Biocircuits engineering and bio-design automation:
some recent results”

Newcastle University, June 15,2015

Inteligencia

Artificial
Laboratorio

www_ lia.upm.es

Alfonso Rodriguez-Paton

arpaton@fi.upm.es
@LIA_UPM

4

VOIND3LNOd

Inteligencia S
LIA members Artificial o
Laboratorio £
* Professors: o
— Andrei Paun www.lia.upm.es >

— Petr Sosik

— Ivan Pau

— Daniel Manrique
e PhD students:

— Martin Gutiérrez

— Paula Gregorio

— Guillermo Pérez

— Ismael Gémez

— Vishal Gupta

— Antonio Garcia

— Marcos Rodriguez
 Master students: Irene Serrano, Laura Puente, Luis Enrique Munoz

Eeas O)
OWIRES)

GOBIERNO MINISTERIO
DE ESPANA DE ECONOMIA
Y COMPETITIVIDAD

Outline

Systems Biology: GRO simulator

Synthetic Biology: PLASWIRES project, Directed
Evolution.

DNA Computing: Inference with DNA
molecules.

Lab automation: EVOPROG project

One-gene genetic oscillator with a positive
feedback loop and a negative interaction

. r_j'
A . é — ()R
Delay and nonlinearity : :
Negative AN
|__|+ AA/\/\ integractior{.'? + o— @
NTF Oscillations C

[Promoter Gene

Negative interaction I
+ AVAVAVAN ?
i J | Oscillations PTF =M u
(Promoter| Gene t

—— G

Miré-Bueno JM, Rodriguez-Patdn A (201 1) A Simple Negative Interaction in the Positive
Transcriptional Feedback of a Single Gene Is Sufficient to Produce Reliable Oscillations. PLOS
ONE 6(!|):€2/414.doi:10.137/journal.pone.002/4 14

(molecules)

6000
A

3000

0

600
R 300

1200

600

@

10000}

A (molecules)

Stochastic simulation

One-gene genetic oscillator with a positive
feedback loop and a negative interaction

Deterministic simulation

VAT B

@)

|

|

|

VIR

W

A

1000

100
10

0.1

48 96 144 192 240 0 48 96 144 192 240

200 600 1000 1400
C (molecules)

Normalized A,C

A (molecules)

Counts for 1,000 cycles

B —_— —
8000} » mean = 6723
| 8 250r5p =858 |
>
6000} S 200¢
I S 150
4000 T i
(=}
© 100
2000 ‘g’
2 50
F o
o} Y - o o ==,] 0
0 400 800 1200 4000 6000 8000
C (molecules) Amplitude of A oscillations (molecules)
— —_ D, !
mean = 24.3 s
3001 sp.=17 B
5 05
200 :)
<
5 0f !
c 1
£ 1
100} $-050 '
5 1
3 1
0 s -1 L .
16 18 20 22 24 26 28 30 < 0 48 96 144 192 240

Period of A oscillations (hours) Time (hours)

Slow

Ll
LI
Fast

PLoS ONE 6(11): e27414.
doi:10.1371/journal.pone.0027414

50

60

70

Time (hours)

80

DNA Computing in LIA group

Sainz de Murieta, |., & Rodriguez-Paton, A.
(2014). Probabilistic reasoning with a Bayesian
DNA device based on strand displacement.
NATURAL COMPUTING, 13(4), 549-557.

Rodriguez-Paton, A., de Murieta, I. S., & Sosik,
P. (2014). DNA strand displacement system
running logic programs. Biosystems, 115, 5-12.
Chicago

Computational modelling

The most frequent approaches for simulating genetic
CIrcurts are:

* Differential Equations (DEs)
— High precision at single-cell level

— Scale poorly to large-scale colonies and spatial
component Is not easlly reproduced

* Agent/Individual based Models (IbMs)
— Perform better at a large scale

— Not as precise as DEs (most IbMs are rule based)
— Provide a good spatial environment

LIA

* We are interested in designing, simulating and

studying multicellular genetic circurts that run In
bacterial colonies.

* We wan to simulate cell-cell communication
based on conjugation: space Is Important

* Agent/Individual based Models (IbMs): are best
surted for this purpose.

State of the Art; IbMs

e CellModeller

— Python library for simulating bacterial colonies
developed by U. Cambridge and Microsoft
Research.

