
Self-Organizing maps for detecting abnormal
thermal behavior in data centers

Ignacio Aransay∗, Marina Zapater∗† Patricia Arroba∗ and José M. Moya∗
∗LSI - Electronic Engineering Dpt. - Center for Computational Simulation

Universidad Politécnica de Madrid, Madrid 28040, Spain, {iaransay, parroba, josem}@die.upm.es
†DACYA, Universidad Complutense de Madrid, Madrid 28040, Spain, marina.zapater@ucm.es

Abstract—With the advent of Cloud Computing applications
and online services, big-scale data center facilities have become
economically unsustainable. Reducing the huge expenses is now
a priority. However, these cost cut policies are detrimental
to the reliability of data centers, reducing the safety margins
and increasing the probability of anomalous events, leading to
unplanned downtimes. Anomalies in data centers need to be
detected in the shortest possible time to mitigate the damage and
the economical impact of these downtimes. Our work tackles this
problem by proposing the use of topology preserving Artifitial
Neural Networks (ANNs) to detect atypical behavior in data
centers. ANNs are commonly used for outlier detection, making
them a good candidate for clustering and model the normal
performance of data centers.

Keywords—anomaly detection, data centers, self-organizing
maps

I. INTRODUCTION

Nowadays, with the boom of technology, IT networks
and data centers have experienced a rapidly increase, playing
the central role in business opportunities and digital services.
Data centers have laid the foundation for the development of
cutting-edge technologies such as Smart Cities and Internet
of Things; in addition to providing the required infrastructure
for streamlining customer services like e-commerce and ...
For this reason, companies have advanced in virtualization,
high-density and hardware design technologies to increase IT
resources to ensure availability and quality of the applications
offered. Within this context, data centers represent a critical
pillar in businesses for companies in a wide range of industries,
raising more and more everyday their economic impact in
business operations. Their importance is such that 93% of the
companies that suffer from a 10-days-outage go bankrupt in
less than a year [1].

With so much to be lost, it seems odd that 95% of compa-
nies have experienced an unexpected downtime event within
the last two years [2]; where its average cost is quantified as
$5,600 per minute [3]. Unfortunately, the increase focus on
cost reduction and energy efficiency have increased the risk
of failures and downtime; increasing operating temperature to
save in cooling needs leads to reliability issues. Nonetheless,
human factor represents the second leading cause of outages,
with a 24% of the total. Human errors have been estimated
to cost around $300,000 per incident to the companies sur-
veyed [3]. To mitigate harmufl effects, a full Data Center
Infrastructure Manager (DCIM) must be implemented along
with regularly tests and defined action protocols. Besides

developing policies aiming to reduce anomaly detection time
and problem areas for a faster recovery.

In this paper, we propose a solution based on Artificial
Neural Networks (ANNs), specifically Self Organizing Maps
(SOM), to detect abnormal behavior in the data center moving
away from a previously trained reliable performance. The
main objective is to provide the data center with clustering
techniques to fastly detect the symptoms of an abnormal
behavior, which can lead to downtimes. Besides reducing the
inactivity period thanks to an early detection.

The key contributions of this paper are the following:

• We present a real time reported clustering technique
based on SOMs to detect imminent thermal anomalies
in data centers. SOMs make use of temporal and
spatial models to widen the scope of the anomalies
detected.

• We evaluate the efectiveness of our methodology
using traces of anomalies extracted from a real data
center. The scenario allows us continuos monitoring of
parameters in the facility and controllable generation
of anomalies.

The remainder of this paper is organized as follows:
previous work on anomaly detection is described in Section II.
Section III details the proposed solutions based on clustering
techniques. In Section V, the testing scenario is detailed along
with the experimental results. Finally, the conclusions and
future work are drawn in Section VI.

II. RELATED WORK

Data center anomaly detection researchs have experienced
a severe increase with the advent of next-generation business
models; pushing data centers to their performance limits.

