
Towards an Adaptive Hardware Parallel Particle Filter
David Pérez, Mónica Villaverde and Félix Moreno

Centro de Electrónica Industrial (CEI), ETSII
Universidad Politécnica de Madrid (UPM)

Madrid, Spain
{david.perez.daza, monica.villaverde, felix.moreno}@upm.es

I. INTRODUCTION
A particle filter is a Montecarlo-based method suitable for

predicting future states of non-linear systems with non-
Gaussian noise. It is based on a set of samples of the state
where each individual sample is called particle. These particles
are weighted according to the real measure of the state in order
to estimate the future state of the system. Particle filter is
widely used in numerous applications ranging from prediction
of failures [1] and prognosis [2] to object tracking [3].
Nevertheless, it is a very computationally expensive approach
since it requires many resources to generate a huge number of
particles, to evaluate them and to assign an appropriated weight
to each one of them. However, its main bottleneck lies in the
particle weights assignment since due to the sequential
execution every particle has to wait for the others before the
beginning of the resampling stage (Fig. 1).

Fig. 1. Basic particle filter flowchart.

 Furthermore, there are other decisive factors which have a
huge influence over their implementation dependent on the
kind of application. The most important ones are execution
time, precision and consumption. In this work we propose a
novel design which deals with all those issues making the
particle filter adaptive for concrete application requirements.

The execution time is an important factor when the
application demands a high processing speed to avoid
malfunctions in real time. Particle filters are inherently
sequential; consequently their execution time depends on the
number of particles N, latency L -which represents the time
wasted to process the first particle- and clock frequency fCLK
(1).

௘௫௘௖௨௧௜௢௡ݐ = (2 · ܰ + ܮ − 1) · ଵ
௙಴ಽ಼

 (1)

We propose to distribute the total number of particles into
K different modules to reduce the execution time maintaining
the same precision. All modules work in parallel splitting
among them the total number of particles. Therefore, in this
case, the execution time will be minimized as remarks the
equation given by (2).

௘௫௘௖௨௧௜௢௡ݐ = ቀ2 · ே
௄

+ ܮ − 1ቁ · ଵ
௙಴ಽ಼

 (2)

There is a wide background concerned with how a particle
filter can be parallelized through splitting the filter in different
modules. In that case it is important to note that, for
maintaining the Montecarlo philosophy, modules cannot be
completely independent, so they must share some kind of
information (i.e. particles). On the one hand, each module can
evaluate a group of particles in order to generate a “big
particle” which will be weighted. Therefore, each module has
its own weight and the particle exchanging is carried out during
the resampling stage [4]. Other alternative is shown in [5]
whereas each module has a fixed number of particles and the
same pairs of particles are always exchanged. On the other
hand, a little more different option is presented in [6] since
authors explain a specific resampling stage based on a
Metropolis-Hastings algorithm.

II. THE ADAPTIVE HARDWARE PARALLEL PARTICLE FILTER
(AHP-PF)

Our proposal goes further since we propose an Adaptive
Hardware Parallel Particle Filter (AHP-PF). An AHP-PF
includes a hardware reconfigurable mechanism to adapt the
parallelization to different application requirements during run-
time. The need to implement the filter with real parallelism
makes a hardware implementation better than a software one.
Moreover, we have to assure that precision and consumption
are suitable according to these application claims. Therefore
the filter has to be able to adapt itself taking into account which
is the most important factor for the application scope. This
filter adaptation is achieved by adjusting its internal structure
varying the number of required modules and their sizes. Thus,
if we want to increase the execution speed and, at the same
time maintain the accuracy of the algorithm, a module
composed of N/2 particles should be substituted by two others
composed of N/4 since when using more modules the
execution time is reduced as demonstrated in (2). On the other
hand if, at a given moment, precision is not the priority, the
filter should remove some modules to simplify the algorithm
execution and consequently consume less power (Fig. 2).

Particle initialization

Weights updating

New state estimation

Particle resampling

Stop
condition?

START

STOP
YES

NO

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148683015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 2. Adaptive modular division of the particle filter.

