Comparison of Technologies for De-orbiting Spacecraft from Low-Earth-Orbit at End of Mission

G.Sánchez-Arriaga¹, J. R. Sanmartin², and E. Lorenzini³

Universidad Carlos III de Madrid¹ Universidad Politécnica de Madrid² University of Padova³

Fifth International Conference on Tethers in Space, May 24-26, 2016 University of Michigan, Ann Arbor, Michigan

Index

- 1. Introduction
- 2. Tether comparisons
- 3. Deorbit Technologies comparisons
- 4. Tether mission design and performance 3.3 The π -algorithm.
 - 3.4 Bare Electrodynamic Tether performance in LEO
- 5. Conclusions and Roadmap.

1. Introduction

- This work shows that Bare Electrodynamic Tethers (BET) are the most promising technology for deorbiting spacecraft at the end of mission.
- Is a tether conference the right place for this work?
 - New results from FP7/BETs.
 - Our group identified "misconceptions" and "prejudices" about tethers outside tether community.
- The following messages are important for space agencies/companies:
 - There is a clear commercial case: deorbiting scenarios
 - BETs can de-orbit multi-ton spacecraft in few months, passively, without propellant and power supply.
 - Typical tether length is just "few kilometers".
 - State-of-the-art tethers are much simpler and robuster than old one.

1. Introduction: list of requirements

51th Session of COPUOS (Sanmartin, 2014)

1) Bring de-orbit time below some threshold (25 years maximum for initial orbit at critical altitudes and inclinations)

2) Be a small mass fraction of its spacecraft.

3) Allow scalable design for a wide range of spacecraft mass (reaching multi-ton)

4) Allow maneuvers in case of long de-orbiting to avoid large trackable debris.

5) Be simple and reliable.

6) Decrease the frontal area by de-orbit time product, $A \times t_D$, or demonstrate that, in case of collision, it will not damage other operative spacecraft.

Two additional requirements make technologies even more attractive

7) Allow controlled re-entry.

8) Be able to produce de-orbiting and reboost in multi-mission scenarios

1. Introduction: list of requirements

Device Requirement	Chemical rockets	Ion- thruster	Drag Augmentation	Tethers
1. Deorbit Time				
2 Scalable				
3 Mass ratio				
4 Manoeuver				
5 Simple/Reliable				
6 Active Attitude				
Control				
7- Multi-mission				
8 $Reduce AxT_D$				
9 Controlled Re-entry				

2. Tether comparisons

1) Electrodynamic versus Electrostatic (e-sail¹) tethers

$$\frac{Lorentz}{Coulomb} \sim \frac{perimeter}{r_{max}} \times \sqrt{\frac{m_i}{m_e}} \times \left(\frac{L\Omega_i}{v_{orb}}\right)^{3/2} \xrightarrow{\text{LEO}} \frac{Lorentz}{Coulomb} \sim \frac{perimeter}{r_{max}(W,\lambda_D)} \times \left(\frac{L}{3 m}\right)^{3/2}$$

Conclusions:

- Lorentz drag dominates in LEO and it does not require power.
- Coulomb drag dominates in the solar wind.

1] See invited talk: Pekka Janhunen and Andris Slavinskis, "Using charged tether Coulomb drag: E-sail and plasma brake".

2. Tether comparisons

A fair comparison requires equal mass and length

2) <u>Tape versus round tethers¹</u>

- Tapes have greater perimeters \rightarrow more current is collected \rightarrow Faster deorbiting
- Tapes are more robust against cuts by small debris^{1,2.}

1] Khan, S. B., and Sanmartín, J.,R., "Survival Probability of Round and Tape Tethers Against Debri Impact," *J. of Spacecraft and Rockets,* Vol 50, No 3, 2013.

2] Francesconi A., et al, "Survivability to Hypervelocity Impacts of Electrodynamic Tape Tethers for Deorbiting Spacecraft in LEO". ESA/ESOC, Germany, 2013.

2. Tether Comparisons

A fair comparison requires equal mass and length

- 3) Single tape versus multi-line1 tethers
- Equal cross section area requires $f \times N \pi R^2 = wh, f > 1$ (cross connections)
- A higher perimeter for a multi-line tether, $N \pi R > w$, requires

$$N > \frac{fw}{\pi h} \sim 500$$
, for typical tapes values w = 3cm and h = 30 µm

• As *N* is increased, both the probability of collection interference among the tether lines and the size range of single debris producing cuts increases. .

1] Forward, R.L., Hoyt, R.P., "Failsafe Multiline Hoytether Lifetimes", AIAA paper 95-289031st. AIAA/SAE/ASME/ASEE Joint Propulsion Conference, San Diego, CA, July 1995.