— Simulates 2D or 3D colonies of rod-shaped
bacteria.

— Simulations are implemented through DEs or
through rules.

— Runs on OpenCL and reaches up to 32000
simulated bacteria in 30 mins.

State of the Art: IbMs (ll)

* iDynoMiCS
— Developed by |.U. Kreft lab at University of
Birmingham
— Simulates 2D and 3D bacterial colonies.

— Simulations are implemented through rules (XML
parametrization and Java).

— Goal Is to study biofilm formation.

State of the Art: IbMs (lll)

* BactoSIM
— Developed by LIA —UPM.
— Simulates 2D spherical bacterial colonies.

— Simulations are implemented through rules (based
on Repast - Java).

— Reaches 10° bacteria in | hour,

— The goal of BactoSIM is to study bacterial
conjugation.

State of the Art: IbMs (IV)

« GRO

— Developed by Klavins lab at University of
VWashington.

— Simulates 2D rod-shaped bacterial colonies.

— Simulations are implemented through rules (gro
language — based on guarded commands).

— Reaches around 0% bacteria in | hour

— Aimed at simulating multicellular behaviors.

IbMs

* At LIA, we (have) work(ed) with these IbMs:
— IDynoMICS
— BactoSIM
— GRO

* A brief summary of our work will now be
presented.

iDynoMiCS

iDynoMiCS - Conjugation

iDynoMiCS — Growth

Bacteria growing with rod-shaped bacteria and shoving

BactoSIM

BactoSIM — Measuring phage infectivity

] ®
® ®
@ k]
& &
£ &
T =0 mins T =125 mins

B Phage

Uninfected bacterium

B Infected bacterium

VSS=mmlsyaa eS|
S i e
RISl e

AN

N/

\NNQ‘
Sir
AN
R
A
£ ' /—‘
-\-%_ N |
[
4
iz
77
g\é
¥

{7
=
1
Y,
N
/A
2
;-\
TN
S
a—
=X

[y
RN
,,,c,,’,‘.\}#l‘,,l/@g;
@s\"“ﬁ"“"“@ 2
7 L' ‘, ;"‘/ il > _",

SN2
"' \?E:g%@&/’%\

53
o,

7
ul,j

TG
e

0 NNy “%\V# .
p

R e D
‘@z‘gﬁg@&&»

S,

RN
i
j .5_1‘\1_ 7
5 ééé?%?ﬁﬁ?m
%)
74l

7
2/

g

N2
’-‘:0/\“ .."_
Al
N\

s

(=
717
45’%&
SN
=
=71
=8
=
X\
\

il
neZ\Zl
<5

s

0
W
S
e
Sl
§s§$'
A
i
N
N
By
X\
3

e N== 2rel
W7 =TrE=g),]IQ
e
i

TN

,&A =
< ‘ \ltr \~

V I =i

L
= NelT T

. P &
WB:‘IM’?Z‘
Y * |

GRO

Developed at Klavins Lab
(University of VWashington)

IbM based on guarded
commands and functional
programming.

GRO Is mainly concerned
with studying bacterial colony
growth and multicellular
behaviors based on signals.

Chipmunk acts as GRO's
physics engine.

Some limitations of GRO

Bacterial conjugation i1s not implemented.

GRO is slow, it reaches about 20000 bacteria In
4 hours.

Describing an experiment with guarded
commands Is unnatural for biologists.

Colony growth does not take into account
nutrient uptake.

GRO, improved by LIA

* We have implemented the following
functionalities for GRO:
— Bacterial conjugation
— New shoving algorithm (CellEngine)

— New genetic module

— New nutrient uptake and growth module
(CellSignal)

Implementation of conjugation process

* Conjugation was implemented atop the
modified GRO (using CellEngine)

(=)

“Aura’ calculation to retrieve a bacterium’s neighbors

Conjugative plasmid: will you survive?

Implementation of conjugation process

* GRO's source code was modified to include
conjugation process In its workflow

Integrate growth

Update cell state

and contact |:>
dynamics

Integrate diffusion
and degradation of

signals
@. Remove dead <
|

cells

For each cell:

a) Conjugate (if it’s time)

b) Increase volume

c) Evaluate guarded
commands

d) Check for divisions and
create daughter cells if
necessary

Adapted from Jang et al., 2012

27

GRO — Conjugation rules

* A bacterium conjugates in GRO under the
following circumstances:

— [t has a conjugative plasmid

— A probability of conjugation is calculated from a
ratio between the # of average conjugations per life
cycle, the # of timesteps and the # of neighbor
bacteria.