The techniques used for reducing energy consumption typi-
cally clash with the reliability of the infrastructure. Increasing
the operating temperature to save in cooling needs leads to
a reduction of the Mean Time to Failure (MTTF) of IT
equipment [4] and UPS battery life. The Uptime Institute
shows in [5] that equipment failure rate doubles for every
increase of 10◦C above 21◦C while reference [6] states that
the life of UPS batteries is halved for every 10◦C above 25◦C.
Contrary to this, recent studies [5] states that this effect is
smaller than what had been assumed.

The scope and origin of anomalies is extremely wide, yet
the state-of-the-art researches have mostly focused on network

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148682946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

security and thermal deviations. Most of the research works
for security in networks make use of clustering techniques
to detect outliers values. References [7] and [8] examine
network traces to detect DoS attacks and worms overflowing
by using SOM. Li et al. [9], however, propose detecting
anomalies calculating the significance of changes based on
the centroid of the IPs within the network. Baldoni et al.
[10] developed ANNs to statistically correlate network traffic
and power comsumption, to recognize and predict component
failures in data centers. These attacks, though common, do not
represent the root causes of data center downtimes.

Much research has been done in the area of thermal
anomaly detection in data centers. Some approaches opted to
use Linear Regression (LR) models not only to detect thermal
anomalies [11], but also to rank and prioritize them [12]. Some
others, have enhanced thermal efficiency with Computational
Fluid Dynamics (CFD) in order to rearrange racks and improve
the cooling airflow [13]. Reference [14] implements thermal
cameras and correlation models to detect temperature devia-
tions. Besides, they propose a novel thermal-anomaly aware
allocation policy to reallocate incoming workload.

Further research works, more similar to ours, make use
of Principal Component Analysis (PCA) to detect thermal
anomalies in data centers [15]. The use of ANNs is not new
either, Yuan et al. [16] propose the implementing hierarchichal
ANNs to detect a wide range of temperature anomalies.
However, they need to evaluate several metrics such as CPU
usage, temperatures of inlet and CPU and fan speed, increasing
its complexity.

III. PROPOSED SOLUTION

This section is focused on enumerating the requirements
that an anomaly detector focused on data centers must have.
Besides detailing our proposed solution to develop a simple but
effective anomaly detector to identifiy data center anomalies
affecting to the thermal behavior, no matter the causes, with
false positive and negative rates.

In the field of data mining, several algorithms have been
developed to automatize data processing, something that has
been done manually for centuries. Among all the solutions
available (support vector machine, density-based techniques,
neural networks...) we have considered this last one for de-
tecting anomalous behavior for their flexibility, robustness and
self-organization, being ideal for real time applications.

Due to the wide range of space and time temperature
anomalies occuring in a data center, it is not feasible to
label and classify abnormal data as such. Therefore, the use
of supervised learning is not convenient, since we do not
have an a priori knowledge of the anomaly. On the contrary,
unsupervised learning techniques allow us to model and cluster
normal performance by finding hidden estimated density pat-
terns based on statistics of the observation; assuming abnormal
behavior as a deviation from nomal behavior, no matter the
origin and causes.

Furthemore, temperature data need to be quantified to
check how new particular samples assemble into the global
structure. Therefore, the need of topology based on clustering,
to decide whether a particular sample is consistent or not with
the previous values within a context.

In this work, we rely on SOM’s ability for detecting out-
liers. Self Organizing Maps provide us the previous mentioned
framework. SOMs are clustering algorithms based on ANNs
trained using unsupervised learning. Besides, they preserve the
topological properties of the input space through the use of
neighborhood functions. Among other similar solutions, SOMs
provide simple and efficient ways to classify data sets because
of its high speed and fast conversion to process real-time data.
This makes it a perfect candidate to handle big amounts of
data. Besides, its fixed number of nodes is appopriate, since
temperature values are within an expected range. This lets us
control the quantifiying process and refine the limit between
anomaly or not.

Like most of the ANNs, SOMs operate in two phases:
training, and mapping. The former consists of the extraction
of feature vectors from the data center in order to build the
maps. These maps characterize the normal performance of the
data center. Once it is done, a mapping phase classifies new
feature vectors, comparing their affinity with the clustered data
in the maps and labeling them as normal or abnormal.

These two processes need to be performed periodically to
assure the inclusion of new feature vectors in the maps.

