified Modeling Language, http://www.uml.org.
[61] Real Time Specification for Java, http://www.rtsj.org.
[62] S.W.a.I. Generator, http://www.swig.org/index.php.
[63] G. Beruvides, R Quiza, R del Toro, F. Castaño, R Haber, Correlation of the

holes quality with the force signals in a microdrilling process of a sintered
tungsten-copper alloy, Int. J. Precis. Eng. Manuf. 15 (2014) 1801-1808.

[64] J.-S.R Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans.
Syst. Man Cybern. 23 (1993) 665-685.

[65] M. Pratama, S.G. Anavatti, P.P. Angelov, E. Lughofer, PANFIS: a novel
incremental learning machine, IEEE Trans. Neural Netw. Learn. Syst. 25 (2014)
55-68.

[66] RE. Precup, H. Hellendoorn, A survey on industrial applications of fuzzy
control, Comput. Ind. 62 (2011) 213-226.

Rodolfo E. Haber received the Ph.D. degree in Industrial
Engineering from the Universidad Politécnica de
Madrid, Madrid, Spain, in 1999. He is with the Centre
of Automation and Robotics-CAR, CSIC-UPM (formerly
Institute for Industrial Automation - IAI) since 1996 and
has actively participated in a number of National,
European and International RTD projects in the area of
control systems. In 1999, he also joined the Computer
Engineering Department at the Universidad Autónoma
de Madrid as an adjunct professor. He has over
100 technical papers, in the areas of the application of
intelligent systems to complex processes. He has taught
several seminars on the same theme in the Georgia

Institute of Technology and University of Central Florida. His research interests
include networked and embedded intelligent control systems, artificial cognitive
control systems, modeling, control and supervision of complex processes.Dr. Haber
was an IPC member for several IEEE and IFAC conferences since 2000. Since 2002 he
has belonged to IFAC's Technical Committee 3.1 Computers for Control. Since 2005 he
has been member of the ASME Technical Committee for Model Identification and
Intelligent Systems. Since 2003 he has served as expert evaluator for the European
Commission in the 6th and 7th Framework Programme. Since 2007, he has been
associate editor of the Transactions on Computational Science and the International
Journal of Mechatronics and Manufacturing Systems.

Carmelo Juanes was born in 1991 in Linares, Spain. He
obtained the double degree of Bachelor of Computer
Science and Mathematics at Autonomous University of
Madrid (UAM) in 2014. In 2010 he joined the research
group C4LIFE at Escuela Politécnica Superior. Since
September, 2014 he is a PhD candidate at the Center for
Automation and Robotics (UPM-CSIC) in the field of
artificial cognitive systems. His main interests are
intelligent systems, self-adaptive systems and self-
organized, advanced strategies of software engineering.

Raúl M. del Toro received his B.E. degree in Automation
Engineering from the Universidad de Oriente, Santiago
de Cuba, in 1997, the M.S. degree in automation and
robotics from the Polytechnic University of Madrid in
2009 and the Ph.D degree in Computer Science &
Telecommunication Engineering from the Universidad
Autónoma de Madrid in 2011. In 2006 he joined to the
Spanish Council for Scientific Research (CSIC), where he
is currently a researcher at the Centre of Automation
and Robotics-CAR (formerly Institute for Industrial
Automation) working on several research and develop­
ment projects. His research interests include intelligent
control systems, modeling, control and monitoring of
complex electromechanical processes.

Gerardo Beruvides graduated with a B.Sc. (cum laude),
in 2010, and a M.D. in Mechanical Engineering, in 2012,
from the University of Matanzas (Cuba), where he is
currently Assistant Professor. He was a recipient of
Ph.D. grant supported by Spanish Ministry of Economy
and Competitiveness through its DPI2012-35504 CON-
MICRO project. His research interests focus on the
modeling and optimization of machining process and
applied artificial intelligence. He has published several
papers on these topics and he is reviewer of several
international journals.

http://docs-europe.electrocomponents
http://www.cnet
http://www.raspberrypi.org/
http://www.uml.org
http://www.rtsj.org
http://www.swig.org/index.php

