
Introduction

An increasing pressure in sustainability and pro-
duction quality requirements is demanding evident ma-
nagerial changes in agriculture. Farming tasks need
the introduction of more advanced monitoring and in-
formation systems to secure compliance with stipula-
tions and standards. The development of affordable po-
sitioning systems using satellites, along with the ge-
neral packet radio service, universal mobile communi-
cations and communication systems have led to a fast
development of telemetry and vehicle location systems
in agricultural contexts. Agricultural industry is now
capable of collecting more comprehensive data that
allows the application of methods in order to improve
the management of agricultural tasks involving the
coordination of machines and vehicles. Such techno-
logies can provide accurate information to make relia-
ble plans to be used as a part of the decision support
system in a farm management information system
(FMIS) comprising information management methods

tied to the automation of human decision making as
shown in Hameed et al. (2012).

Precision agriculture (PA) is conceptualized by a
system approach to re-organize the total system of agri-
culture towards a low-input, high-efficiency, sustaina-
ble agriculture (Cook & Bramley, 1998). PA benefits
from a suite of technologies, such as global positioning
system (GPS), geographic information system, auto-
matic control, in-field and remote sensing, miniatu-
rized computer components, mobile computing, advan-
ced information processing, and telecommunications
(Zhang et al., 2002). Recently, web-based architecture
approaches have been developed (Nikkilä et al., 2010)
to the implementation of FMIS fulfilling PA require-
ments such as storing sensor data, creating the opera-
tion plans and providing support in everyday farm
activities (Sorensen et al., 2011). Some major f ield
operations are performed throughout the planned
coordination of different farm equipment comprising
self propelled and/or towed machinery. In most cases,
a main unit is responsible for performing the task itself,
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while one or more support units accomplish service
tasks (Bochtis & Sorensen, 2009; Bochtis & Sorensen,
2010). The bale collecting problem (BCP) appears after
mowing and harvest operations in grain and consists
of defining the sequence in which bales spread over
the field have to be collected. Once mower conditio-
ners and grain harvesters have operated throughout the
field, the straw is left behind in rows in order to be
compressed and compacted into either cylindrical or
prismatic packages by cylindrical or prismatic balers.
These are easy to handle and transport. Bales remain
scattered on the surface of the f ield awaiting their
collection by loaders and further transportation in
wagons (either self-propelled or pull-type) to store
them in silos, silage bunkers and barns. The BCP is
about operations involving the collaborative work of
several machines and vehicles. Therefore, planned ma-
nagement becomes necessary to coordinate the various
tasks efficiently. Usually the sequencing of collection
is decided by the operator himself based on his skills
and experience, this leads to decisions based on simple
on the go assignment rules which in the case of com-
plex problems are way far from optimal solutions and
involve a corresponding loss of efficiency. On the other
hand, an accurate bale collecting plan and its proper
execution are achievable. Balers, loaders and bale
wagons can be provided with positioning system based
devices enabling geo-referenced information (Amiama
et al., 2008) which makes possible to know the exact
allocation of bales as well as tracking a vehicle from
a predetermined path. The BCP can be modelled and
solved efficiently by applying optimization techniques,
and thereafter be integrated as a part of a decision
support system within a FMIS.

To solve the BCP, there will have to be determined
the routes, which will be subsequently followed by
loaders and machinery. This leads to the application
of criteria taking into account issues such as minimi-
zing non-productive time, fuel consumption, or
distance travelled, which may result in signif icant
economic benef its as well as in environmental
benef its. Hence, it becomes necessary to describe
such operations by mathematical models that can be
used for optimal allocation, route planning and
timing. Parameters regarding vehicles and machines
(travelling speed, capacity, unloading and loading
time, operating performance, etc.), plots (geometry,
presence of obstacles, biomass production volumes,
etc.), silos (position, capacity, etc.) make such mo-
delling diff icult.