CellEngine: a new fast shoving algorithm

* CellEngine, a new shoving algorithm

* Based on the grouping of bacteria in rings

CellEngine: algorithm

|. Find bacteria in the edge of the colony

2. Recursively create rings of bacteria of a certain
width w inwards until reaching the center of the
colony

3. Once the center is found, repeat for all rings
starting at the center and moving outwards:

|, Relax overlaps of ring I as If it were an independent
colony. Assume the inner ring (I+1) as a wall and the
outer ring (I-1) as non-existent.

2. Relocate ring -1 outwards around ring 1.

CellEngine execution

7 | CellEngine Beta 1.5

Computing time: 0,05sec

Frame: 16
FPS: 24

Frame time: 0,00lsec

Camera position: -224,50. 2,01
Camera zoom: 0,683
Selected: 0

Population: 1

Growth rate: 0,10

Stadistical body length: 21,60px
Density: 0,054

Avarage neighborhood: 0,00
Border distance: Opx

Pneumatic effect: -1,#7J

Max bodies per box: 70
Combined rings: 4

Iterations per ring: 1
Thrust relation: 0,88

Rings number: 1

Press 1 -> neighborhood, txt
Press 2 -> pneumaticEffect,txt

Ring calculation

CellEngine execution

CellEngine Beta

Computing time: 0,0lsec
Frame: 1
FPS: 1000

Frame time: 0,00lszec

Camera position: -993,43, -113,54
Camera zoom: 0,123

Selected: 0

Population: 1

Growth rate: 0,10

Stadistical body length: 20,10px
Density: 0,050

Avarage neighborhood: 0,00
Border distance: Opx

Pneumatic effect: -1,#J

Max bodies per box: 70
Combined rings: 4
Iterations per ring: 1
Thrust relation: 0.88

Rings number: 1

Press 1 -> neighborhood, txt
Press 2 -> pneumaticEffect, txt

Ring calculation and growth (large scale)

CellEngine vs. Chipmunk

Growth test

GRO (CellEngine) GRO (Chipmunk)

CellEngine execution

Computing time: 0,00sec

Frame: 0
FPS: 3
Frame time: 0,382sec

Camera position: -223,03. 2,01
Camera zoom: 0,683
Selected: 0

Population: 1

Growth rate: 0,10

Stadistical body length: 28,59px
Density: 1,#I0

Avarage neighborhood: 5,96
Border distance: Opx |
Pneumatic effect: 0,80

Max bodies per bhox: 70 !
Combined rings: 4 |
Iterations per ring: 1 |
Thrust relation: 0,88 [

Rings number: 0

Press 1 -> neighborhood, txt
Press 2 -> pneumaticEffect,txt

Bacterial colony growth

CellEngine execution

|7 /| CellEngine Beta 1.5

Computing time: 0,32sec
Frame: 616
FPS: 585

Frame time: 0,00lsec

Camera position: -225,96, 2,01
Camera zoom: 0,683
Selected: 0

Population: 7

Growth rate: 0,10

Stadistical body length: 24,6dpx
Density: 0,175

Avarage neighborhood: 2,00
Border distance; 48px

Prneumatic effect: -1,#7J

Max bodies per box: 70
Combined rings: 4 .‘a-
Iterations per ring: 1 | |
Thrust relation: 0,88
Rings number: 2

Press 1 -> neighborhood, txt
Press 2 -> pneumaticEffect,txt

Cell alignment calculation

CellEngine — some numbers

GRO (Chipmunk) | GRO (CellEngine)

Cells | Total time (hours) | Total time (hours)
| 0.00 0.00
500 0.00 0.00
1000 0.01 0.00
2000 0.02 0.00
4000 0.08 0.00
8000 0.41 0.00
| 6000 2.14 0.00
20000 4.02 0.01
| 00000 > |68 0.05

Genetic module

Boolean values for the proteins: 0/ |
Boolean values for the state of the genes: ON/OFF

How long must be a gene ON to produce enough protein to
be considered as |? Half-life activation time.

How long must be a gene OFF to consider its associated
protein takes value 0? Half-life degradation time.

Promoters: Boolean logic gates: AND, OR, etc.

Noise: Probability that a gene ON(OFF) switch to OFF(ON)
respectively, without any change in the inputs

Similar to a Probabillistic Asynchronous Boolean Network
with delays. Or a piecewise-linear differential equation.

Example: Repressilator

a Repressilator Reporter

P lac0O1

amp” .
. tetR-lite
- P tetO1

kan”®

pSC101 gfp-aav

origin APr

lacl-lite

ColE1

A cl-lite

P, tet01

Original design of the Repressilator

Example: Repressilator

include gro
set("dt",0.001);

period := 390;

T :=0;

program repressilator() :=

{
delay := 9;
yfp 1= @;
gfp := @;
rfp := 9;
state := [s := rand(3) + 1];
state.s = 1 & delay >= period : {rfp := @, gfp :
state.s = 2 & delay >= period : {rfp := @, yfp :
state.s = 3 & delay >= period : {yfp := @, gfp :
state.s = 1 & delay < period : {rfp := rfp + 1}
state.s = 2 & delay < period : {yfp := yfp + 1}
state.s = 3 & delay < period : {gfp := gfp + 1}
true : {delay := delay + dt}

I H

program main() :=

{
true : {t := t + dt}

I H

ecoli([x := @, y := @], program repressilator());

@, state.s :
@, state.s :
@, state.s :

2, delay :
3, delay :
1, delay :

0}
o}
0}

Guarded command based source code for the Repressilator

Example: Repressilator

include gro

set ("dt", 0.1);
set ("population_max", 2000000);

t:=0;
program p() :=
{

skip();

i

set ("num_plasmids",2);
set ("num_proteins",4);

degradation_times({30.0170¢,32.2900,30.0170,33.8000},{2.0,2.0,2.0,2.0},
{0.0,0.0,0.0,0.0},{0.0,0.0,0.0,0.0});

operon ({true,false,false,false}, {false,false,false,false}, {0,-1,0,0}, {}, false,
{32.2900,0.0,0.0,0.0}, {20.3,0.0,0.0,0.2}, {0.0,0.0,0.0,0.0}, {0.90,0.0,0.0,0.0},
0, {0.90,0.0,0.0,0.0},{0.0038,0.9962,1,0});

operon ({false,false,true, false}, {false,false,false, false}, {-1,0,0,0}, {}, false,
{0.0,0.0,30.0170,0.0}, {0.0,0.0,20.3,0.0}, {0.0,0.0,0.0,0.0}, {0.0,0.0,0.0,0.0},
0, {0.0,0.0,0.0,0.0},{0.0088,0.9912,1,0});

operon ({false,true,false,false}, {false,false,false, false}, {0,0,-1,0}, {}, false,
{0.0,30.0170,0.0,0.0}, {0.0,20.3,0.0,0.2}, {0.0,0.0,0.0,0.0}, {0.0,0.0,0.0,0.0},
0, {0.0,0.0,0.0,0.0},{0.0003,0.997,1,0});

operon ({false,false,false,true}, {false,false,false,false}, {-1,0,0,0}, {}, false,
{0.90,0.0,0.0,30.0170}, {0.0,0.0,0.0,20.3}, {0.0,0.0,0.0,0.0}, {0.0,0.0,0.0,0.0},
0, {0.90,0.0,0.0,0.0},{0.0088,0.9912,1,0});

plasmids_matrix ({true,true,true,false,
false, false,false, true});

action({false,false,false,true},"d_paint",{"3","0","0","0"});
action({true,false,false,false},"d_paint",{"-1","0","0","0"});
action({false, true, false,false},"d_paint",{"-1","0","0","0"});

program main() :=

c_ecolis(3e, 200, {true, true}, {true,false,false,false}, {false,false,false,false}, program p());
c_ecolis(1, 30, {false, false}, {false,false,false,false}, {false,false,false,false}, program movie());

true:

{
}

t =t + dt;

h

Genetic design based source code for the Repressilator

Example: Repressilator

Repressilator in GRO Wet-lab Repressilator

Example: Edge detector

Plasmid-plasmid interaction

Nutrient uptake and growth module

We're working on more features...

* A simplified and faster version of signal diffusion
* Phage (lytic and non-lytic) dynamics.
* A new genetic module more “precise” with

probabilities and threshold values of time for
0/1 protein states.

* 3D simulations: Morpheus, Biocellion

Perspectives

Quantitative data

// Initial conditions
n_px := 3;

t_in_px := 30;
psx_to_none := 0.2;
delta_psx_to_none :
n_psx_orig := 30;
t_in_psxo := 20;

GRO source
code

= 0.2;

lambdaP
tetRlite lacl-lite cl-lite Ppscior

<?xml version="1.0" encoding="UTF-8"7>
<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:sbol="http://sbols.org/v1#"
xmlns:sublime="http://clarkparsia.com/sublime#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">
<sbol:DnaComponent rdf:about="urn:7914c028-828c-47c4-96d4-1af76c7ef044">
<sbol:displayId>Unnamed</sbol:displayId>
<sbol:annotation>
<sbol:SequenceAnnotation rdf:about="urn:8198467f-c78f-474a-a@14-1961ce5c72a8">
<sbol:precedes rdf:resource="urn:9e5f6268-b@9e-471b-9ac9-d1603d446fdS" />
<sbol:strand>+</sbol:strand>
<sbol:subComponent>
<sbol:DnaComponent rdf:about="urn:2939e2b4-f685-4e42-aBc3-9f63d7dead57">
<sbol:displayId>Plac@l</sbol:displayld>
<sbol:name>Lac promoter</sbol:name>
<sbol:description></sbol:description>

SBOL

Outline

Systems Biology: GRO simulator

Synthetic Biology: PLASWIRES
project, Directed Evolution.

DNA Computing: Inference with DNA
molecules.

Lab automation: EVOPROG project

PLASWIRES project (@M@ O)
o et (OWIRES

Universidad Politécnica de Madrid (Sp«

PLASWIRES Project ID i
card

arpaton@fiupm.es

www.lia.upm.es

« Funded under: 7th FWP (Seventh

Framework Programme)

« Area: FET Proactive: Evolving Other partners:
Living Technologies (EVLIT) (ICT- e ; T
2013.9.6) I‘v & Fernando de la Cruz A UK

Universidad de Cantabria (Spain)

. Project reference: 612146)
fernando.cruz@unican.es

« Total cost: 2.62 million euro http://grupos.unican.es/intergenomica/

. EU contribution: 2.01 million euro

« Execution: From 2013-10-01to

2016-09-30
Jim Haseloff
University of Cambridge (UK)
jh295@ cam.ac.uk
http://www.haseloff-lab.org/

« Duration: 36 months

Didier Mazel
Institut Pasteur (France)
mazel@ pasteur.fr

http://openwetware.org/wiki/Mazel

PLASWIRES

"Engineering Multicellular Biocircuits:
Programming Cell-Cell Communication
Using PLASmids as WIRES”

A Synthetic Biology FP7 European research project

PLASWIRES' main gool: To show how to program a parallel distributed living
computer using conjugative plasmids as wires between cellular processors.

Outline

Systems Biology: GRO simulator

Synthetic Biology: PLASWIRES project,
Directed Evolution.

DNA Computing: Inference with DNA
molecules.

Lab automation: EVOPROG project

An Autonomous In Vivo Dual Selection Protocol
for Boolean Genetic Circuits

Input Plasmid
Input
—> . .
OFF selection ON Selection
al t2 tfa Input 0 0 1 1

Output 0 (OFF) 1 (ON) 0 (OFF) 1 (ON)

Correct Incorrect Incorrect Correct
Computing Plasmid (Survive) | (killed by T1) | (killed by T2) | (Survive and
conjugate)

>

a2 H t1 H rel H gfp

Pyes

Figure 2. ves-gate in vivo selection. Two plasmids needed: input plasmid (a conjugative plasmid with the activator input
tfa) and computing plasmid (a mobilizable plasmid that contains the circuit Pygs to be selected). Selection genes:
tl: toxin gene [; al: antitoxin gene |; t2: toxin gene 2; a2: antitoxin gene 2; rel: relaxase gene (a conjugation gene).

tfa: transcription factor (activator); tfa is an activator of promoter Pygs. gfp: green fluorescent protein gene.