A. Training

Our idea is to find temporal and/or spatial inconsistencies
in sensed data in order to detect anomalies compromising
servers’ safety. To this end, we need to carry out a training
phase. The aim of this phase is to provide the ANNs with
enough information to build an accurate characterization of
the realiable performance of servers within the data center,
supposing that normal instances are far more frequent than
anomalies during the training.

During the training phase, temperature data are extracted
and arranged in vectors. The vector size has been set at 3 since
it establishes a reasonable commitment between false positive
and detection rate; higher n-gram sizes add more sensibility
and precision, however, it may be detrimental as it increases
the false positive rate.

This process lasts for one day, and it is daily repeated,
merging the new data set with the ones we had previously,
as explained in III-C. This allows us characterize the average
thermal evolution of the facility throughout the day. Vectors
are divided in time frames according to different times of the
day, characterizing the performance for different time periods,
i.e. different demand at different times of the day. Each time
frame is represented by a map and it is trained with the vectors
corresponding to such time frame.

Maps are formed by a fixed number of nodes spread around
the euclidean space (vector size of 3). During the training,
vectors are classified according to similarities, by moving the
nodes towards their position. In the end, nodes are associated
with groups of the input vectors. In other words, input vectors
are attached to the associated nodes in the network.

For the training phase of each server, we use two different
data sets in order to extend the range of anomalies that can be
detected. These sets consist on: i) a temporal set, representing
the temporal variation of the internal temperature of a server,
and ii) a spatial, representing the external temperature variation

of a server and its neighbors. All servers are trained and tested
individually.

1) Implemented Algorithm: Based on the mathematical
background of SOM, and considering its algorithm [17], our
implementation consists on the following steps:

1) The size of the grid is established. For our puposes,
the number of nodes has been set at 8, looking as well
for a compromise between detection and false posi-
tive rates. Node weights are initialized equidistantly
spreading them around the space.

2) A random instance from the training data is extracted.
3) The closest node to the elected instance is established

and name Best Matching Unit (BMU).
4) The BMU influence radius is calculated according to

Equation 1

σ(t) = σ0exp(−
t

λ
), t = 1, 2, 3... (1)

where σ0 is the initial influence radius, λ is a time
constant and t the current interation. Influence radius
is initially high, decreasing during time according to
the time constant.

5) Every node that resides in the σ-neighborhood of
the BMU has its weight adjusted according to the
following equation 2.

W (t+ 1) = W (t) + L(t) ·Θ(t)(V (t)−W (t)) (2)

L(t) = L0exp(−
t

λ
), t = 1, 2, 3...

Θ(t) = exp(− dist2

2σ2(t)
), t = 1, 2, 3...

where W(t) and W(t+1) are the weights of the node
for time t and t+1 respectively. V(t) is the weight
of the extracted instance, and L(t) and Θ(t) are the
learning rate and neighborhood function respectively,
also decreassing with time. Finally, dist stands for
the distance between the node being updated and the
BMU.

6) Steps 2-5 are repeated for every instance of the
training data set.

7) Steps 2-6 are repeated N times until convergence is
found.

Temporal and Spatial sets properties are described below.

2) Temporal Maps: Temporal maps let us characterize the
performance of servers according to the workload they are
executing. For this reason, we have considered as the best
parameter the CPU temperature. CPU temperature has a strong
relation with the utilization, making it ideal to detect workload
execution deviations which may be related to issues in the data
center. To reduce the amount of different n-grams, values are
quantified in steps of 5◦C, without losing relevant information.

Each temporal map is built by extracting feature temporal
vectors from each server. These vectors arrange the CPU
temperature of servers in n-grams of a time frame window
sized 3, corresponding to the (TCPU) of a server for 3

consecutive instants. Equation 3 details the composition of one
of these temporal vectors.

Temporal vector ≡ (TCPUt
, TCPUt−1

, TCPUt−2
) (3)

Temporal maps allow us detect which servers are perform-
ing workload in a way not previously seen. This can mean host
based attacks like resource hogs, or Trojans, idle servers that
need to be rebooted or the execution of illegitimate workload.

3) Spatial Maps: Spatial maps are designed to characterize
the cooling parameters of the servers. For this reason, we have
considered the use of inlet temperatures. In all cases, anomalies
affecting refrigeration system have a direct and big impact on
the (TINLET) of the servers. Contrary to the previous case,
temperature values are not quantified in order to be more
precise during the detection.

The map is built by arranging the inlet temperature in n-
grams of a space frame windows sized 3, corresponding to
(TINLET) of 3 different servers, fitted one above the other
within a rack. By adding the height variable, we can detect
refrigeration problems that may occur before to the neighbor
servers within the rack. These problems are likely to affect,
sooner or later, the performance of the whole rack.

Spatial vector ≡ (TINLETx+1
, TINLETx

, TINLETx−1
) (4)

Spatial maps let us control the inlet temperature limits of
servers within the data center. A significant increase of this
inlet temperature is detected as anomaly in every servers,
indicating problems with the refrigeration system, such as
CRAC failures.

B. Mapping

The mapping phase consists of detecting unknown behav-
iors that have not been seen during the training phase, temporal
and spatial. We consider anomaly any outlying data that differ
a certain threshold from the trained map. When a new feature
vector is extracted, it is then assigned to its nearest node
(BMU) of the map corresponding to the current time frame.
After this, we calculate the euclidean distance from the vector
to its corresponding BMU.

During the test, feature vectors not seen in the training
appear when temperature sensors start providing data signifi-
cantly different than before. When this happens, the distance
between the feature vector and its corresponding nearest cluster
increases, showing evidence of abnormal behavior. Then, any
distance greater than a certain threshold distance is declared as
an anomaly. To label an feature vector as anomalous, it must
be declared as anomaly in the temporal model OR the spatial
model.

However, this threshold must not be static, since it depends
on the variations of the training data. Training data with many
variations are likely to be more difficult to cluster, being
more spread out over the space. The principal consequence
of this is the increase of the error made during the clustering.
Therefore, a fixed threshold value may consider normal data as
an anomaly, increasing the false positive rate. For this reason,
we propose an adaptative threshold, detailed below.

1) Adaptative Threshold: In order to calculate the thresh-
old, we follow this line of thought. Each node has associated
a list of vectors, meaning those that have the mentioned
node as the Best Matching Unit (BMU). The distance from
a vector to the center of the BMU is considered as clustering
error, since it represents the error made by assuming the
center of the BMU as the representative of the vector. Map
nodes have circular shape. The maximum error defines the
maximum radius that a feature vector seen during the learning
process has to its BMU. Distances lesser to this maximum
value are considered normal, since they are within the radius
fixed by the maximum value. Contrary to it, distances greater
than the maximum clustering error are considered abnormal
data, as they represent previously unseen values. Therefore,
we can establish an adaptative threshold value for each node
depending on the maximum distance between a node an its
furthest associated vector.

Equation 5 represents this threshold, where the standard
deviation is added to decrease the number of false positives,
as proposed in [16].

ThresholdNODE = max(V) + std(V) (5)

where V represents the set of feature vectors of the correspond-
ing node.

Fig. 1. Adaptative threshold for each node

Figure 1 shows the diagram of the adaptative threshold,
applied to every node from the cluster.

C. Retraining phase

Generally, data center workload is not static and it is subject
to change. For this reason, the training phase must be repeated
after the end of the day, once captured new values which may
have appeared, and defininig those appearing the most. The
aim of this process is to model a balanced average performance
of each server after a long period of time. To do this, the
previous training data set of size N and the list of new retrieved
values of size N are merged together in a new training data
of size N. This new training data is the one used now in the
clustering process to rebuild the maps. The process of merging
is detailed as follows.

After it, n-grams with the same value are grouped together,
recording their number of ocurrences (absolute frequency).
To create the new training data, both data sets are merged
and averaged by calculating the semisum of the absolute
frequencies of n-grams of the same value, after making this

assumption: a n-gram that does not exist in one of the sets
while being on the other, actually exists but with a frequency
of 0. Figure 2 represents on a diagram this merging algorithm.

Fig. 2. Merging algorithm for the retraining phase

IV. EXPERIMENTAL SETUP

In this section, we detail the main aspects of the experiment
and the methodology used for detecting anomalies using the
proposed solution. Our objective is to ensure that clustering
maps are convenient to detect abnormal situations inside a
data center, besides offering low false positives rate. For this
purpose, we have developed our experiment on a real data
room belonging to the research group. Data traces are collected
in situ from the data center.

A. Servers

For the sake of clarity, the experiment has been restricted
to one rack and three servers, and may be extrapolated to the
rest of the data center following the same methodology.

The rack contains 3 servers of two different types of
architechture: i) 1 server Dual-Core AMD Opteron SunFire
V20z with 4GB of RAM and ii) 2 servers Quad-Core Intel
Xeon Fujitsu RX300-S6 with 16GB of RAM.

B. Workload

Servers execute workload emulating real incoming work-
load with a non-homogeneous Poisson statistical distribution.
Workload simulates the demand of a real data center through-
out a day, with a time-varying arrival rate. The workload is
daily generated by using different tasks of the SPEC CPU 2006
benchmark [18] and scheduled through the SLURM resource
manager [19] to the best-fit servers. Thus, each server exectutes
its own workload profile.

C. Time frame

Workload executed in the servers depends on the time of
the day, having low activity at night and reaching peaks of
load in the morning and afternoon. In this situation, we have
decided to divide the training data of one day in 4 time frames,
both spatial and temporal, corresponding to the natural time
divisions of the day, i.e. morning, afternoon, evening and night.

A small time frame can produce high false positive rates due
to the daily dissimilarity of the workload executed for each
server; incoming workload is modeled as an stochastic process
and the SLURM manager is not even. On the other hand, one
only time frame would aggregate the performance of the server
through the whole day. This aggregation makes impossible to
detect anomalies, as the training data is very scattered.

D. Data Collection

Data have been collected from the data room through a self-
developed DCIM and monitoring tools. External parameters,
as the inlet temperature for each server, are collected through
a Wireless Sensor Network (WSN), deployed in the room.
Internal parameters, as the CPU temperature for each server,
are collected through the Intelligent Platform Management
Interface (IPMI) tool. The whole infrastructure lets us monitor
the overall data center performance and environmental condi-
tions.

V. RESULTS

A. Detection of CRAC failure

During the training period, the inlet temperature of the
servers varies between 23◦C and 25◦C. CRAC anomalies
can be generated by turning off a cooling unit for a certain
period of time. By doing this, inlet temperature is expected
to increase rapidly. This variation is detected by the spatial
model, extracting temperature values that are not previously
seen, and can form a threat to the reliability of the room.

0 60 120 180 240 300 360 420 480
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H2

0 60 120 180 240 300 360 420 480
0

1

A
N
O
M
A
L
Y

T
INLET

T
CPU

ANOMALY

0 60 120 180 240 300 360 420 480
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H1

0 60 120 180 240 300 360 420 480
0

1

A
N
O
M
A
L
Y

T
INLET

T
CPU

ANOMALY

0 60 120 180 240 300 360 420 480
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H0

0 60 120 180 240 300 360 420 480
0

1

A
N
O
M
A
L
Y

T
INLET

T
CPU

ANOMALY

Fig. 3. CRAC anomaly failure affecting the whole rack H0-H1-H2 starting
around tick 400

Figure 3 shows the CPU temperature and the inlet tem-
perature for all servers in the rack, coupled with the boolean
anomaly expression. Around tick 400, inlet temperature starts
increasing, reaching temperature values that clash with the
previously seen feature vectors. After 7 ticks, the anomaly is
detected by the system, changing the state from low to high
in the three servers of the rack at the same time. The spatial
model, let us correlate the inlet temperature of servers three by
three. When a variation is detected, anomaly is set in all the
servers trained with the spatial model, indicating performance
problems in a region or zone. The information provided by
the inlet temperatures, i.e. the spatial map, is enough to detect
CRAC failures with a low detection time of 7 ticks. The CRAC
anomaly finishes after 60 ticks, recovering again the previous
values and the normal state.