The BCP belongs to a class of Operations Research
problems known as vehicle routing problems (VRP)
which were first introduced in Dantzig et al. (1954) and
have been widely studied since. Eksioglu et al. (2009)
have developed a taxonomic review for the classifica-
tion of the abundant literature published on this pro-
blem. Despite the fact that field tasks involve the colla-
borative use of vehicles, only recently there have been
transferred these concepts to the agricultural environ-
ment (Bochtis et al., 2013).

VRP can be modelled in terms of mathematical pro-
gramming. According to the theory of computational
complexity, most of them are nondeterministic poly-
nomial time complete (NP-Complete) (Garey & Johnson,
1979). Procedures which have been proposed usually
focus on the use of algorithmic methods based on the
application of meta-heuristics. The use of meta-heuris-
tics methods representing successful animal team be-
haviour has been extended, i.e., particle swarm opti-
mization inspired in birds flocks or fish schools (Kennedy
et al., 2001), artif icial immune systems (Dasgupta,
1999; De Castro & Timmis, 2002), optimized perfor-
mance of bees (Baykasoglu et al., 2007), ant colony
optimization (Dorigo & Stützle, 2004) and genetic
algorithms (GAs) (Holland, 1975; Goldberg, 1989).

This paper presents a hybrid genetic algorithm
(HGA) to eff iciently solve the BCP appearing after
mowing and harvesting operations. Such techniques
have been already used successfully in industrial vehi-
cle routing problems (Baker & Ayechew, 2003). The
algorithmic route generation will provide the basis for
a navigation tool dedicated to loaders and bale wagons,
so that it will increase the overall field efficiency of
collection operations. The low computational require-
ments of the proposed method make feasible its imple-
mentation for large scale operations.

Material and methods

Mathematical model

As in the VRP, the BCP can be represented as a graph
theoretic problem. Let G = (N,A) be an undirected
graph. The node set N corresponds to the position of
the set of bales B from 1 to n in addition to the silo or
barn position numbered as 0 (N = {0,1,…,n}). A uni-
tary demand qi = 1 of bales has been assigned to each
position node i (1 ≤ i ≤ n). Moreover, A = {(i,j) / i,j∈N;
i < j} represents the set of the n(n + 1)/2 existing edges
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connecting the n + 1 nodes. Each of these edges has an
associated aprioristic cost, cij > 0, which represents the
cost of sending a vehicle from node i to node j. These
cij are assumed to be symmetric (cij = cji, 0 ≤ i,j ≤ n), and
proportional to the Euclidean distance, dij, between the
two nodes. The collection process is to be carried out
by a fleet of V vehicles (V ≥ 1) with equal capacity,
K ≥ max{qi / 1 ≤ i ≤ n}. Notice that each vehicle could
be a couple loader-transporting wagon or an auto-
loader. The problem is to determine the exact tour for
each vehicle so that the total travelled cost is mini-
mised. Each vehicle is linked only to one tour because
of modelling purposes. Some additional constraints
associated with the problem are the following: (i) each
non-silo node is supplied by a single vehicle, (ii) all
vehicles begin and end their tours at the silo (node 0),
(iii) a vehicle cannot stop twice at the same non-depot
node, (iv) no vehicle can be loaded exceeding its
maximum capacity.

The only decision variable is Xv
ij:

1 if vehicle v drives from mode i to mode j
Xv

ij = { [1]
0 otherwise

The objective function of the mathematical model is:

min Σ   Σ cijXv
ij [2]

v∈V (i,j)∈A

subject to

Σ   Σ Xv
ij = 1 ∀i∈B [3]

v∈V j∈N

ΣqiΣXv
ij ≤ K ∀v∈B [4]

i∈B j∈N

Σ Xv
0 j = 1 ∀v∈V [5]

J∈N

Σ Xv
ik –Σ Xv

jk = 0 ∀k∈B and ∀v∈V [6]
i∈N j∈N

Xv
ik∈{0,1}, ∀(i,j)∈A and ∀v∈V [7]

Eq. [3] is to make sure that each bale is assigned
exactly to one vehicle. One arc form bale position i is
chosen, whether or not the arc goes to another bale po-
sition or to the silo. Eq. [4] states capacity constraints,
so that the sum of all bales collected by a vehicle has
to be less than or equal to the loading capacity of the
vehicle (transporting wagon). Finally flow constraints
are shown in Eqs. [5] and [6] where it is guaranteed
that each vehicle will leave the silo once and that the
number of vehicles entering every bale k and the silo
must be equal to the number of vehicles leaving. There
will be a lower bound on the number of vehicles ne-
cessary to collect all the bales on the field,

Σdi

i∈BVmin = ⎡——— ⎤.
K

Solution approach

Most VRP are NP-hard, and so is the BCP, this ex-
plains why most research efforts have focused on heu-
ristics. Various approaches to solve the classical VRP
have been investigated over the past decades. These
range from the use of pure optimization methods for
solving small size problems to the use of heuristics and
meta-heuristics that provide near-optimal solutions for
medium and large-size problems with complex cons-
traints (Cordeau et al., 2002; Toth & Vigo, 2002). Most
of these methods focus on minimizing an aprioristic
cost function subject to a set of well-defined constraints.
However, and because real-life problems are complex
enough so that not all possible constraints, costs and
desirable solution properties can be considered in
advance, there is a need for methods capable to provide
a large set of alternative near-optimal solutions, so that
decision-makers can choose among them according to
their specific necessities and preferences.

In most meta-heuristics, each stage (iteration) of the
search algorithm starts with a solution (or set of so-
lutions). In the next stage a new candidate (or set of
candidates) is evaluated within the local space of the
previous solution. The evaluation will estimate the
performance of the new candidate and compare with
the performance reached in the previous stages. Based
on this evaluation, the candidate or candidates can be
accepted, becoming part of the solution for that stage,
or rejected, in which case the solution is maintained.
The process is repeated until certain stopping criteria
are met.

In a GA, a population of chromosomes which enco-
de candidate solutions (individuals) of the problem
evolves toward better solutions. Goldberg (1989)
summarizes the attributes of GAs. Sometimes, because
of constraints in real problems, it is very difficult for
a pure GA to effectively explore the solution space. In
those cases it is advisable to combine it with some sort
of heuristic that will guide the local search optimi-
zation. Hybrid approaches frequently have better re-
sults than either method independently, and thus
numerous successful practices incline to use a hybrid
approach (Chen et al., 2008; Gracia et al., 2013). The
main obstacle when developing a GA is to create an
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effective encoding so that genetic operators can be
applied while the obtained solutions are feasible and
do not violate the problem constraints.

In such case, the proposed hybrid GA to solve the
BCP will have the features described in the following
paragraphs.

Parameter settings

The following input parameters need to be defined
to run the GA: population size (Pop); maximum num-
ber of iterations (iter) and stopping criteria; size of
cloning proportion (Elite) maintained through itera-
tions; and proportion of individuals generated by muta-
tion (Mut) and crossover (Xover) according to the follo-
wing expression:

1 = Ellite + Mut + Xover [8]

Genetic encoding

A solution for BCP will consist of a number of V
ordered sequences (one for each tour to plan) each of
which containing some different nodes form set N.
Several encodings have been used for VRP in literature.
Sometimes solutions are represented as binary strings,
but that kind of representation does not suit well to
BCP.

It is not difficult to specify the number of vehicles
and which bales are inside each vehicle but it becomes
too intricate when the order of the bales needs to be
given. Using the order of bales instead of binary values
solves the problem. Therefore an efficient encoding to
represent the solutions, which is easily applicable to
the BCP, is to define a solution as a pair of vectors. The
first vector (sequence vector) contains a permutation
of n elements that represents the ordered sequence that
will reflect all the different bales (B) to be collected.
The second vector (breakpoints vector) contains the
position of V-1 elements from the above sequence
vector delimiting the different tours.

As an example, to illustrate the genetic encoding,
suppose a BCP where the tours begin and end at a silo
location identif ied as node 0, nine bales have to be
collected (n = 9) and they are scattered on a plot in
different locations identif ied by different integer
numbers (1 through 9). Suppose the maximum load
capacity of each transporting wagon three bales (K =
3), which means that the minimum number of trips to

do is three (Vmin = 3). One arbitrary solution will be
defined by its sequence (S) and breakpoints (R): S =
[4 6 5 9 2 3 7 8 1], R = [3 7], this will to the following
paths: path1 = [0 4 6 5 0]; path2 = [0 9 2 3 0] path3 = [0
7 8 1 0]. Notice that because all demands are equal to
1, for BCP breakpoint vector will be the same for all
solutions.

Initial population generation method

The way individuals belonging to initial population
are generated is of great importance to the performance
of the algorithm, since it contains most of the elements
the final best solution is made of. Sometimes indivi-
duals are randomly generated, but initial population
may be also obtained from other constructive methods.
It is called seeding when solutions from other algorith-
mic techniques join the randomly chose solutions in
the population. A requirement for the good perfor-
mance of the proposed approach is the generation of a
wide variety of initial solutions. Similar to that pro-
posed for VRP in Wang & Lu (2010), to create a well-
structured and diverse initial population to solve the
BCP, the production of initial individuals proposed
results from a random creation method in combination
with the nearest neighbour constructive heuristic
(Jünger et al., 1995) and the incorporation of the nearest
addition method (Bentley, 1992) into the sweep algo-
rithm (Gillet & Miller, 1974). Therefore the initial po-
pulation is expected to globally explore the space of
solutions so that capability of the GA is improved.

The random generation of solutions consists of ran-
dom permutation sequence of n nodes (all except the
silo node). Further breakpoint vectors are obtained by
partitioning chromosomes into segments under the ve-
hicle’s capacity constraint.

The nearest neighbour constructive heuristic was
first used to determine a solution to the travelling sales-
man problem (TSP). Sequence solution is constructed
by adding the nearest node from current position of the
vehicle. This algorithm suits quite well the common
assignment rule followed by an experienced operator
when collecting the bales spread over a f ield. The
solution obtained by this heuristic will be used further
as a lower bound to estimate the efficiency of the HGA
approach. The steps of the algorithm can be summa-
rized as follows:

— Step 1. Set count = 0.
— Step 2. Stand on the silo vertex as current vertex.
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Set available capacity c = K (maximum capacity of the
vehicle).

— Step 3. Find out the shortest edge connecting
current vertex and an unvisited node i.

— Step 4. Set current vertex to i. Mark i as visited.
Set c = c – 1 and count = count + 1.

— Step 5. If all the vertices in domain are visited,
then terminate.

— Step 6. If c = 0 then set breakpoint = count and
go to step 2. If c > 0 go to step 2.

The ordered sequence of the nodes (excluding the
silo node) together with the sequence of breakpoints
are the two output vectors encoding solution provided
by the algorithm.

The sweep method, or Gillet and Miller algorithm,
belongs to a class of heuristic algorithms called Cluster
first, Route second. In this type of algorithm nodes are
grouped in clusters. Later it is optimized the way nodes
belonging to each cluster are sequenced. The algorithm
starts from the polar coordinates (ri, θi) of all nodes
relative to the silo node which is adopted as the origin
of these (ri = 0). The construction of one tour begins
with the union of the origin node to an arbitrary node
and the remaining nodes of the chromosome are
determined in terms of angle increases of sweep. The
tour covers as many points as the vehicle’s capacity
constraint allows. The process is completed when all
the points of the system have been swept. Each group
of nodes forming a whole tour will later use another
algorithm to generate the sequence the vehicle has to
follow.

As described in Wang & Lu (2010), the following
steps depict the nearest addition method into the sweep
algorithm:

— Step 1. Calculate the coordinates of all nodes
relative to the silo (X,Y)

Xi = xi – x0
— { Yi = yi – y0

[9]

where (Xi,Yi) are the coordinates of the ith node re-
lative to the silo node (x0,y0), and (xi,yi) are original
coordinates of the ith node.

— Step 2. Calculate polar coordinates (ri,θi) of no-
des from relatives coordinates obtained in Step 1.

— Step 3. Sort the nodes in ascending order of their
polar angles.

— Step 4. Generate the structured population. The
nodes permutations are determined on the sorted θi.
Given n nodes, a total of n individuals, each starting
at a different node, are generated. Every of the n se-

quences are partitioned into different segments accor-
ding to vehicle’s capacity constraint.

— Step 5. Strengthen the chromosome structures.
The tours are improved using the nearest addition me-
thod described in Bentley (1992). Within each tour, the
sequence of nodes is constructed by the nearest neigh-
bour heuristic starting at the silo node.

Fitness value

In order to perform a natural selection, each indi-
vidual is evaluated in terms of its fitness value which
is obtained by a f itness function. The f itness value
weighs the quality of a solution and enables to compare
it to other ones. The total distance travelled will be the
fitness value used. The shorter the distance, the more
efficient the solution is.

Crossover procedure

The main genetic operator is crossover, which si-
mulates a reproduction between two parent solutions.
It recombines them in a certain way generating one or
more children solution. The children share some of the
characteristics of the parents which are passed through
future generations. However it is not able to produce
new characteristics.

A common recombination operator is the Simple
Crossover which chooses a random cut to divide each
parent in two strings. Children are generated by ex-
changing parents’ strings. In BCP the only difference
between an individual and another is the order in which
permutes the elements of the chromosome. It makes
no sense to talk of pure recombination since the asso-
ciation of different parents would generate infeasible
solutions (double some positions and lack in others).
In this case, it suites better an operator such as the li-
near order crossover operator (Davis, 1985). In linear
order crossover two breaking points are selected ran-
domly, the elements between these points are copied
to the same positions of the offspring. The copied ele-
ments are deleted from the other parent, and the
remaining symbols are inherited, beginning with the
first position following the second crossover point.

Selection of individuals for crossover is made
through a fitness proportionate selection, which is a
frequently used method in which each individual is
assigned an occurrence probability proportional to its
fitness value.
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Cloning and mutation procedures

Mutation is applied to a single solution with a cer-
tain probability. It makes small random changes in the
solution adding some new characteristics gradually. In
order to have greater dispersion in the new individuals
generated, three different mutation operations are pro-
posed here: swap procedure, sliding procedure and 
2-Opt movement procedure, shown in Fig. 1. Such mu-
tation procedures have been widely applied when
solving the TSP (Brady, 1985; Martin et al., 1991). To
apply all three mutation operations, there will first have
to be selected two random positions from the sequence
vector of the individual. The swap procedure consists
of exchanging the elements of those two positions. The
sliding procedure glides all elements contained bet-
ween selected positions one position towards the left.
The 2-Opt movement belongs to local search algo-
rithms. According to Gendreau et al. (1998) combining
local search algorithms with GA is necessary to solve
VRP efficiently. Most local search heuristics can be
described as Lin’s λ-Opt algorithm (Laporte et al.,
2000). The algorithm removes λ edges from the tour
and the remaining segments are connected in every
other possible way. The 2-Opt algorithm removes two
edges from a tour and reconnects the resulting subtours
in the other possible way as shown in Fig. 1.

Elitism maintains certain individuals from one ge-
neration to the next one by cloning them. Cloning and
mutation processes are made through the following
steps: (1) random positions are assigned to all initial

elements of the population; (2) all individuals in popu-
lation are grouped in equal sets; (3) in each set it is
chosen the individual with the highest f itness value
and it is cloned to take part in the next generation popu-
lation (elitism); (4) the three mutation procedures are
applied to the individual chosen in phase 3; (5) new
three individuals take part in the next iteration popu-
lation. Notice that according to this procedure, muta-
tion rate (Mut) will be three times the elite rate (Elite)
so for the HGA proposed here Eq. [8] can be rewritten as:

1 = 4 * Ellite + Xover [10]

Fig. 1 shows an example of mutation procedures
proposed offer from a sequence [1 2 3 4 5 6 7], two po-
sitions randomly selected {2} and {6}.

Experimental study

The proposed algorithm has been implemented in
commercial software MATLAB® release R2007b. The
set of input parameters for the GA were {Pop = 80,
Iter = 6,000, Elite = 0.125, Xover = 0.5, Mut = 0.375}
these setting rates are similar to those determined in
Wang & Lu (2010), where it is employed the response
surface methodology to conduct systematic experi-
ments with various crossover and mutation probabi-
lities, so that the optimal combination of these parame-
ters when solving the CVRP are determined.

In order to test the proposed HGA approach, a com-
putational experiment based on realistic scenarios has
been conducted. Each scenario is generated by a novel
BCP generator from a certain test instance. Results
obtained are later compared to other heuristic approaches.
In Grisso et al. (2007) it is addressed a straightforward
instance problem; the performance of the HGA for that
instance is also discussed.

Instances generation

Because there are not benchmark problems for the
BCP, and in order to test the proposed algorithm under
several realistic situations, it is required to develop a
problem generator able to generate problem instances
from a certain set of parameters. A problem will be
defined by the capacity constraint of the vehicle (K)
and by the n + 1 exact locations in a f ield: n corres-
ponding to the collecting bales, and one corresponding
to the starting/ending point of the tour: a silo, the
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Figure 1. Description of three different basic mutation opera-
tions.

1 2 3 4 5 6 7

1 6 3 4 5 2 7

1 6 5 1 3 2 1

1 3 4 5 6 2

Original sequence

Position exchange

2-Opt movement

Sliding movement
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vehicle’s entry point to the field, etc. Therefore the pro-
blem generator will have to be able to generate the po-
sition at which bales are located.

If we consider a uniformed yield (kg ha–1) through-
out the field, the distribution of bales follows a constant
distance pattern easily obtained from the following
equation.

mbale * 10,000
dbales = ————————— [11]

Qstraw * wheadcut

where dbales (m) is the travelled distance by a baler since
it packs a bale until it packs the next one, mbale (kg) is
the mass of one bale, Qstraw is the production level of
straw (kg ha–1) and the wheadcut is the working width of
balers. From the calculated distance parameter, and
taking the starting working point of the baler, it is
immediate to determine the coordinates of each bale
generated along a field defined by its dimensions and
shape.

In order to develop realistic positions from given
dimensions of a f ield, it has been collected historic
data regarding wheat (Triticum aestivum L.) crops from
a set of fields in central Spain as the ones depicted in
Fig. 2. Yield from previous seasons together with the
main characteristics of machinery and of bales are
listed in Table 1. Different capacity constraints possi-
bilities appear depending on the wagon used. There is
a wide range of either self-propelled or pull-type bale
wagons with different loading capacities depending on
the dimension of bales. In Table 1 three different
capacities are considered.

However, real production is not uniform throughout
a field due to the spatial and temporal variability in

the soil-plant-atmosphere system. One of the aims of
PA is the generation of maps of yield variation to
implement site specif ic crop management. Fig. 2
represents two fields with strongly different shapes,
in both cases it can be clearly appreciated several
greenery levels at that vegetative stage. These levels
of greenery will correspond at the time of harvest to
different yield levels. Therefore, in order to implement
a more realistic generator of bales’ locations, it has to
be considered that yield variability. For that purpose,
the problem generator divides the field into different
units and each unit is assigned a yield level according
to the histogram of frequencies of pixels’ green
saturation (10 levels of saturation) obtained from
masked images from Fig. 3. Yield levels have been
assigned ranging from 75% up to 125% the average
yield recorded in Table 1.

As an example, let us have a field with a rectangular
area of 6.24 ha and dimensions of 120 m × 520 m.
Fig. 4(a) shows the uniform distribution of bales on
the field, while Fig. 4(b) shows the location of bales
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Figure 2. Examples of yield variation in field for different plot shapes in Toledo Province (Spain). Source: SIGPAC (www.ma-
grama.gob.es).

Table 1. Significant data on the cultivation of irrigated whe-
at in Leon province

Approximate average yield (kg ha–1) 7,000
Approximate yield of straw (kg ha–1) 3,500
Working width of the cutting head (m) 6
Mass of the bales (kg bale–1) 700
Number of bales ha–1 5
Number of different tours (15 bales tour–1) 67
Number of different tours (35 bales tour–1) 30
Number of different tours (108 bales tour–1) 10

Source: ESYRCE, 2012 (www.magrama.gob.es).
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Figure 3. Image processing to determine green levels for different shapes.
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when taking into account yield variability. When con-
sidering yield variability, any possible location pattern
followed throughout the plot disappears. Notice that
the entry point to the plot has been circled and it is lo-
cated at the coordinate’s origin. According to the 2010th

survey on areas and crop yields in Spain (ESYRCE),
published by the Ministry of Agriculture (www. 
magrama.gob.es), in Central Spain, areas with mecha-
nized sprinkler pivot systems already comprises 26%
of the total irrigated area; in wheat corps and for Cas-
tilla-León provinces this means 60,000 ha, which re-
presents 4% of total wheat production in the region.
Hence, the problem generator has to consider different
shaped plots. Fig. 4(c) and Fig. 4(d) show uniform and
variable distribution of bales for a centre pivot irrigated
plot of 12.56 ha (radius = 200 m) when packed in pa-
rallel tracks. Notice that in circle shapes uniform dis-
tribution of bales does not follow an easy to see pattern
and the effect of yield diversity is not as evident as it
was in rectangular plots, which is a consequence of a
variable row length at each track.

Taking all previous considerations, a problem gene-
rator for rectangular and circular areas has been imple-
mented in commercial software MATLAB® release
R2007b. Each instance has the following parameters:
{W,L}, width and length of the field; {x0,y0}, location
of silo node; M, mass of bales; K, homogeneous capa-
city of vehicles, {Qstraw}, production per ha of wheat
straw; {wstraw}, width of head cuts for forage maize and
wheat; U, number of different yield units within the
field.

Results and discussion

The BCP is solved using the HGA approach. Pro-
blem instances are generated taking into account the
casuistic relative to land division in central Spain as
identified in Botey (2009), where it is concluded that
75% of land division is composed of plots between 1
ha and 50 ha. Two different shapes have been consi-
dered: rectangular and circular plots. Instances for rec-
tangular plots combine several field dimensions (listed
in Table 2) and two different capacities of wagons: 15
and 35 bales/wagon. The silo is located at the origin
(0,0); 700 kg is the mass of bales; 3,500 kg ha–1 is the
yield for wheat straw; 6 m is the width of head cuts;
10 is the number of different yield levels considered
within the field; from each instance ten different test
problems are generated.

In order to validate the proposed approach, the per-
formance of the proposed HGA is compared to the usual
assignment rules that an experienced operator would
follow when collecting straw bales. Two different heu-
ristic rules can describe these working patterns: the
nearest neighbour heuristic, already described above;
and the collection of consecutive bales belonging to
adjacent rows, where vehicle movements zigzag among
two or three parallel rows. Fig. 5 illustrates both me-
thods for a uniform distribution of bales in the field
and a capacity constraint of 6. Left image shows selec-
tion between two adjacent rows. Each tour is identified
by a different colour; notice that all tours have their
starting and ending point at position origin (0,0).
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Figure 5. Heuristic rules usually performed by operators when collecting bales: (a) adjacent row; (b) nearest neighbour.
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Under different working conditions (dispersion of
bales, cutting head width, etc) one operator would
choose to use one assignment rule against the other
due to physical limitations of the collecting process
(loss of perspective and local myopia). However the
performance of the nearest neighbour heuristic will
always have the same or better performance (depending
on the number of bales and the number of row) than
the adjacent rows heuristic. Nearest neighbour heuris-
tic will be therefore the lower bound to which the HGA
approach will be compared.

