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Abstract—SRAM-based FPGAs have significantly improved 
their performance and size with the use of newer and ultra-
deep-submicron technologies, even though power consumption, 
together with a time-consuming initial configuration process, are 
still major concerns when targeting energy-efficient solutions. 
System self-awareness enables the use of strategies to enhance 
system performance and power optimization taking into account 
run-time metrics. This is of particular importance when dealing 
with reconfigurable systems that may make use of such infor
mation for efficient resource management, such as in the case 
of the ARTICo3 architecture, which fosters dynamic execution 
of kernels formed by multiple blocks of threads allocated in 
a variable number of hardware accelerators, combined with 
module redundancy for fault tolerance and other dependability 
enhancements, e.g. side-channel-attack protection. 

In this paper, a model for efficient dynamic resource manage
ment focused on both power consumption and execution times 
in the ARTICo3 architecture is proposed. The approach enables 
the characterization of kernel execution by using the model, 
providing additional decision criteria based on energy efficiency, 
so that resource allocation and scheduling policies may adapt to 
changing conditions. Two different platforms have been used to 
validate the proposal and show the generalization of the model: a 
high-performance wireless sensor node based on a Spartan-6 and 
a standard off-the-shelf development board based on a Kintex-7. 

Index Terms—Self-awareness, dynamic and partial reconfigu
ration, dynamic resource management, FPGAs. 

I. INTRODUCTION 

Hardware accelerators are used to speed-up data-intensive 
tasks, taking advantage of data-level parallelism and dedicated 
hardware design. However, one of their main disadvantages 
is that the number of available resources is usually limited. 
This leads to systems that, in general, lack the flexibility that 
software-approaches provide. Dynamic and Partial Reconfigu
ration (DPR) of FPGAs may alleviate this problem by resource 
multiplexing in time, so that the amount of such resources 
is virtually unlimited, but restricted in every moment by the 
total amount available in the device [1]. In a context where 
applications increase their complexity continuously, FPGA-
based systems need to adapt to more demanding requirements. 
As a result, the complexity of almost any strategy used to 
achieve optimal resource allocation surges, specially if not 
only external but also internal conditions must be taken into 
account. 

Jorge Portilla, Eduardo de la Torre and Teresa Riesgo 

Efficient resource management policies require both execu
tion modeling and real-time measurements to provide accurate 
estimations and predict the future behavior of the system. If 
a specific set of system metrics is monitored in real-time by 
the system itself, i.e. making it self-aware during execution, 
the acquired knowledge can be used to guide both resource 
allocation and task scheduling within the FPGA towards 
optimal solutions [2]. Moreover, modeling the behavior of 
the system during execution provides a framework in which 
decisions to move tasks from one operating point to another 
in the solution space can be made. 

In this paper, execution modeling has been implemented in 
ARTICo3 [3], a multi-platform virtual architecture that allows 
the execution of multikernel and multithread applications by 
using DPR to change hardware accelerators according to these 
model-defined requirements. The dynamic use of resources 
and operation modes applied to move the working point around 
the solution space is highly dependent on the targeted platform. 
Therefore, the task scheduler of the architecture must be aware 
of the possibilities offered by the platform in order to achieve 
a proper resource distribution. This flexibility, within a low-
power and high-performance context, permits the application 
of scheduling strategies similar to the methodologies used by 
operating systems. In any case, both the way resources are 
scheduled and the operation mode used are completely trans
parent to the application code running in the host processor. 

The rest of this paper is organized as follows: section II 
shows an overview of the state of the art, section III presents 
the features of the architecture on which the model is based. 
The proposed model is thoroughly covered and analyzed in 
Section IV; Section V shows the experimental results that 
confirm the validity of the model as well as its generalization, 
and Section VI provides the conclusions and the future work. 

II. RELATED WORK 

As it was already introduced, reconfigurable hardware archi
tectures require a dynamic use of resources, typically enabled 
by DPR. Some bus-based examples can be found in the 
literature: in [4], the authors prosed a bus-based architecture, 
so-called FLEXBUS, to adapt the connectivity and mapping of 
different components by dynamically adapting the communi
cation topology using a bridge by-pass. Thus, they can create 
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a network of bus segments connected by these bridges. In a 
context where different hardware accelerators are changed at 
run time to work as co-processors, being able to perform a 
proper task scheduling is a must. In [5], the authors present a 
dynamically adaptable architecture that allows the inclusion of 
an OS kernel for management tasks. Crucial aspects such as 
reconfiguration speed, critical when implementing strategies 
for task scheduling in dynamically reconfigurable architec
tures, are addressed. Dynamic changes do not only affect logic 
blocks but also memory resources. Moreover, the necessity 
of dynamic task scheduling on these platforms has also been 
covered [6]. In [7], an adaptive architecture for dynamic 
management and allocation of on-chip FPGA Block RAM 
memory (BRAM) resources is presented to deal with changing 
memory footprints of different reconfigurable modules. One of 
the main goals of these architectures is providing a framework 
to ease the dynamic reconfiguration process. In [8], the authors 
propose a technique called I/O bars to provide dynamically-
changing point-to-point connections from the static area of 
the FPGA to some reconfigurable modules apart from the 
ReCoBus-builder to assist partial run-time reconfiguration. In 
the ARTICo3 framework, the dynamic use of the available re
sources is improved by the combination of two methodologies: 
execution modeling (power consumption) and task profiling 
(performance and power consumption). 

Since power consumption is considered one of the main 
pitfalls of SRAM-based FPGAs, due to the fact that the 
static contribution is significantly larger than in other devices, 
power modeling appears as a mandatory component in almost 
any solution in which energy efficiency is a requirement. 
Therefore, power models focusing on different levels have 
been proposed. In [9], for instance, a power model at device 
level is presented. The model is then used to predict the impact 
of algorithm implementations on FPGA devices. It is widely 
known that DPR can be used to reduce the overall power 
consumption in the device, since it allows time-multiplexing of 
resources and therefore, designs can be implemented in smaller 
FPGAs (with less static power consumption) and dark-silicon 
areas are minimized. Hence, some works present models with 
different granularity levels to predict the power consumption 
during the reconfiguration process and use that information to 
feed an energy estimator, as in [10]. 

Moreover, models to estimate the power consumption of 
hardware modules in FPGAs have been widely studied, mostly 
to predict and to try to reduce it at design stages. In [11], the 
authors present a high-level technique to estimate power con
sumption for arithmetic hardware blocks such as polynomial 
evaluations with very close results to the ones provided by 
Xilinx XPower estimator. Besides, not only arithmetic blocks 
but also major event signatures such as buses or memory 
transactions need to be studied. In [12], these two elements are 
included together with a study of the variability of the power 
consumption according to LUT numbers and a comparison 
with real measurements in Virtex 5. However, very few works 
address on-line power management and profiling in order to 
dynamically adapt hardware resources, which is one of the 

main contributions of the ARTICo3 framework. 
Application profiling has also been widely covered in the 

literature. However, most profilers focus on software imple
mentations, i.e. performance or power consumption is profiled 
either by analyzing the program counter or the instruction 
bus of the processor. An example of this type of approach 
is SnoopP [13], a profiling framework that monitors the pro
gram counter of the C P U for improved H W / S W codesign. A 
similar approach is used in L E A P [14]. Software profiling has 
been successfully applied in systems with dynamic adaptation 
capabilities, as it has been shown in [15] and [16]. 

Although software profilers are more common, some ex
amples that explore performance profiling in hardware cores 
can be also found in the literature. For instance, in [17], 
a framework to help designers debug their applications is 
presented. The proposed approach inserts monitoring cores 
and provides software drivers to ease application profiling so 
that focus can be put on the application itself instead on the 
profiling infrastructure. 

Dynamic resource managers are also common elements in 
reconfigurable computing, as it can be seen in [18], where 
the authors propose a smart reconfiguration methodology 
targeting application performance. The ARTICo3 approach, on 
the other hand, focuses its optimization capabilities not only 
on execution performance but also on energy efficiency by 
taking into account the aforementioned elements: modeling 
and profiling. 

According to [19], there are three main cornerstones in mul
tiprocessor systems: hardware architectures, design tools and 
management of runtime adaptations. The ARTICo3 framework 
already provides solutions at architectural level by defining the 
processing elements, the memory structure and the commu
nication infrastructure. The work presented here establishes 
the foundation for handling other of the main cornerstones: 
adaptation in real time by means of self-awareness through 
execution modeling. 

I I I . ARCHITECTURAL SUPPORT 

ARTICo3 is a bus-based virtual architecture which features 
a set of reconfigurable slots suitable for SRAM-based FPGAs 
(in order to take advantage of DPR). Any combination, in 
number and position of reconfigurable slots can host hardware 
accelerators for a specific task, and a dispatcher unit is in 
charge of delivering data to and collecting results from them, 
accordingly to the configuration but independently from the 
application. A reconfiguration engine is used to swap different 
hardware accelerators, and thus achieve the aforementioned 
time multiplexing of resources. This architecture has already 
been presented in [3], and its Model of Computation (MoC), 
together with the basics for a Dynamic Resource Manager, 
were presented in [20]. 

Although ARTICo3 has several internal modules and fea
tures, each one with its own functionality, only those needed 
to fully understand the model foundations are discussed in this 
section. 



A. Data Transactions 
In ARTICo3, the data dispatcher unit is called data Shuffler. 

It acts as a bridge between the reconfigurable slots and the rest 
of the system, i.e. the static region. The data Shuffler interfaces 
the rest of the system using a standard connection to the shared 
bus where all peripherals are. The architecture also features a 
dedicated bus for large data transactions, which are done in 
bursts using a Direct Memory Access (DMA) engine for two 
main reasons: on the one hand, they are less time-consuming 
and the bus can benefit from having more data transfers using 
the same amount of time; on the other hand, DMA accesses 
are much more energy-efficient. 

The way of interfacing with the different reconfigurable 
slots changes depending on the operating mode in which 
the architecture is working, and on the direction data are 
being transfered (write to or read from the slots). In modes 
that use hardware redundancy, data are forwarded to the 
reconfigurable slots in multicast fashion, and retrieved through 
a voter unit that merges different paths and enables fault 
tolerance through module redundancy. In high performance 
modes, each reconfigurable slot is enabled during part of the 
whole data transfer. Hence, data are read from or written to 
the slots only when they are enabled, being the data Shuffler 
in charge of the sequencing process. Furthermore, the built-in 
data reduction engine can be enabled, taking advantage of data 
serialization in the bus, i.e. using less hardware resources, to 
perform a specific operation (e.g. add, maximum, minimum, 
or comparison with fixed value) on the data that are being read 
from the accelerators. 

B. Model of Computation 

The architecture provides a CUDA-like MoC, in which 
program sections with explicit data-level parallelism (called 
kernels) are split into different execution threads. These 
threads are grouped into thread blocks. Blocks cannot have 
data dependencies, but threads within the same block can. 
This is an important feature that allows transparent scalability 
in kernel execution: depending on the number of available 
resources, blocks can be executed in parallel or sequentially, 
since the obtained result is the same. 

In ARTICo3, kernels define a functionality, which is then 
implemented as data-independent thread blocks in the shape 
of hardware accelerators. The number of available slots, i.e. 
slots that are idle or yet to be loaded by the reconfiguration 
engine, determines the amount of thread blocks that can be 
executed at a given instant. The execution depends on the 
mode on which the architecture is working: when there are 
fault tolerance or security requirements and data are delivered 
strictly in parallel, the execution is also purely parallel in those 
blocks with hardware redundancy (for voting purposes or even 
for side channel attack protection), whereas in those situations 
following a SIMD-like approach, where thread blocks operate 
with different data, the execution is overlapped between accel
erators (due to data serialization through the bus that links the 
memories and the data Shuffler). The larger the overlapping 
is, the higher the acceleration. 

Kernel invocation involves data transferences to all its thread 
blocks, which are addressed sequentially (high performance 
modes), in parallel (hardware redundant modes), or using a 
hybrid approach (by combining both strategies) in the same 
D M A transfer. Each hardware accelerator starts its execution 
as soon as it has received all its input data. Hence, the effects 
of data serialization are mitigated and the aforementioned 
features, i.e. parallelism or overlapping, are achieved. 

I V . SYSTEM MODELING 

In order to provide the architecture with self-aware ca
pabilities, it is necessary to first model the different stages 
of the operation cycle. This model will be used by the 
Dynamic Resource Manager of the architecture to generate 
efficient allocation and scheduling policies in different kernel 
invocations, taking into account real-time execution metrics 
such as power consumption, elapsed times, battery level in 
portable devices, or requirements in terms of fault tolerance 
to allow a maximum number of faults per transaction for 
instance. The normal operation cycle of a thread block consists 
of three stages: reconfiguration of the hardware accelerator 
(whenever it is required), data transfers and kernel execution. 
The first stage will be referred to as the reconfiguration model, 
whereas the second and the third ones will be assembled in 
what will be called the transaction model. 

A. Reconfiguration Model 

Since the reconfiguration engine in ARTICo3 is software-
based, reconfiguration performance shows several limitations. 
In particular, bitstream composition to perform module re
location, together with the fact that configuration frames 
are read word by word from the memory, generate a large 
overhead in reconfiguration times. Experimental results in 
different platforms confirm these problems: in Zynq devices, 
only bitstream composition affects, since the transference of 
configuration data is done using a D M A transfer through the 
Processor Configuration Access Port (PCAP); in FPGA-only 
devices, on the other hand, the two problems are present when 
using the standard reconfiguration engine to access the Internal 
Configuration Access Port (ICAP). 

Moreover, as reported in [10], power consumption during 
reconfiguration processes depends on several factors, such as 
the previous configured logic and the module that is being 
loaded at that moment. 

All these factors favor the usage of a simplified model, 
in which the power consumption in the FPGA core equals 
the peak value during reconfiguration. In order to keep this 
value at a minimum, clock gating techniques are applied to 
each slot that is being loaded with a hardware accelerator, so 
that the clock is inactive during reconfiguration. The power 
consumption in the external memory, on the other hand, is 
almost equal to its static value, due to the aforementioned 
inefficient data readings. 

B. Transaction Model 

As opposed to reconfiguration processes, where the behavior 
cannot be easily modeled, power consumption during kernel 



Fig. 1. Transaction model in high performance modes. Thread block execution can be memory-bounded (left), or computing-bounded (right). The dashed 
line represents the simplified power consumption model in the FPGA core. 

Fig. 2. Transaction model when adding hardware redundancy. The contri- Fig. 3. Transaction model when using multithreading within a thread block. 
bution due to data transfers is the same in all three cases, whereas dynamic The contribution due to data transfers is the same, whereas dynamic power 
power consumption due to thread block execution increases over the reference consumption due to thread block execution increases when adding more 
value (one thread block, left) when adding DMR (two thread blocks, center) threads. However, since threads within a thread block execute in parallel, 
and TMR (three thread blocks, right). the execution time is decreased, thus reducing the impact of static current on 

the overall energy consumption. 

execution in ARTICo3 can be modeled using the FPGA core 
and the external RAM memory contributions. This can be done 
because power consumption in the other power rails has been 
proved to be constant during the whole process. 

The contribution of the FPGA core to the power consump
tion model is expressed as follows: 

Pcore(t) — Pbase(t) + Pdma(t) + / neXi(t)PeXi(t) (1) 

Pbase(t) — Pstatic(t) + / Ui(t)Pi (2) 

¿=1 

Pcore represents the power consumption of the FPGA core 
at a given instant; Pbase is the power consumption of the 
system when no kernel is being executed, which might change 
since it depends on the number of slots that are loaded with 
hardware accelerators and the activity in the static region; 
Pdma is the dynamic contribution to the power consumption 
due to DMA data transactions inside de FPGA; n k is the 
number of kernels loaded in the reconfigurable slots; ne x i is 
the number of thread blocks of kernel i being executed at 
a given instant; and Pexi is the dynamic contribution to the 
power consumption due to one thread block of kernel i being 
executed. 

Equation (2) shows how Pbase is computed when the system 



has n k kernels, each of them with n i thread blocks loaded 
in the reconfigurable slots. Pstat ic is the contribution of 
the static region, i.e. the power consumption of the whole 
system without any hardware accelerator, whereas P i is the 
contribution of one thread block of kernel i loaded in one 
reconfigurable region by the mere fact of being there. Note 
that Pbase does not represent the static power consumption of 
the FPGA and that, in some cases, n e x i might not be equal to 
n i . 

The contribution of the external RAM memory to the power 
consumption model is expressed as follows: 

P m e m ( t )=P m e m , s +Pm e m , d ( t ) (3) 

Pmem represents the power consumption of the external 
RAM memory; and Pmem,s, Pmem,d are the values of static 
and dynamic power consumption in the external memory 
power rail respectively. 

Therefore, the overall power consumption in the ARTICo3 

system can be approximated taking into account these two 
contributions with the following expression: 

P ( t )=P c o r e ( t )+P m e m ( t ) (4) 

In order to make an efficient implementation in the Dynamic 
Resource Manager, the model can be simplified by making the 
following assumptions: 

1) Equations (1), (2) and (3) are discretized using sampling 
time Ts, to account for the self-measuring Analog to 
Digital Converter (ADC) circuitry. 

2) Thread blocks have uniform power consumption during 
their execution. 

3) DMA transfers and memory accesses have uniform 
power consumption. 

Normal system operation in high performance modes, i.e. 
with execution overlapping, can find bottlenecks in two dif
ferent stages: memory accesses (and the associated DMA data 
transfer through the bus), and thread block execution. Depend
ing on the limiting factor, the execution can be classified as 
memory-bounded or computing-bounded. 

Memory-bounded execution: shows high bus occupancy, 
• 

since the DMA engine is always busy transferring data. 
One or more thread blocks have finished their processing 
and are idle waiting to be read. 
Computing-bounded execution: generates reduced bus 

• 

occupancy and memory usage due to idle times between 
data transferences. Thread blocks continue processing 
data after the transfer has finished, and therefore show 
no idle times. 

These two possibilities are covered by the proposed model, 
as it can be seen in Fig. 1, where an example invocation with 
overlapped execution of eight thread blocks of the same kernel 
is shown. Notice the idle times in the FPGA core for memory-
bounded execution, and in the external memory for computing-
bounded execution. Also notice the opposite behavior in 
the other power rail: continuous power consumption in the 

external memory for memory-bounded execution and no idle 
times in the FPGA core consumption for computing-bounded 
execution. 

The proposed model is also applicable in scenarios where 
hardware redundancy exists. For instance, Fig. 2 shows the 
impact of adding more copies of the same thread block 
to perform Double Module Redundancy (DMR) and Triple 
Module Redundancy (TMR). The data transfer component of 
the power consumption (Pdma) remains the same, whereas 
the number of thread blocks of the given kernel (nexi) being 
executed is increased, leading to a proportional increase in 
terms of overall power consumption. 

To model all the features ARTICo3-enabled execution pro
vides, the model can also be extended to multithread execution 
of a single, i.e. only one, thread block, as shown in Fig. 3. In 
this case, adding more threads generates not only an increase 
in the power consumption of the thread block, but also a 
decrease in its execution time due to parallelization, which 
in turn implies a more energy-efficient execution, as it has 
been proved by experimental results. 

Therefore, all capabilities of the architecture fit in the 
proposed model, since any kernel execution can be charac
terized by a combination of three different features: execution 
overlapping of thread blocks, hardware redundancy of a thread 
block, and multithreading in a single thread block. 

V. EXPERIMENTAL RESULTS 

The experimental setup uses two different platforms to 
validate the model: the HiReCookie high-performance wireless 
sensor node (Spartan-6, XC6SLX150-2FGG484) [21], and the 
KC705 evaluation board from Xilinx (Kintex-7, XC7K325T-
2FFG900). Both platforms have built-in circuitry to measure 
power consumption in different power rails. In addition, the 
ARTICo3 implementations on these platforms include a timer 
to measure elapsed times during reconfiguration and kernel 
execution. 

A. Reconfiguration Model 

Results obtained during the reconfiguration stage in both 
platforms are summarized in Table I , where fclk is the system 
clock frequency (in both static and dynamic regions) and f icap 

is the ICAP clock frequency. Technology limitations impose 
significantly smaller values in the latter for Spartan-6 FPGAs. 
This, together with the 16-bit I C A P datapath in those devices 
(as opposed to the 32-bit I C A P datapath in 7-Series FPGAs), 
decreases reconfiguration throughput. Moreover, the software-
based approach leads to low performance ratios between 
measured and theoretical results in terms of throughput, as 
it was previously stated in Section IV. The reported values 
of power and energy consumption are higher in the KC705 
development board since ARTICo3 slots occupy much more 
logic resources in that platform than in the HiReCookie node 
(this values are also reflected in Table I). 

B. Transaction Model 

A reduced set of kernels has been implemented in order to 
test the architecture and the accuracy of the proposed model. 



T A B L E I 
RECONFIGURATION OVERHEADS PER SLOT 

Parameter 

f c l k (MHz) 
f i c a p (MHz) 

Slot Size (kB)* 
Theoretical throughput (MB/s) 

Reconfiguration throughput (MB/s) 
Performance ratio (%) 

Power consumption (mW) 
Reconfiguration time (ms) 

Energy (mJ) 

KC705 

100 
100 
505 
400 
5.15 
1.28 

596.87 
95.7 
57.12 

HiReCookie 

100 
20 

124.67 
40 

3.64 
9.1 

290.34 
33.46 
9.71 

* Configuration memory footprint of an ARTICo3 slot. 

This library has kernels with both memory-bounded execution 
(Sobel and median filters) and computing-bounded execution 
(AES and SHA-2). Actual measurements in the power rails 
using an oscilloscope confirm the validity of the proposed 
approach, as well as the differences between these two types 
of kernel executions. Fig. 4 shows the behavior of the median 
filter kernel, which is memory-bounded, in the HiReCookie 
platform. Fig. 5, on the other hand, shows the behavior of 
the AES256 CTR kernel, which is computing-bounded, in the 
KC705 development board. Notice that the obtained results 
resemble what was predicted by the model in Fig. 1. 

The values of the parameters that feed the model vary from 
one kernel to another. Table I I shows the characterization of 
an AES256 CTR kernel in both platforms, which has been 
obtained from different runs. Each of these runs differ in 
only one parameter, e.g. number of thread blocks loaded (to 
compute the power consumption of one hardware accelerator 
that is idle), or number of thread blocks used (to compute 
the dynamic power consumption of one hardware accelerator 
during execution). 

Once the kernel has been characterized, the model has 
been verified with real measurements from the two platforms. 
Fig. 6 shows the comparison between the real measurements 

Fig. 4. Memory-bounded kernel execution in ARTICo3 on the HiReCookie 
node. Notice that the external RAM memory has larger power consumption 
in read than in write operations. 

T A B L E I I 
MODEL PARAMETERS: AES256 C T R KERNEL 

Parameter 

-Ldma 
P i 

P 
ex i -Lmem,s 

P m e m , d (read) 
P m e m , d (write) 

KC705 

6.93 
38.66 
31.57 
792 
768 
1368 

HiReCookie 

5 
44.55 
22.21 
91.6 
133.4 
101.25 

and the estimations provided by the model in the KC705 
board. Note that, in order to obtain similar execution times, 
input data sizes increase at a rate of 32kB per additional 
thread block. Therefore, each block has to process the same 
amount of data in all runs. Otherwise, the execution times 
would have decreased when adding more thread blocks due to 
execution overlapping, as expected in the model. Fig. 7 gives 
a better view of the power consumption in the FPGA core, 
and shows that the execution becomes more energy-efficient 
when increasing the number of thread blocks and exploiting 
overlapping. Moreover, note that the static power consumption 
represents roughly 60% of the overall value. 

The accuracy of the model can be analyzed taking into 
account the correlation between the measurements and the 
estimated values. Table III sums up the obtained values in both 
test platforms. Notice that the model provides significantly 
worst results when modeling executions of only one thread 
block. This is mainly due to the minimum increase in the 
power consumption in those situations, a behavior that has 
to be taken into account by the Dynamic Resource Manager 
when profiling new kernels. The HiReCookie can only use 
up to 4 thread blocks of the AES256 CTR kernel, and thus 
no correlation values are provided for 5 and 6 thread blocks. 
In addition, and since the circuitry of the power rails has 
larger capacitors, the correlation values are slightly lower in 
the HiReCookie node than in the KC705 board. 

Fig. 5. Computing-bounded kernel execution in ARTICo3 on the KC705 
board. Notice that the external RAM memory has larger power consumption 
in write than in read operations. 



Fig. 6. Close-up of the power consumption model in the KC705 development 
board executing an AES256 CTR kernel with different number of thread 
blocks and input data sizes. 

T A B L E I I I 
MODEL ANALYSIS: AES256 C T R KERNEL 

Thread Blocks 

1 
2 
3 
4 
5 
6 

Correlation Model-Measurements 
KC705 HiReCookie 

0.7177 
0.9174 
0.9644 
0.9795 
0.9790 
0.9860 

0.4990 
0.8971 
0.9453 
0.9628 

-
-

The model suffers deviations when performing kernel invo
cations from different background states, as it can be seen in 
Fig. 8, where the same execution provides measurements that 
differ in Pbase. The model provides the same results in both 
situations, since it assumes the same power consumption in 
the static region. Hence, the Dynamic Resource Manager has 
to ensure that the reference value in the power consumption, 
i.e. Pbase, is updated before profiling a new kernel. 

V I . CONCLUSIONS AND FUTURE WORK 

In this paper, a simplified yet accurate model of a kernel 
being executed on ARTICo3 has been proposed. The model 
takes into account that kernel execution might involve a combi
nation of three different features provided by the architecture: 
overlapped execution of thread blocks, parallel execution of 
redundant thread blocks, and parallel execution of multiple 
threads within a thread block. 

The model has been validated with actual measurements in 
two different platforms, the HiReCookie node and the KC705 
development board, and with a set of kernels that show dif
ferent behavior during their execution (memory-bounded and 
computing-bounded). Moreover, an AES256 CTR kernel has 
been characterized and then analyzed in different scenarios, 
showing the accuracy of the proposed approach. 

The power consumption model, together with the execution 

Fig. 7. Overall power consumption of an AES256 CTR kernel in the KC705 
development board. Note that the energy efficiency is increased when the 
number of thread blocks is increased. 

Fig. 8. Comparison between the power consumption model and two different 
runs in the KC705 development board of an AES256 CTR kernel with 6 
thread blocks, 2 threads per block and 1MB input data. 

and reconfiguration times are powerful tools that the Dynamic 
Resource Manager of the architecture has to take into account 
when deciding which kernels are to be executed, or how many 
thread blocks have to be placed in the reconfigurable slots. 
Allocation and scheduling policies have to be made analyzing 
both execution times and energy, specially in platforms with 
limited resources such as the HiReCookie node. If the speed
up achieved by adding more thread blocks is significantly 
higher than the increase in terms of power consumption, the 
system will achieve a more energy-efficient execution, at least 
up to the point in which execution becomes memory-bounded. 

At any rate, reconfiguration must be taken into account, 
since energy savings obtained by using more computing re
sources working concurrently might be negligible compared to 
the amount of energy spent during reconfiguration. This can 



be seen, for instance, in the KC705 development board when 
comparing the time and energy spent loading two AES256 
CTR thread blocks (191.4 ms, 114.24 mJ) with the time and 
energy spent processing 64 kB of raw data (2.68 ms, 1.98 
mJ) with those accelerators. Therefore, for small amounts of 
data there is no overall energy gain. This can be solved either 
by increasing the amount of data to be processed (in the 
aforementioned example, moving from one round of 64 kB 
to hundreds of rounds) or by optimizing the reconfiguration 
engine, since the reconfiguration throughput does not provide 
energy-efficient load or switch operations between hardware 
accelerators. The current work is focused on optimizing the 
reconfiguration engine so that the overhead due to the recon
figuration process is almost equivalent to the one due to the 
kernel execution. By achieving that, an additional overlapping, 
in this case between reconfiguration and execution, is to be 
implemented. 
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