Table I. PERFORMANCE TEMPORAL MODEL FOR EACH SERVER

Server Cluster Time frame Minimum
n-gram

Maximum
n-gram

H2

Cluster 0 12:00am - 6:00am 30 30 30 35 35 35
Cluster 1 6:00am - 12:00pm 30 30 30 35 35 35
Cluster 2 12:00pm - 6:00pm 30 30 30 35 35 35
Cluster 3 6:00pm - 0:00am 30 30 30 35 35 35

H1

Cluster 0 12:00am - 6:00am 45 45 45 65 65 65
Cluster 1 6:00am - 12:00pm 50 50 50 65 65 65
Cluster 2 12:00pm - 6:00pm 50 50 50 65 65 65
Cluster 3 6:00pm - 0:00am 45 45 45? 65 65 65?

H0

Cluster 0 12:00am - 6:00am 35 35 35 60 60 60
Cluster 1 6:00am - 12:00pm 35 35 35 65 65 65
Cluster 2 12:00pm - 6:00pm 45 45 45 65 65 65
Cluster 3 6:00pm - 0:00am 35 35 35? 65 65 65?

B. Detection of faulty workload execution

Anomaly in this case does not necessarily mean a problem
in the data center, but a rare or unusual activity, which is not
expected within such context. This unexpected behavior may
occur for several reasons including i) Hardware malfunctions,
ii) Resource hogs based attacks, iii) problems based on the
resource manager or iv) Computer lock-ups, among others.
The main goal of the detector is not to determine the origin of
these activity, but to immediately recognize them and reduce
the response time, if necessary.

1) Ideal executed workload: First, we need to have an
average real behavior model of the performance of each server.
For this to be done, each server runs an instance of the anomaly
detector during one week. As explained in section IV-B,
incoming workload is modeled depending on the time of the
day. This incoming workload has a defined profile during the
day, however, the host allocation depends on several factors.
Therefore, the temporal profile that each server has is not the
same every day, but it has a similar tendency. Therefore, after
running the algortihm during one week, being retrained every
day, it is expected to have an overall model of real performance
for each server.

Table I shows the results of the clustering process after
one week of execution. In it, it can be seen the minimum and
maximum temporal n-gram values reached during each time
frame.

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H2

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
0

1
A

N
O

M
A

L
Y

T
INLET

T
CPU

ANOMALY

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H1

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
0

1

A
N

O
M

A
L

Y

T
INLET

T
CPU

ANOMALY

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H0

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
0

1

A
N

O
M

A
L

Y

T
INLET

T
CPU

ANOMALY

Fig. 4. One day representative workload

Figure 4 shows the temperatures of the three servers during
one representative day, where the timeline is divided in four,

corresponding to the four cluster daily divisions. On it, we
assume that there are not anomalies, however, some ticks
have been classified as such. By counting the number of
ocurrences, we can give an approximate representative rate of
false positives. In H0, there are 34 ticks set as abnormal out of
the 1440 total (1 tick per minute during one day). Therefore,
the false positive rate for H0 is 2.36%. Following the same
idea, the false positive rate for H1 is 0.83% and 0% for H2.

2) Generation of anomaly: Detecting workload execution
anomalies in data centers is not easy, since the workload tends
to be highly variable. This variation is detected by the temporal
model, individually detecting misbehaving servers.

To generate an anomaly in this section, we force a workload
variation by increasing the assigned resources to one particular
node, and so its CPU temperature or by causing an idle state
which is not supposed to occur during an specific time frame.

Figure 5 shows the results provided by the anomaly
detector caused by an abnormal idled performance of H1
during the time frame 2, from 12:00pm to 6:00pm. Around
tick 320, H1, that until there was having a normal operation
within the margins of the training model, according to Table I,
goes into idle mode. After 1 tick, the detector extracts new
vectors corresponding to CPU temperature of 45C, that had
not appear during the training phase. In this moment, the
detector immediately changes the state of anomaly from 0
to 1. After tick 620, H1 recovers to its normal performance,
changing again the state of the anomaly indicating the proper
operation. Besides this, around ticks 90 and 190 in H2 and 65,
80, 440, 510 and 520 in H0 anomalies have also been detected.
However, they are sporadic anomalies, typically related to
sudden variations in the CPU temperature. Since they represent
specific moments when a change of state occurs, they can be
defined as false positives.

0 60 120 180 240 300 360 420 480 540 600
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H2

0 60 120 180 240 300 360 420 480 540 600
0

1

A
N

O
M

A
L

Y

T
INLET

T
CPU

ANOMALY

0 60 120 180 240 300 360 420 480 540 600
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H1

0 60 120 180 240 300 360 420 480 540 600
0

1

A
N

O
M

A
L

Y

T
INLET

T
CPU

ANOMALY

0 60 120 180 240 300 360 420 480 540 600
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H0

0 60 120 180 240 300 360 420 480 540 600
0

1

A
N

O
M

A
L

Y

T
INLET

T
CPU

ANOMALY

Fig. 5. Contextual anomaly in H1 starting around tick 320

Figure 6 shows the results of the anomaly detector when
an illegitimate workload is executed in H0 during a time
frame when it should not, i.e. Cluster 0, from 12:00am to
6:00am. Around tick 65, the server H0 starts giving abnormal
temperature values of 75C during a long-lasting period of time,
indicating the presence of abnormalities. This misbehavior
is captured by the anomaly detector, changing the state of
anomaly from low to high. Around tick 110, the workload
misconfiguration dissapears, and so the anomaly. As in the
previous case, false positive rates are present in ticks 400 and
460 for H0 and in ticks 105 and 110 for H1.

0 60 120 180 240 300 360 420
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H2

0 60 120 180 240 300 360 420
0

1

A
N

O
M

A
L
Y

T
INLET

T
CPU

ANOMALY

0 60 120 180 240 300 360 420
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H1

0 60 120 180 240 300 360 420
0

1

A
N

O
M

A
L
Y

T
INLET

T
CPU

ANOMALY

0 60 120 180 240 300 360 420
20

30

40

50

60

70

T
E
M
P
E
R
A
T
U
R
E

H0

0 60 120 180 240 300 360 420
0

1

A
N

O
M

A
L
Y

T
INLET

T
CPU

ANOMALY

Fig. 6. Contextual anomaly in H0 starting around tick 65

VI. CONCLUSIONS AND FUTURE WORK

Detecting abnormal perfomance in data centers is impera-
tive to allow the rapid actuation upon data center anomalies,
since any error decting them can be reponsible of big amount
of losses and even bankruptcies. The work presented in this pa-
per makes contributions in the area of anomaly detection with
a clustering methodology based on SOM. The use of SOM
allows us identify thermal variations in data centers. Since
every server is running a temporal and a spatial instance, we
are able to differenciate between problems affecting one area or
region with the spatial model and workload misconfiguration
in specific nodes with the temporal model. Moreover, we have
achieved low detection times for both CRAC malfunction and
workload misconfiguration, which is essential to minimize the
economic effects of a downtime in the facility.

Further research is being done for coupling anomaly detec-
tion systems with a Trust and Reputation System, to develop a
robust to anomalies allocation policy, depending on an overall
grade, called reputation, to maximize reliability by detecting
and isolating malfunctioning hosts

ACKNOWLEDGMENT

This project has been partially supported by the Spanish
Ministry of Economy and Competitiveness, under contracts
TEC201233892, IPT20121041430000 and RTC201427173.

REFERENCES

[1] Surviving Downtime in the Datacenter, 2013.
[2] P. Institute, “Addressing the leading root causes of downtime,” Ponemon

Institure sponsored by Emerson Network Power, Tech. Rep., 2010.
[3] ——, “Understanding the cost of data center downtime,” Ponemon

Institure sponsored by Emerson Network Power, Tech. Rep., 2011.
[4] D. Atienza, G. De Micheli, L. Benini, J. L. Ayala, P. G. Del Valle,

M. DeBole, and V. Narayanan, “Reliability-aware design for nanometer-
scale devices,” in Design Automation Conference, 2008. ASPDAC 2008.
Asia and South Pacific. IEEE, 2008, pp. 549–554.

[5] R. Menuet and W. P. Turner, “Continuous cooling is required for
continuous availability,” 2006.

[6] U. S. plc., “A guide to ensuring your ups batteries
don’t fail from ups systems,” http://www.upssystems.co.uk/
knowledge-base/the-it-professionals-guide-to-standby-power/
part-8-how-to-ensure-your-batteries-dont-fail/, 2015, accessed:
2015-05-18.

[7] M. Ramadas, S. Ostermann, and B. Tjaden, “Detecting anomalous
network traffic with self-organizing maps,” in Recent Advances in
Intrusion Detection. Springer, 2003, pp. 36–54.

http://www.upssystems.co.uk/knowledge-base/the-it-professionals-guide-to-standby-power/part-8-how-to-ensure-your-batteries-dont-fail/
http://www.upssystems.co.uk/knowledge-base/the-it-professionals-guide-to-standby-power/part-8-how-to-ensure-your-batteries-dont-fail/
http://www.upssystems.co.uk/knowledge-base/the-it-professionals-guide-to-standby-power/part-8-how-to-ensure-your-batteries-dont-fail/

[8] K. Labib and R. Vemuri, “Nsom: A real-time network-based intrusion
detection system using self-organizing maps,” Networks and Security,
pp. 1–6, 2002.

[9] A. Li, L. Gu, and K. Xu, “Fast anomaly detection for large data centers,”
in Global Telecommunications Conference (GLOBECOM 2010), 2010
IEEE. IEEE, 2010, pp. 1–6.

[10] R. Baldoni, A. Cerocchi, C. Ciccotelli, A. Donno, F. Lombardi, and
L. Montanari, “Towards a non-intrusive recognition of anomalous
system behavior in data centers,” in Computer Safety, Reliability, and
Security. Springer, 2014, pp. 350–359.

[11] B. Haaland, W. Min, P. Z. Qian, and Y. Amemiya, “A statistical
approach to thermal management of data centers under steady state and
system perturbations,” Journal of the American Statistical Association,
vol. 105, no. 491, pp. 1030–1041, 2010.

[12] K. Viswanathan, L. Choudur, V. Talwar, C. Wang, G. Macdonald,
and W. Satterfield, “Ranking anomalies in data centers,” in Network
Operations and Management Symposium (NOMS), 2012 IEEE. IEEE,
2012, pp. 79–87.

[13] R. Romadhon, M. Ali, A. M. Mahdzir, and Y. A. Abakr, “Optimization
of cooling systems in data centre by computational fluid dynamics
model and simulation,” in Innovative Technologies in Intelligent Systems
and Industrial Applications, 2009. CITISIA 2009. IEEE, 2009, pp.
322–327.

[14] E. K. Lee, H. Viswanathan, and D. Pompili, “Model-based thermal
anomaly detection in cloud datacenters,” in Distributed Computing in
Sensor Systems (DCOSS), 2013 IEEE International Conference on.
IEEE, 2013, pp. 191–198.

[15] M. Marwah, R. Sharma, W. Lugo, and L. Bautista, “Anomalous thermal
behavior detection in data centers using hierarchical pca,” SensorKDD
in conjunction with KDD, 2010.

[16] Y. Yuan, E. K. Lee, D. Pompili, and J. Liao, “Thermal anomaly
detection in datacenters,” Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, vol.
226, no. 8, pp. 2104–2117, 2012.

[17] T. Kohonen, “Som toolbox: Intro to som,” http://www.cis.hut.fi/projects/
somtoolbox/theory/somalgorithm.shtml, 2005, accessed: 2015-06-10.

[18] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[19] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel
Processing. Springer, 2003, pp. 44–60.

http://www.cis.hut.fi/projects/somtoolbox/theory/somalgorithm.shtml
http://www.cis.hut.fi/projects/somtoolbox/theory/somalgorithm.shtml

	Introduction
	Related Work
	Proposed solution
	Training
	Implemented Algorithm
	Temporal Maps
	Spatial Maps

	Mapping
	Adaptative Threshold

	Retraining phase

	Experimental setup
	Servers
	Workload
	Time frame
	Data Collection

	Results
	Detection of CRAC failure
	Detection of faulty workload execution
	Ideal executed workload
	Generation of anomaly

	Conclusions and Future Work
	References