A case study has to be defined in order to test the proposed
method. Therefore, we have decided to focus our work on the
object tracking field in order to incorporate our future system
to autonomous driving application. However, this method
could be applied to other fields related with signal prediction
such as fault diagnosis or life cycle forecasting.

Our proposal for object tracking is to implement a HW/SW
co-design mainly composed of a Raspberry Pi and a Xilinx
FPGA (Fig. 3).

Fig. 3. System architecture.

The Raspberry Pi will be in charge of the image processing
taking advance of its Graphics Processor Unit (GPU) included
in its Broadcom BCM2835 System-on-Chip (SoC). A
Raspicam camera is also employed to capture the images
which will be analyzed -using OpenCV- in the GPU. Using the
information provided by the camera the GPU has to be able to
detect a specific object in real time. In this previous stage, the
object will be defined by a given color and the tracking

algorithm has to find that color on the received image in order
to calculate the object centroid (xc, yc).

In contrast, the particle filter implementation will be carried
out in a Virtex 5 FPGA to take advantage of its hardware
resources. The Raspberry Pi Central Processor Unit (CPU)
will send the (xc, yc) coordinates to the FPGA using the I2C
protocol. That position will be processed in the FPGA applying
the particle filter in order to estimate the object trajectory. The
predicted trajectory (x*, y*) will be sent back from the FPGA
to the Raspberry Pi since the object centroid and the predicted
position will be displayed -overlapped with the image- on the
monitor.

The filter adaptation is a complex task since it requires a
thorough analysis in order to determine the additional
information necessary to reconfigure the particle filter in
consonance with the current situation. That reconfiguration
implies the modification of the internal structure of the particle
filter in order to adjust its number of modules and their sizes
according to the demanded requirements. Those needs depend
on the kind of the application. Perhaps, in our case it is not
enough to focus only on the target object but also we aim to
analyze the image in depth in order to extract additional
information. For instance, if we can realize that there are many
obstacles in the whole image, a more accurate prediction could
be necessary; therefore we need to increase the number of
particles and to add more modules. In contrast, if we are able to
detect that the target is moving quickly, the real time
requirements will be more critical so we have to split the
particle filter into more modules to accelerate its execution.

REFERENCES
[1] Orchard, M.E.; Vachtsevanos, G.J., "A Particle Filtering-based

Framework for Real-Time Fault Diagnosis and Failure Prognosis in a
Turbine Engine" Mediterranean Conference on Control & Automation,
2007. MED '07, pp.1,6, 27-29 June 2007.

[2] Saha, B.; Celaya, J.R.; Wysocki, P.F.; Goebel, K.F., "Towards
Prognostics for Electronics Components" Aerospace conference, 2009
IEEE, pp.1,7, 7-14 March 2009.

[3] Yaowen Guan; Xiaoou Chen; Deshun Yang; Yuqian Wu, "Multi-person
Tracking-by-Detection with Local Particle Filtering and Global
Occlusion Handling," 2014 IEEE International Conference on
Multimedia and Expo (ICME), pp.1,6, 14-18 July 2014.

[4] Bolic, Miodrag; Djuric, P.M.; Sangjin Hong, "Resampling Algorithms
and Architectures for Distributed Particle Filters," IEEE Transactions on
Signal Processing, vol.53, no.7, pp.2442,2450, July 2005.

[5] Yi Qiao Zhang; Sathyan, T.; Hedley, M.; Leong, P.H.W.; Pasha, A.,
"Hardware Efficient Parallel Particle Filter for Tracking in Wireless
Networks" 2012 IEEE 23rd International Symposium on Personal
Indoor and Mobile Radio Communications (PIMRC), pp.1734,1739, 9-
12 Sept. 2012.

[6] Lifeng Miao; Zhang, J.J.; Chakrabarti, C.; Papandreou-Suppappola, A.,
"A new parallel implementation for particle filters and its application to
adaptive waveform design," 2010 IEEE Workshop on Signal Processing
Systems (SIPS), pp.19,24, 6-8 Oct. 2010.

