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Abstract 

Some topological formulations in terms of semi-recursive fashion have been proposed recently to 

improve computational efficiency in complex multibody systems (MBS). An improved semi-recursive 
method has been developed by García de Jalón [1-2], Kim has introduced a subsystem synthesis 

method [3-4], and Bae has implemented an implicit generalized semi-recursive method [5-8]. These 

semi-recursive methods, in which the system topology is used to obtain velocities recursively in an 
open-loop MBS, are efficient for solving the equations of motion of large-scale multibody models. 

In this paper, a numerical comparative study among the aforesaid methods is carried out based on 

theory, accuracy and efficiency. García de Jalón’s improved semi-recursive method makes use of a 
double velocity transformation and Maggi’s formulation to derive the equations of motion of the 

overall system in terms of independent relative coordinates. The first velocity transformation is 

introduced to transform Cartesian coordinates into relative coordinates. The equations of motion of the 
open-loop system can be expressed as follows after the first velocity transformation: 

  T T

d d d

   R M R z R Q P  (1) 

where, dR  denotes a diagonal matrix whose elements are velocity vector [1]. 
M , 

Q , and 
P  

represent the accumulated inertia matrices, the accumulated external forces and the velocity dependent 

accumulated inertia forces respectively, and z is the vector of relative accelerations. The second 

velocity transformation is applied to replace relative coordinates by independent coordinates, where 
Maggi’s formulation is implemented [2]. The equations of motion in this semi-recursive method have 

the following form: 
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where, zR , and zR  are the second velocity transformation matrix computed numerically and its 

differentiation with respect to time respectively. i
z , and i

z  are the vectors of independent relative 

velocities and accelerations. Furthermore, the rod eliminating method is implemented in this semi-
recursive formulation to improve the computational efficiency. 

On the other hand, Kim’s subsystem synthesis method takes advantage of the special topology 
structure to decompose large size matrices by means of subsystem partitioning. It also can be 

illustrated in two parts. The first part consists of formulating the equations of motion of the overall 

system in terms of Cartesian coordinates of the base body (the chassis) and relative coordinates in the 

joints in a similar way to equation (1). Then a sub-matrix reduction method is used to construct the 
equations of motion of the chassis frame and the suspension subsystems separately. The acceleration 

of chassis frame can be computed as [3]: 
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where, 0M̂ , and 0Q̂  are the generalized mass matrix and the force vector of the chassis frame 

respectively, iM , and iP  denote the effective inertia matrix and the force vector of i-th suspension 

subsystem respectively. 0Ŷ  represents the vector of acceleration of the chassis frame. The subsystem 
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accelerations including the Lagrange multipliers can be obtained based on a known vector 
0Ŷ  

according to the equations of motion of the subsystem described as follows: 
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where, 
i iM , 

0iM , and 
iP  are respectively the generalized mass matrix, the inertia coupling mass 

matrix and the generalized force vector of the i-th suspension subsystem. q , and λ  are the vectors of 

relative accelerations and Lagrange multipliers of this subsystem respectively. 

Meanwhile, Bae’s generalized semi-recursive implicit method involves solving a system of nonlinear 

equations  H p , where p  is a vector that includes the relative positions, velocities, accelerations. 

 H p  is composed by the dynamic equations; the position, velocity and acceleration constraint 

equations and the equations of the Backward Differentiation Formula (BDF) integration method. In 

order to solve system  H p , the Newton-Raphson approach is employed, thus, the iterative system of 

linear equations is formulated as follows: 

    1i i i ipH p p H p     (5) 

The key point of Bae’s method is that the terms of this system in equations (5) can be computed 

recursively in an efficient way. It means that, all terms of the form    ,   n f
X Bx X R x R   , where 

n and f  denote the number of Cartesian coordinates and degrees of freedom of the mechanism, are 
evaluated recursively from the root to the leaves. One example of these terms are the Cartesian 

velocities. On the other hand, all terms of the form     ,   T n f
g B G G R g R    , such as the forces, 

are computed recursively from the leaves to the root. 

Therefore, in order to compare the numerical efficiency and solution accuracy of these semi-recursive 

methods, a common implementation framework on the basis of MATLAB has been set. MATLAB is 
very easy to use for numerical computations, the correctness and accuracy of the results of a full 

vehicle dynamic simulation using these different formulations may be checked. For the critical parts of 

the dynamic simulation, a C/C++ MEX file implementation is generated to improve the efficiency of 
the code significantly. Libraries of sparse, BLAS routines are introduced to accelerate computation 

with matrices. On the other hand, a similar programming style for the three formulations is used so as 

to carry out a fair comparison. 
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