Device	High/Low Thrust		Mass ratio
Rockets	Δv $= \frac{1}{2} \sqrt{\frac{\mu_E}{R_E + H_0}} \frac{H_0 - H_F}{R_E + H_0}$	Tsiolkovsky Equation $\Delta v = c_{ex} ln \left[1 + \frac{m_p}{m_s + k_r m_p} \right]$	$\frac{m_r}{m_s} = (1+k_r) \left(\frac{1}{e^{\Delta v/c_{ex}} - 1} - k_r\right)^{-1}$

Device	High/Low Thrust		Mass ratio		
Rockets	$\Delta \nu = \frac{1}{2} \sqrt{\frac{\mu_E}{R_E + H_0}} \frac{H_0 - H_F}{R_E + H_0}$	Tsiolkovsky Equation $\Delta v = c_{ex} ln \left[1 + \frac{m_p}{m_s + k_r m_p} \right]$	$\frac{m_r}{m_s} = (1+k_r) \left(\frac{1}{e^{\Delta v/c_{ex}} - 1} - k_r\right)^{-1}$		
Plasma Thruster	$\frac{dH}{dt} = \frac{2(R_E + H)^2}{\mu} \frac{F_p \cdot v}{m_s}$	$F_p \cdot v = -\dot{m}c_{ex}v$	$\frac{m_e}{m_s} = \sqrt{\frac{2\alpha(1+k_e)}{\eta t_D}}$ $\sqrt{\frac{\mu_E}{R_E + H_0}} \left(\sqrt{\frac{R_E + H_0}{R_E + H_F}} - 1 \right)$		

AERO: Aerospace Engineering Faculty and Research Group

Device	High/Low Thrust		Mass ratio
Rockets	$\Delta \nu = \frac{1}{2} \sqrt{\frac{\mu_E}{R_E + H_0}} \frac{H_0 - H_F}{R_E + H_0}$	Tsiolkovsky Equation $\Delta v = c_{ex} ln \left[1 + \frac{m_p}{m_s + k_r m_p} \right]$	$\frac{m_r}{m_s} = (1 + k_r) \left(\frac{1}{e^{\Delta v/c_{ex}} - 1} - k_r\right)^{-1}$
Plasma Thruster	$\frac{dH}{dt} = \frac{2(R_E + H)^2}{\mu} \frac{F_p \cdot v}{m_s}$	$F_p \cdot v = -\dot{m}c_{ex}v$	$\frac{m_e}{m_s} = \sqrt{\frac{2\alpha(1+k_e)}{\eta t_D}}$ $\sqrt{\frac{\mu_E}{R_E + H_0}} \left(\sqrt{\frac{R_E + H_0}{R_E + H_F}} - 1 \right)$
DAD		$\boldsymbol{F}_{p} \cdot \boldsymbol{v} = -C_{D}\rho_{0}A_{DAD}v^{3}/2$	$\frac{m_{DAD}}{m_s} = \frac{b}{C_D t_D \sqrt{\mu_E}} \int_{H_F}^{H_0} \frac{dH}{\rho_0 \sqrt{R_E + H}}$

Device	High/Low Thrust		Mass ratio
Rockets	$\Delta v = \frac{1}{2} \sqrt{\frac{\mu_E}{R_E + H_0}} \frac{H_0 - H_F}{R_E + H_0}$	Tsiolkovsky Equation $\Delta v = c_{ex} ln \left[1 + \frac{m_p}{m_s + k_r m_p} \right]$	$\frac{m_r}{m_s} = (1 + k_r) \left(\frac{1}{e^{\Delta v/c_{ex}} - 1} - k_r \right)^{-1}$
Plasma Thruster	$\frac{dH}{dt} = \frac{2(R_E + H)^2}{\mu} \frac{F_p \cdot v}{m_s}$	$F_p \cdot v = -\dot{m}c_{ex}v$	$\frac{m_e}{m_s} = \sqrt{\frac{2\alpha(1+k_e)}{\eta t_D}}$ $\sqrt{\frac{\mu_E}{R_E + H_0}} \left(\sqrt{\frac{R_E + H_0}{R_E + H_F}} - 1 \right)$
DAD		$\boldsymbol{F}_p \cdot \boldsymbol{v} = -C_D \rho_0 A_{DAD} v^3 / 2$	$\frac{m_{DAD}}{m_s} = \frac{b}{C_D t_D \sqrt{\mu_E}} \int_{H_F}^{H_0} \frac{dH}{\rho_0 \sqrt{R_E + H}}$
BET		$\boldsymbol{F}_{p} \cdot \boldsymbol{\nu} = \boldsymbol{\nu} \cdot \int_{0}^{L} I(s) \boldsymbol{u}_{t} \times \boldsymbol{B} ds$ $= -m_{c} \frac{\sigma}{\rho_{t}} E_{m}^{2} i_{av}$	$\frac{m_{BET}}{m_s} = \frac{\mu_E \rho_t k_{BET}}{2\sigma_t t_D} \int_{H_F}^{H_0} \frac{dH}{(R_E + H)^2 i_{av} E_m^2}$

Chemical Propulsion:

 $k_r = 0.25$ $c_{ex} = 2.6$ km/s

Electrical Propulsion:

 $k_r = 0.12$ $\alpha = 20 kg/kW$ $\eta = 0.65$

Drag Augmentation:

 $b = 75 \text{ gr/m}^2$ $C_D = 2$

Electrodynamic tether:

Aluminium tether $k_{BET} = 3$ $i_{av} = 0.25$ $E_m = 160 \text{ V/km}$

4. Tether mission design and performance: The π -algorithm¹

- A fair comparison also needs a rational selection of tether geometry.
- Given a deorbit mission (spaecraft mass and initial orbit), the π -algorithm helps to determine the optimal tether geometry (length L, width w and thickness h).
- The π-algorithm combines two equations (orbital mechanics + tether cut probability model) to construct two figures of merit:

$$\Pi_{1} \equiv \frac{m_{c}}{m_{s}} \times N_{f} = function(w, h, L/h^{2/3}, H_{0}, i)$$
$$\Pi_{2} \equiv \frac{m_{c}}{m_{s}} \times t_{D} = function(L/h^{2/3}, H_{0}, i)$$

- Function Π_1 versus L/h^{2/3} has a minimum and Π_1 does not involve tether width.
- The friendly software BETsMA^{2,3} implements the algorithm

1] Sanmartín et al, "Optimum Sizing of Bare-Tethers for De-orbiting Satellite at End of Mission," *Adv. in Space Res.,* Vol 56, No 7, October, 2015, 1485-1492.

2] Sánchez-Arriaga, et al, "The Impact of Nonideal Effects on Bare Electrodynamic Tether Performance," *J. of Prop. and Power, 31,3* 2015, 951-955.

3] See also a poster about BETsMA in this conference.

4. Tether mission design and performance

Table 1 H_0 =850 km, H_F =300 km, epoch 2010, IGRF11, IRI2012, MASTER

i(°)	m _s (kg)	L(km)	w(cm)	h(µm)	m _c /m _s (%)	N _f (<1m)	N _f (>1m)	t _D (days)
25	50	1	1.25	10	0.7	0.006	0.0007	56
	500	2	1.75	15	0.28	0.008	0.0023	87
	5000	3.75	3.25	40	0.26	0.0038	0.0047	96
63	50	1.25	2.0	10	1.35	0.008	0.0017	101
	500	3	2.75	20	0.9	0.0075	0.0041	103
	5000	5.5	5	60	0.9	0.005	0.0084	116
98	50	1.5	3	12	2.9	0.0094	0.0032	164
	500	3.25	5	20	1.7	0.0085	0.0079	185
	5000	7.0	6.75	80	2.0	0.001	0.0167	181

4. Tether mission design and performance

For tape tether with well-chosen geometry, one finds:

- Deorbit times is wihin few months.
- The BET system is scalable
- Tether system mass is within few percent the spacecraft mass, reaching the multi-ton range.
- Switching on/off the HC the BET can manoeuver (to avoid large trackable objects).
- The BET system is passive (no propellant, no power supply).
- Precise attitude control is not needed. Howver, measures have to be taken to kill the dynamic instability of BET → see Padova University works in *BETs* final report.
- The AxT_D is reduced between 1 and 2 orders of magnitude.
- In case of collision, it is highly improbable that the tether would disrupt the S/C operation.
- Muti-mission (deorbit and reboost) is possible but BETs do not allow controlled re-entry.
- The bare tether concept still has room for improvement \rightarrow thermionic bare tether^{1.}

1] Williams, J. D., et al, "Low work-function coating for an entirely propellantless bare electrodynamic tether", IEEE Trans. On Plasma Science, 40, 5, 1441-1445, 2012

4. Tether mission design and performance

Device Requirement	Chemical rockets	Ion- thruster	Drag Augmentation	Electrodynamic Tethers
1. Deorbit Time	days	a year	decades	months
2 Scalable				From tens of kg to tons
3 Mass ratio	High	Moderately High	Low	Low (below 10%)
4 Manoeuver				HC on/off
5 Simple/Reliable				In-orbit demonstration is required
6 Active Attitude Control				Not needed
7- Multi-mission				Active/Passive mode
8 Reduce AxT _D				Reduced 1-2 orders of magnitude
9 Controlled Re-entry				

See also talks in this conference

1] J. Carroll "Collision Risks to and from Space Tethers"

2] R. Hoyt "Analysis of Electrodynamic Tethers for Orbit Maneuvering, Deorbit, and Power Generation".

Conclusions and Roadmap

- 1. Bare Electrodynamic Tethers (BET) are the most promising technology for deorbiting spacecraft at the end of mission.
- 2. Electrodynamic tape tethers are the best choice for deorbiting from LEO.
- 3. A BET: (i) can deorbit tons in few months, (ii) reduce the $AxT_{D_{i}}$ (*iii*) is light and scalable and (iv) can manoeuver and allows multi-mission.
- 4. Possible roadmap:

