
Execution Modeling in Self-Aware FPGA-Based
Architectures for Efficient Resource Management
Alfonso Rodríguez, Juan Valverde, César Castañares,

Abstract—SRAM-based FPGAs have significantly improved
their performance and size with the use of newer and ultra-
deep-submicron technologies, even though power consumption,
together with a time-consuming initial configuration process, are
still major concerns when targeting energy-efficient solutions.
System self-awareness enables the use of strategies to enhance
system performance and power optimization taking into account
run-time metrics. This is of particular importance when dealing
with reconfigurable systems that may make use of such infor
mation for efficient resource management, such as in the case
of the ARTICo3 architecture, which fosters dynamic execution
of kernels formed by multiple blocks of threads allocated in
a variable number of hardware accelerators, combined with
module redundancy for fault tolerance and other dependability
enhancements, e.g. side-channel-attack protection.

In this paper, a model for efficient dynamic resource manage
ment focused on both power consumption and execution times
in the ARTICo3 architecture is proposed. The approach enables
the characterization of kernel execution by using the model,
providing additional decision criteria based on energy efficiency,
so that resource allocation and scheduling policies may adapt to
changing conditions. Two different platforms have been used to
validate the proposal and show the generalization of the model: a
high-performance wireless sensor node based on a Spartan-6 and
a standard off-the-shelf development board based on a Kintex-7.

Index Terms—Self-awareness, dynamic and partial reconfigu
ration, dynamic resource management, FPGAs.

I. INTRODUCTION

Hardware accelerators are used to speed-up data-intensive
tasks, taking advantage of data-level parallelism and dedicated
hardware design. However, one of their main disadvantages
is that the number of available resources is usually limited.
This leads to systems that, in general, lack the flexibility that
software-approaches provide. Dynamic and Partial Reconfigu
ration (DPR) of FPGAs may alleviate this problem by resource
multiplexing in time, so that the amount of such resources
is virtually unlimited, but restricted in every moment by the
total amount available in the device [1]. In a context where
applications increase their complexity continuously, FPGA-
based systems need to adapt to more demanding requirements.
As a result, the complexity of almost any strategy used to
achieve optimal resource allocation surges, specially if not
only external but also internal conditions must be taken into
account.

Jorge Portilla, Eduardo de la Torre and Teresa Riesgo

Efficient resource management policies require both execu
tion modeling and real-time measurements to provide accurate
estimations and predict the future behavior of the system. If
a specific set of system metrics is monitored in real-time by
the system itself, i.e. making it self-aware during execution,
the acquired knowledge can be used to guide both resource
allocation and task scheduling within the FPGA towards
optimal solutions [2]. Moreover, modeling the behavior of
the system during execution provides a framework in which
decisions to move tasks from one operating point to another
in the solution space can be made.

In this paper, execution modeling has been implemented in
ARTICo3 [3], a multi-platform virtual architecture that allows
the execution of multikernel and multithread applications by
using DPR to change hardware accelerators according to these
model-defined requirements. The dynamic use of resources
and operation modes applied to move the working point around
the solution space is highly dependent on the targeted platform.
Therefore, the task scheduler of the architecture must be aware
of the possibilities offered by the platform in order to achieve
a proper resource distribution. This flexibility, within a low-
power and high-performance context, permits the application
of scheduling strategies similar to the methodologies used by
operating systems. In any case, both the way resources are
scheduled and the operation mode used are completely trans
parent to the application code running in the host processor.

The rest of this paper is organized as follows: section II
shows an overview of the state of the art, section III presents
the features of the architecture on which the model is based.
The proposed model is thoroughly covered and analyzed in
Section IV; Section V shows the experimental results that
confirm the validity of the model as well as its generalization,
and Section VI provides the conclusions and the future work.

II. RELATED WORK

As it was already introduced, reconfigurable hardware archi
tectures require a dynamic use of resources, typically enabled
by DPR. Some bus-based examples can be found in the
literature: in [4], the authors prosed a bus-based architecture,
so-called FLEXBUS, to adapt the connectivity and mapping of
different components by dynamically adapting the communi
cation topology using a bridge by-pass. Thus, they can create

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148682801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a network of bus segments connected by these bridges. In a
context where different hardware accelerators are changed at
run time to work as co-processors, being able to perform a
proper task scheduling is a must. In [5], the authors present a
dynamically adaptable architecture that allows the inclusion of
an OS kernel for management tasks. Crucial aspects such as
reconfiguration speed, critical when implementing strategies
for task scheduling in dynamically reconfigurable architec
tures, are addressed. Dynamic changes do not only affect logic
blocks but also memory resources. Moreover, the necessity
of dynamic task scheduling on these platforms has also been
covered [6]. In [7], an adaptive architecture for dynamic
management and allocation of on-chip FPGA Block RAM
memory (BRAM) resources is presented to deal with changing
memory footprints of different reconfigurable modules. One of
the main goals of these architectures is providing a framework
to ease the dynamic reconfiguration process. In [8], the authors
propose a technique called I/O bars to provide dynamically-
changing point-to-point connections from the static area of
the FPGA to some reconfigurable modules apart from the
ReCoBus-builder to assist partial run-time reconfiguration. In
the ARTICo3 framework, the dynamic use of the available re
sources is improved by the combination of two methodologies:
execution modeling (power consumption) and task profiling
(performance and power consumption).

Since power consumption is considered one of the main
pitfalls of SRAM-based FPGAs, due to the fact that the
static contribution is significantly larger than in other devices,
power modeling appears as a mandatory component in almost
any solution in which energy efficiency is a requirement.
Therefore, power models focusing on different levels have
been proposed. In [9], for instance, a power model at device
level is presented. The model is then used to predict the impact
of algorithm implementations on FPGA devices. It is widely
known that DPR can be used to reduce the overall power
consumption in the device, since it allows time-multiplexing of
resources and therefore, designs can be implemented in smaller
FPGAs (with less static power consumption) and dark-silicon
areas are minimized. Hence, some works present models with
different granularity levels to predict the power consumption
during the reconfiguration process and use that information to
feed an energy estimator, as in [10].

Moreover, models to estimate the power consumption of
hardware modules in FPGAs have been widely studied, mostly
to predict and to try to reduce it at design stages. In [11], the
authors present a high-level technique to estimate power con
sumption for arithmetic hardware blocks such as polynomial
evaluations with very close results to the ones provided by
Xilinx XPower estimator. Besides, not only arithmetic blocks
but also major event signatures such as buses or memory
transactions need to be studied. In [12], these two elements are
included together with a study of the variability of the power
consumption according to LUT numbers and a comparison
with real measurements in Virtex 5. However, very few works
address on-line power management and profiling in order to
dynamically adapt hardware resources, which is one of the

main contributions of the ARTICo3 framework.
Application profiling has also been widely covered in the

literature. However, most profilers focus on software imple
mentations, i.e. performance or power consumption is profiled
either by analyzing the program counter or the instruction
bus of the processor. An example of this type of approach
is SnoopP [13], a profiling framework that monitors the pro
gram counter of the C P U for improved H W / S W codesign. A
similar approach is used in L E A P [14]. Software profiling has
been successfully applied in systems with dynamic adaptation
capabilities, as it has been shown in [15] and [16].

Although software profilers are more common, some ex
amples that explore performance profiling in hardware cores
can be also found in the literature. For instance, in [17],
a framework to help designers debug their applications is
presented. The proposed approach inserts monitoring cores
and provides software drivers to ease application profiling so
that focus can be put on the application itself instead on the
profiling infrastructure.

Dynamic resource managers are also common elements in
reconfigurable computing, as it can be seen in [18], where
the authors propose a smart reconfiguration methodology
targeting application performance. The ARTICo3 approach, on
the other hand, focuses its optimization capabilities not only
on execution performance but also on energy efficiency by
taking into account the aforementioned elements: modeling
and profiling.

According to [19], there are three main cornerstones in mul
tiprocessor systems: hardware architectures, design tools and
management of runtime adaptations. The ARTICo3 framework
already provides solutions at architectural level by defining the
processing elements, the memory structure and the commu
nication infrastructure. The work presented here establishes
the foundation for handling other of the main cornerstones:
adaptation in real time by means of self-awareness through
execution modeling.

I I I . ARCHITECTURAL SUPPORT

ARTICo3 is a bus-based virtual architecture which features
a set of reconfigurable slots suitable for SRAM-based FPGAs
(in order to take advantage of DPR). Any combination, in
number and position of reconfigurable slots can host hardware
accelerators for a specific task, and a dispatcher unit is in
charge of delivering data to and collecting results from them,
accordingly to the configuration but independently from the
application. A reconfiguration engine is used to swap different
hardware accelerators, and thus achieve the aforementioned
time multiplexing of resources. This architecture has already
been presented in [3], and its Model of Computation (MoC),
together with the basics for a Dynamic Resource Manager,
were presented in [20].

Although ARTICo3 has several internal modules and fea
tures, each one with its own functionality, only those needed
to fully understand the model foundations are discussed in this
section.

A. Data Transactions
In ARTICo3, the data dispatcher unit is called data Shuffler.

It acts as a bridge between the reconfigurable slots and the rest
of the system, i.e. the static region. The data Shuffler interfaces
the rest of the system using a standard connection to the shared
bus where all peripherals are. The architecture also features a
dedicated bus for large data transactions, which are done in
bursts using a Direct Memory Access (DMA) engine for two
main reasons: on the one hand, they are less time-consuming
and the bus can benefit from having more data transfers using
the same amount of time; on the other hand, DMA accesses
are much more energy-efficient.

The way of interfacing with the different reconfigurable
slots changes depending on the operating mode in which
the architecture is working, and on the direction data are
being transfered (write to or read from the slots). In modes
that use hardware redundancy, data are forwarded to the
reconfigurable slots in multicast fashion, and retrieved through
a voter unit that merges different paths and enables fault
tolerance through module redundancy. In high performance
modes, each reconfigurable slot is enabled during part of the
whole data transfer. Hence, data are read from or written to
the slots only when they are enabled, being the data Shuffler
in charge of the sequencing process. Furthermore, the built-in
data reduction engine can be enabled, taking advantage of data
serialization in the bus, i.e. using less hardware resources, to
perform a specific operation (e.g. add, maximum, minimum,
or comparison with fixed value) on the data that are being read
from the accelerators.

B. Model of Computation

The architecture provides a CUDA-like MoC, in which
program sections with explicit data-level parallelism (called
kernels) are split into different execution threads. These
threads are grouped into thread blocks. Blocks cannot have
data dependencies, but threads within the same block can.
This is an important feature that allows transparent scalability
in kernel execution: depending on the number of available
resources, blocks can be executed in parallel or sequentially,
since the obtained result is the same.

In ARTICo3, kernels define a functionality, which is then
implemented as data-independent thread blocks in the shape
of hardware accelerators. The number of available slots, i.e.
slots that are idle or yet to be loaded by the reconfiguration
engine, determines the amount of thread blocks that can be
executed at a given instant. The execution depends on the
mode on which the architecture is working: when there are
fault tolerance or security requirements and data are delivered
strictly in parallel, the execution is also purely parallel in those
blocks with hardware redundancy (for voting purposes or even
for side channel attack protection), whereas in those situations
following a SIMD-like approach, where thread blocks operate
with different data, the execution is overlapped between accel
erators (due to data serialization through the bus that links the
memories and the data Shuffler). The larger the overlapping
is, the higher the acceleration.

Kernel invocation involves data transferences to all its thread
blocks, which are addressed sequentially (high performance
modes), in parallel (hardware redundant modes), or using a
hybrid approach (by combining both strategies) in the same
D M A transfer. Each hardware accelerator starts its execution
as soon as it has received all its input data. Hence, the effects
of data serialization are mitigated and the aforementioned
features, i.e. parallelism or overlapping, are achieved.

I V . SYSTEM MODELING

In order to provide the architecture with self-aware ca
pabilities, it is necessary to first model the different stages
of the operation cycle. This model will be used by the
Dynamic Resource Manager of the architecture to generate
efficient allocation and scheduling policies in different kernel
invocations, taking into account real-time execution metrics
such as power consumption, elapsed times, battery level in
portable devices, or requirements in terms of fault tolerance
to allow a maximum number of faults per transaction for
instance. The normal operation cycle of a thread block consists
of three stages: reconfiguration of the hardware accelerator
(whenever it is required), data transfers and kernel execution.
The first stage will be referred to as the reconfiguration model,
whereas the second and the third ones will be assembled in
what will be called the transaction model.

A. Reconfiguration Model

Since the reconfiguration engine in ARTICo3 is software-
based, reconfiguration performance shows several limitations.
In particular, bitstream composition to perform module re
location, together with the fact that configuration frames
are read word by word from the memory, generate a large
overhead in reconfiguration times. Experimental results in
different platforms confirm these problems: in Zynq devices,
only bitstream composition affects, since the transference of
configuration data is done using a D M A transfer through the
Processor Configuration Access Port (PCAP); in FPGA-only
devices, on the other hand, the two problems are present when
using the standard reconfiguration engine to access the Internal
Configuration Access Port (ICAP).

Moreover, as reported in [10], power consumption during
reconfiguration processes depends on several factors, such as
the previous configured logic and the module that is being
loaded at that moment.

All these factors favor the usage of a simplified model,
in which the power consumption in the FPGA core equals
the peak value during reconfiguration. In order to keep this
value at a minimum, clock gating techniques are applied to
each slot that is being loaded with a hardware accelerator, so
that the clock is inactive during reconfiguration. The power
consumption in the external memory, on the other hand, is
almost equal to its static value, due to the aforementioned
inefficient data readings.

B. Transaction Model

As opposed to reconfiguration processes, where the behavior
cannot be easily modeled, power consumption during kernel

Fig. 1. Transaction model in high performance modes. Thread block execution can be memory-bounded (left), or computing-bounded (right). The dashed
line represents the simplified power consumption model in the FPGA core.

Fig. 2. Transaction model when adding hardware redundancy. The contri- Fig. 3. Transaction model when using multithreading within a thread block.
bution due to data transfers is the same in all three cases, whereas dynamic The contribution due to data transfers is the same, whereas dynamic power
power consumption due to thread block execution increases over the reference consumption due to thread block execution increases when adding more
value (one thread block, left) when adding DMR (two thread blocks, center) threads. However, since threads within a thread block execute in parallel,
and TMR (three thread blocks, right). the execution time is decreased, thus reducing the impact of static current on

the overall energy consumption.

execution in ARTICo3 can be modeled using the FPGA core
and the external RAM memory contributions. This can be done
because power consumption in the other power rails has been
proved to be constant during the whole process.

The contribution of the FPGA core to the power consump
tion model is expressed as follows:

Pcore(t) — Pbase(t) + Pdma(t) + / neXi(t)PeXi(t) (1)

Pbase(t) — Pstatic(t) + / Ui(t)Pi (2)

¿=1

Pcore represents the power consumption of the FPGA core
at a given instant; Pbase is the power consumption of the
system when no kernel is being executed, which might change
since it depends on the number of slots that are loaded with
hardware accelerators and the activity in the static region;
Pdma is the dynamic contribution to the power consumption
due to DMA data transactions inside de FPGA; n k is the
number of kernels loaded in the reconfigurable slots; ne x i is
the number of thread blocks of kernel i being executed at
a given instant; and Pexi is the dynamic contribution to the
power consumption due to one thread block of kernel i being
executed.

Equation (2) shows how Pbase is computed when the system

has n k kernels, each of them with n i thread blocks loaded
in the reconfigurable slots. Pstat ic is the contribution of
the static region, i.e. the power consumption of the whole
system without any hardware accelerator, whereas P i is the
contribution of one thread block of kernel i loaded in one
reconfigurable region by the mere fact of being there. Note
that Pbase does not represent the static power consumption of
the FPGA and that, in some cases, n e x i might not be equal to
n i .

The contribution of the external RAM memory to the power
consumption model is expressed as follows:

P m e m (t)=P m e m , s +Pm e m , d (t) (3)

Pmem represents the power consumption of the external
RAM memory; and Pmem,s, Pmem,d are the values of static
and dynamic power consumption in the external memory
power rail respectively.

Therefore, the overall power consumption in the ARTICo3

system can be approximated taking into account these two
contributions with the following expression:

P (t)=P c o r e (t)+P m e m (t) (4)

In order to make an efficient implementation in the Dynamic
Resource Manager, the model can be simplified by making the
following assumptions:

1) Equations (1), (2) and (3) are discretized using sampling
time Ts, to account for the self-measuring Analog to
Digital Converter (ADC) circuitry.

2) Thread blocks have uniform power consumption during
their execution.

3) DMA transfers and memory accesses have uniform
power consumption.

Normal system operation in high performance modes, i.e.
with execution overlapping, can find bottlenecks in two dif
ferent stages: memory accesses (and the associated DMA data
transfer through the bus), and thread block execution. Depend
ing on the limiting factor, the execution can be classified as
memory-bounded or computing-bounded.

Memory-bounded execution: shows high bus occupancy,
•

since the DMA engine is always busy transferring data.
One or more thread blocks have finished their processing
and are idle waiting to be read.
Computing-bounded execution: generates reduced bus

•

occupancy and memory usage due to idle times between
data transferences. Thread blocks continue processing
data after the transfer has finished, and therefore show
no idle times.

These two possibilities are covered by the proposed model,
as it can be seen in Fig. 1, where an example invocation with
overlapped execution of eight thread blocks of the same kernel
is shown. Notice the idle times in the FPGA core for memory-
bounded execution, and in the external memory for computing-
bounded execution. Also notice the opposite behavior in
the other power rail: continuous power consumption in the

external memory for memory-bounded execution and no idle
times in the FPGA core consumption for computing-bounded
execution.

The proposed model is also applicable in scenarios where
hardware redundancy exists. For instance, Fig. 2 shows the
impact of adding more copies of the same thread block
to perform Double Module Redundancy (DMR) and Triple
Module Redundancy (TMR). The data transfer component of
the power consumption (Pdma) remains the same, whereas
the number of thread blocks of the given kernel (nexi) being
executed is increased, leading to a proportional increase in
terms of overall power consumption.

To model all the features ARTICo3-enabled execution pro
vides, the model can also be extended to multithread execution
of a single, i.e. only one, thread block, as shown in Fig. 3. In
this case, adding more threads generates not only an increase
in the power consumption of the thread block, but also a
decrease in its execution time due to parallelization, which
in turn implies a more energy-efficient execution, as it has
been proved by experimental results.

Therefore, all capabilities of the architecture fit in the
proposed model, since any kernel execution can be charac
terized by a combination of three different features: execution
overlapping of thread blocks, hardware redundancy of a thread
block, and multithreading in a single thread block.

V. EXPERIMENTAL RESULTS

The experimental setup uses two different platforms to
validate the model: the HiReCookie high-performance wireless
sensor node (Spartan-6, XC6SLX150-2FGG484) [21], and the
KC705 evaluation board from Xilinx (Kintex-7, XC7K325T-
2FFG900). Both platforms have built-in circuitry to measure
power consumption in different power rails. In addition, the
ARTICo3 implementations on these platforms include a timer
to measure elapsed times during reconfiguration and kernel
execution.

A. Reconfiguration Model

Results obtained during the reconfiguration stage in both
platforms are summarized in Table I , where fclk is the system
clock frequency (in both static and dynamic regions) and f icap

is the ICAP clock frequency. Technology limitations impose
significantly smaller values in the latter for Spartan-6 FPGAs.
This, together with the 16-bit I C A P datapath in those devices
(as opposed to the 32-bit I C A P datapath in 7-Series FPGAs),
decreases reconfiguration throughput. Moreover, the software-
based approach leads to low performance ratios between
measured and theoretical results in terms of throughput, as
it was previously stated in Section IV. The reported values
of power and energy consumption are higher in the KC705
development board since ARTICo3 slots occupy much more
logic resources in that platform than in the HiReCookie node
(this values are also reflected in Table I).

B. Transaction Model

A reduced set of kernels has been implemented in order to
test the architecture and the accuracy of the proposed model.

T A B L E I
RECONFIGURATION OVERHEADS PER SLOT

Parameter

f c l k (MHz)
f i c a p (MHz)

Slot Size (kB)*
Theoretical throughput (MB/s)

Reconfiguration throughput (MB/s)
Performance ratio (%)

Power consumption (mW)
Reconfiguration time (ms)

Energy (mJ)

KC705

100
100
505
400
5.15
1.28

596.87
95.7
57.12

HiReCookie

100
20

124.67
40

3.64
9.1

290.34
33.46
9.71

* Configuration memory footprint of an ARTICo3 slot.

This library has kernels with both memory-bounded execution
(Sobel and median filters) and computing-bounded execution
(AES and SHA-2). Actual measurements in the power rails
using an oscilloscope confirm the validity of the proposed
approach, as well as the differences between these two types
of kernel executions. Fig. 4 shows the behavior of the median
filter kernel, which is memory-bounded, in the HiReCookie
platform. Fig. 5, on the other hand, shows the behavior of
the AES256 CTR kernel, which is computing-bounded, in the
KC705 development board. Notice that the obtained results
resemble what was predicted by the model in Fig. 1.

The values of the parameters that feed the model vary from
one kernel to another. Table I I shows the characterization of
an AES256 CTR kernel in both platforms, which has been
obtained from different runs. Each of these runs differ in
only one parameter, e.g. number of thread blocks loaded (to
compute the power consumption of one hardware accelerator
that is idle), or number of thread blocks used (to compute
the dynamic power consumption of one hardware accelerator
during execution).

Once the kernel has been characterized, the model has
been verified with real measurements from the two platforms.
Fig. 6 shows the comparison between the real measurements

Fig. 4. Memory-bounded kernel execution in ARTICo3 on the HiReCookie
node. Notice that the external RAM memory has larger power consumption
in read than in write operations.

T A B L E I I
MODEL PARAMETERS: AES256 C T R KERNEL

Parameter

-Ldma
P i

P
ex i -Lmem,s

P m e m , d (read)
P m e m , d (write)

KC705

6.93
38.66
31.57
792
768
1368

HiReCookie

5
44.55
22.21
91.6
133.4
101.25

and the estimations provided by the model in the KC705
board. Note that, in order to obtain similar execution times,
input data sizes increase at a rate of 32kB per additional
thread block. Therefore, each block has to process the same
amount of data in all runs. Otherwise, the execution times
would have decreased when adding more thread blocks due to
execution overlapping, as expected in the model. Fig. 7 gives
a better view of the power consumption in the FPGA core,
and shows that the execution becomes more energy-efficient
when increasing the number of thread blocks and exploiting
overlapping. Moreover, note that the static power consumption
represents roughly 60% of the overall value.

The accuracy of the model can be analyzed taking into
account the correlation between the measurements and the
estimated values. Table III sums up the obtained values in both
test platforms. Notice that the model provides significantly
worst results when modeling executions of only one thread
block. This is mainly due to the minimum increase in the
power consumption in those situations, a behavior that has
to be taken into account by the Dynamic Resource Manager
when profiling new kernels. The HiReCookie can only use
up to 4 thread blocks of the AES256 CTR kernel, and thus
no correlation values are provided for 5 and 6 thread blocks.
In addition, and since the circuitry of the power rails has
larger capacitors, the correlation values are slightly lower in
the HiReCookie node than in the KC705 board.

Fig. 5. Computing-bounded kernel execution in ARTICo3 on the KC705
board. Notice that the external RAM memory has larger power consumption
in write than in read operations.

Fig. 6. Close-up of the power consumption model in the KC705 development
board executing an AES256 CTR kernel with different number of thread
blocks and input data sizes.

T A B L E I I I
MODEL ANALYSIS: AES256 C T R KERNEL

Thread Blocks

1
2
3
4
5
6

Correlation Model-Measurements
KC705 HiReCookie

0.7177
0.9174
0.9644
0.9795
0.9790
0.9860

0.4990
0.8971
0.9453
0.9628

-
-

The model suffers deviations when performing kernel invo
cations from different background states, as it can be seen in
Fig. 8, where the same execution provides measurements that
differ in Pbase. The model provides the same results in both
situations, since it assumes the same power consumption in
the static region. Hence, the Dynamic Resource Manager has
to ensure that the reference value in the power consumption,
i.e. Pbase, is updated before profiling a new kernel.

V I . CONCLUSIONS AND FUTURE WORK

In this paper, a simplified yet accurate model of a kernel
being executed on ARTICo3 has been proposed. The model
takes into account that kernel execution might involve a combi
nation of three different features provided by the architecture:
overlapped execution of thread blocks, parallel execution of
redundant thread blocks, and parallel execution of multiple
threads within a thread block.

The model has been validated with actual measurements in
two different platforms, the HiReCookie node and the KC705
development board, and with a set of kernels that show dif
ferent behavior during their execution (memory-bounded and
computing-bounded). Moreover, an AES256 CTR kernel has
been characterized and then analyzed in different scenarios,
showing the accuracy of the proposed approach.

The power consumption model, together with the execution

Fig. 7. Overall power consumption of an AES256 CTR kernel in the KC705
development board. Note that the energy efficiency is increased when the
number of thread blocks is increased.

Fig. 8. Comparison between the power consumption model and two different
runs in the KC705 development board of an AES256 CTR kernel with 6
thread blocks, 2 threads per block and 1MB input data.

and reconfiguration times are powerful tools that the Dynamic
Resource Manager of the architecture has to take into account
when deciding which kernels are to be executed, or how many
thread blocks have to be placed in the reconfigurable slots.
Allocation and scheduling policies have to be made analyzing
both execution times and energy, specially in platforms with
limited resources such as the HiReCookie node. If the speed
up achieved by adding more thread blocks is significantly
higher than the increase in terms of power consumption, the
system will achieve a more energy-efficient execution, at least
up to the point in which execution becomes memory-bounded.

At any rate, reconfiguration must be taken into account,
since energy savings obtained by using more computing re
sources working concurrently might be negligible compared to
the amount of energy spent during reconfiguration. This can

be seen, for instance, in the KC705 development board when
comparing the time and energy spent loading two AES256
CTR thread blocks (191.4 ms, 114.24 mJ) with the time and
energy spent processing 64 kB of raw data (2.68 ms, 1.98
mJ) with those accelerators. Therefore, for small amounts of
data there is no overall energy gain. This can be solved either
by increasing the amount of data to be processed (in the
aforementioned example, moving from one round of 64 kB
to hundreds of rounds) or by optimizing the reconfiguration
engine, since the reconfiguration throughput does not provide
energy-efficient load or switch operations between hardware
accelerators. The current work is focused on optimizing the
reconfiguration engine so that the overhead due to the recon
figuration process is almost equivalent to the one due to the
kernel execution. By achieving that, an additional overlapping,
in this case between reconfiguration and execution, is to be
implemented.

ACKNOWLEDGMENTS

The authors would like to thank the Spanish Ministry of
Education, Culture and Sport for its support under the FPU
grant program.

This work was also partially supported by the Spanish
Ministry of Economy and Competitiveness under the project
REBECCA (Resilient EmBedded Electronic systems for Con
trolling Cities under Atypical situations), with reference num
ber TEC2014-58036-C4-2-R.

REFERENCES

[1] C . Claus, B . Zhang, W. Stechele, L . Braun, M . Hubner, and J. Becker, “ A
multi-platform controller allowing for maximum dynamic partial recon
figuration throughput,” in Field Programmable Logic and Applications,
2008. FPL 2008. International Conference on, Sept 2008, pp. 535–538.

[2] C . Gomez Osuna, M . Sanchez Marcos, P. Ituero, and M . Lopez-Vallejo,
“ A monitoring infrastructure for fpga self-awareness and dynamic adap
tation,” in Electronics, Circuits and Systems (ICECS), 2012 19th IEEE
International Conference on, Dec 2012, pp. 765–768.

[3] J . Valverde, A . Rodriguez, J. Camarero, A . Otero, J. Portilla, E . de la
Torre, and T. Riesgo, “ A dynamically adaptable bus architecture for
trading-off among performance, consumption and dependability in
cyber-physical systems,” in Field Programmable Logic and Applications
(FPL), 2014 24th International Conference on, Sept 2014, pp. 1–4.

[4] K . Sekar, K . Lahiri, A . Raghunathan, and S. Dey, “Flexbus: a high-
performance system-on-chip communication architecture with a dynam
ically configurable topology,” in Design Automation Conference, 2005.
Proceedings. 42nd, June 2005, pp. 571–574.

[5] S. Garcia and B . Granado, “Ollaf : A dual plane reconfigurable archi
tecture for os support,” in Design and Test Workshop, 2008. IDT 2008.
3rd International, Dec 2008, pp. 282–287.

[6] I . Ktata, F. Ghaffari, B . Granado, and M . Abid, “Prediction performance
method for dynamic task scheduling, case study: the ollaf architecture,”
in Design and Test Workshop (IDT), 2010 5th International, Dec 2010,
pp. 97–102.

[7] G . Dessouky, M . Klaiber, D . Bailey, and S. Simon, “Adaptive dynamic
on-chip memory management for fpga-based reconfigurable architec
tures,” in Field Programmable Logic and Applications (FPL), 2014 24th
International Conference on, Sept 2014, pp. 1–8.

[8] A . Oetken, S. Wildermann, J . Teich, and D . Koch, “ A bus-based soc
architecture for flexible module placement on reconfigurable fpgas,” in
Field Programmable Logic and Applications (FPL), 2010 International
Conference on, Aug 2010, pp. 234–239.

[9] F. Li , Y. Lin, L . He, D . Chen, and J . Cong, “Power modeling and
characteristics of field programmable gate arrays,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 24, no. 11, pp. 1712–1724, Nov 2005.

[10] R. Bonamy, D. Chillet, S. Bilavarn, and O. Sentieys, “Power consump
tion model for partial and dynamic reconfiguration,” in Reconfigurable
Computing and FPGAs (ReConFig), 2012 International Conference on,
Dec 2012, pp. 1–8.

[11] J. Clarke, A. Gaffar, and G. Constantinides, “Parameterized logic power
consumption models for fpga-based arithmetic,” in Field Programmable
Logic and Applications, 2005. International Conference on, Aug 2005,
pp. 626–629.

[12] L. Wang, X. Wang, T. Wang, and Q. Yang, “High-level power estimation
model for soc with fpga prototyping,” in Computational Intelligence and
Communication Networks (CICN), 2012 Fourth International Confer
ence on, Nov 2012, pp. 491–495.

[13] L. Shannon and P. Chow, “Using reconfigurability to achieve real-time
profiling for hardware/software codesign,” in Proceedings of the 2004
ACM/SIGDA 12th International Symposium on Field Programmable
Gate Arrays, ser. FPGA ’04. New York, NY, USA: ACM, 2004, pp.
190–199.

[14] M. Aldham, J. Anderson, S. Brown, and A. Canis, “Low-cost hard
ware profiling of run-time and energy in fpga embedded processors,”
in Application-Specific Systems, Architectures and Processors (ASAP),
2011 IEEE International Conference on, Sept 2011, pp. 61–68.

[15] H. Hoffmann, J. Eastep, M. Santambrogio, J. Miller, and A. Agarwal,
“Application heartbeats for software performance and health,” MIT,
Tech. Rep. MIT-CSAIL-TR-2009-035, Aug 2009.

[16] H. Hoffmann, M. Maggio, M. Santambrogio, A. Leva, and A. Agarwal,
“Seec: A framework for self-aware computing,” MIT, Tech. Rep. MIT-
CSAIL-TR-2010-049, Oct 2010.

[17] A. Schmidt and R. Sass, “Improving fpga design and evaluation pro
ductivity with a hardware performance monitoring infrastructure,” in
Reconfigurable Computing and FPGAs (ReConFig), 2011 International
Conference on, Nov 2011, pp. 422–427.

[18] T. Cervero, J. Dondo, A. Gomez, X. Pena, S. Lopez, F. Rincon,
R. Sarmiento, and J. Lopez, “A resource manager for dynamically
reconfigurable fpga-based embedded systems,” in Digital System Design
(DSD), 2013 Euromicro Conference on, Sept 2013, pp. 633–640.

[19] D. Go¨hringer, “Reconfigurable multiprocessor systems: Handling hydras
heads – a survey,” SIGARCH Comput. Archit. News, vol. 42, no. 4, pp.
39–44, Dec. 2014.

[20] A. Rodriguez, J. Valverde, E. de la Torre, and T. Riesgo, “Dynamic
management of multikernel multithread accelerators using dynamic
partial reconfiguration,” in Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC), 2014 9th International Symposium on,
May 2014, pp. 1–7.

[21] J. Valverde, A. Otero, M. Lopez, J. Portilla, E. de la Torre, and T. Riesgo,
“Using sram based fpgas for power-aware high performance wireless
sensor networks,” Sensors, vol. 12, no. 3, pp. 2667–2692, 2012.