Table 2 shows the average best results obtained for
each instance in terms of total distance travelled. Re-
sults are compared to the nearest neighbour heuristic
(NNH) procedure and the percentage of savings is cal-
culated. As seen, average percentage of savings varies

between 19% and 12% depending on the capacity of
the vehicle and on the size and shape of the field. This
raises awareness of the appropriateness of implemen-
ting this algorithmic approach.

There are almost no previous references to solving
the BCP bales in the literature, only Grisso et al. (2007)
raised a simple instance in which 34 bales scattered
over a field should be collected with a vehicle capacity
of 6 bales. The performance of the HGA for Grisso’s
instance after 3,294 iterations improved the solution
proposed in Grisso et al. (2007) in a around 6%. Fig. 6
shows the solution obtained by the genetic algorithm,
each tour is highlighted in colour and as shown all start
and end at the origin.

An algorithmic approach based on genetic algo-
rithms and local search heuristics to generate the collec-
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Table 2. Obtained results for rectangular (a) and circular (b) instances

Width Lenght Area
Capacity 35 (bales/wagon) Capacity = 15 (bales/wagon)

(m) (m) (ha) NNH HGA
Savings

NNH HGA
Savings

(%) (%)

a) Rectangular instance No.

1-a 120 600 7.2 3,261 2,080 57 3,578 2,787 28
2-a 100 1,000 10.0 3,690 3,006 23 6,375 4,444 43
3-a 200 505 10.1 1,885 1,300 45 2,902 2,674 9
4-a 145 800 11.6 4,136 3,311 25 5,582 4,930 13
5-a 296 555 16.4 4,947 4,429 12 6,935 6,168 12
6-a 210 800 16.8 6,131 5,053 21 8,366 7,386 13
7-a 183 1,019 18.6 6,532 5,421 20 11,202 9,583 17
8-a 206 1,027 21.2 7,294 6,249 17 11,400 10,610 7
9-a 410 565 23.2 7,479 6,402 17 10,279 9,734 6
10-a 220 1,087 23.9 8,537 7,924 8 12,403 12,011 3
11-a 430 600 25.8 7,764 7,439 4 11,700 11,140 5
12-a 228 1,262 28.8 12,996 10,936 19 18,671 17,845 5
13-a 416 720 30.0 10,240 9,246 11 13,614 13,091 4
14-a 380 1,030 39.1 14,567 13,924 5 22,551 21,576 5
15-a 572 699 40.0 13,740 13,185 4 21,657 21,008 3

Average 19 12

Radius Area
NNH HGA

Savings
NNH HGA

Savings
(m) (ha) (%) (%)

b) Circular instance No.

1-b 150 7.1 1,840 2,935 20 2,629 2,629 15
2-b 200 12.6 3,436 3,436 17 5,138 5,138 17
3-b 250 19.6 5,851 4,993 17 8,807 8,030 10
4-b 300 28.3 10,205 8,551 19 14,246 12,788 11
5-b 350 38.5 13,470 11,678 15 20,181 18,918 7
6-b 400 50.3 18,744 16,780 12 29,081 29,081 5

Average 17 11

NNH: nearest neighbour heuristic. HGA: hybrid genetic algorithm.



ting sequences for loaders and bale wagons has been
developed. The resulting sequences are optimal in the
sense that they minimise the total travelled distance in
the field. The bale collecting problem (BCP) was for-
mulated and modelled in terms of mathematical pro-
gramming.

Experimental results showed that by using solutions
generated by the HGA instead of operator-selected
ones, the total distance can be reduced significantly,
15% average in a medium size conventional plot. These
savings have been obtained comparing the approach
with an experienced operator with no mistakes on his
assignment rules. This is way far from real situations
so real savings will even be more considerable since
sub-optimal patterns may need even corrections which
will increase the total distance. This fact was already
pointed out when describing adjacent row collecting
method, local myopia of operator makes him apply less
efficient assignment decisions.

The reduction of travelled distance entails equi-
valent reduction of fuel consumption and of working
time.

Programmable navigation aided systems and auto-
steering systems which are already a reality in agricul-
tural machines make possible the appliance of such
route planning optimization techniques within an eve-
ryday context.
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