Benes, D, Sosik, P, & Rodriguez-Patdn, A. (2015). An Autonomous In Vivo Dual Selection Protocol for
Boolean Genetic Circuits. Artificial Life 21:24/-260 (2015) doi:10.1 162/ARTL_a_00160

An Autonomous In Vivo Dual Selection Protocol
for Boolean Genetic Circuits

Contradiction Tautology

1500 15000

1000 / \ 10000 “”““"“,”""ncuui
\ -
500 Vs

\\ 5000 P Vi

0 T T \‘T»....__,I_,,.....“........A. e

‘ 0 T T T T T 1
0:00 0:40 1:20 2:00 2:40 3:20 0:00 0:40 1:20 2:00 2:40 3:20

Not Yes
15000 1500
10000 TR L 1000 £ \\
'
5000 // 500 \\
s
0 - T T T T T 1 0 T T ~‘~~I~_ e
0:00 0:40 1:20 2:00 2:40 3:20 0:00 0:40 1:20 2:00 2:40 3:20

Figure 6. Dual selection of a NOT gate: oN selection step. Initially, there are 1000 bacteria (y-axis) with each type of
one-input logic gate: YES, NOT, TAUT, and coNT. Input is 0; then only bacteria with output = | (oN state) should survive.
Experiment finishes at 4 h (x-axis).

Benes, D, Sosik, P, & Rodriguez-Patdn, A. (2015). An Autonomous In Vivo Dual Selection Protocol for
Boolean Genetic Circuits. Artificial Life 21:247-260 (2015) doi:10.1 162/ARTL_a_00160

Outline

Systems Biology: GRO simulator

Synthetic Biology: PLASWIRES project,
Directed Evolution.

DNA Computing: Inference with
DNA molecules.

Lab automation: EVOPROG project

Inference with DNA molecules

Basic Inference rules: modus ponens and
modus tollens

Modus Ponens states that from P and the implication
P = Q one can deduce Q.

if P,then Q
P.
Therefore, Q

Modus Tollens states that from NOT-Q and the
implication P - Q one can deduce NOI-P

f P,then Q
Not-0O.
Therefore, Not-P

Previous works: Inference with DNA molecules

P= “symthom,” p

'S il — 0
- + & n T
[. < O

cleave

Ll

QI

é

waste ... : cleave
4
WHHHHIHIHIHHM HHIHIHLW

’ Aux
> + >
unfolded loop
output
v

Molecular implementation of simple logic programs
Tom Ran', Shai Kaplan®* and Ehud Shapiro'2* Q = “disease y "

NATURE NANOTECHMNOLOGY | VOL 4 | CCTCBER 2006 m

DNA strand displacement and competitive
hybridization

Inference with DNA strand displacement

Q
A output
P
MODUS PONENS! e
: v -
4
P
input T
Q
111
P> P
Q
input "
MODUS TOLLENS prinn i
=Q

v
=P output

Special case of resolution: Modus Ponens

A—B
A | -a “AvB

\M/odus Ponens
-lb ’

T

3
QI

B

Special case of resolution: Modus Tollens

A—B
“AvB b’ b." -B

\Wodus Tollens

.
Pl
A

Solving SAT applying resolution with
autonomous 4-way branch migration

Examples:

F;= BA-B is unsatisfiable.

F,=(A Vv B) A (-BV C)is satisfiable.
Fs=-A A (A v B) A =B is unsatisfiable.

Applying resolution to all the clauses, if a refutation can be
derived from the initial formula, then the formula is
unsatisfiable. A refutation is a sequence of clauses
obtained by iterated application of the resolution rule that
finish in the empty clause.

In our experimental set-up the cover strands contains a
fluorescent marker so the empty clause corresponds to a
non-fluorescent double-stranded molecule with nicks
between all parts encoding variables.

4-way DNA branch migration: BA-B

Annealing 4-way branch migration Strand exchange

Autonomous resolution determines that F;= B/\-B is unsatisfiable: we get the empty clause

Solving SAT applying resolution with
autonomous 4-way branch migration

-a,’ A \') B =b/ b,' ﬂB \'} C ac,’
a, b, - C,
A B B C
Yesolution
| AVvC |

Resolvant clause: A V C
No empty clause. F, is satisfiable.

Solving SAT applying resolution with
autonomous 4-way branch migration

a A ~a' | AV B |-b

“A A B -8B
o may \TQIution

m QI !ﬂbb:"

-laT
-A A
Resolution

-laT'
mm\ {11 T (@2 Empty CI§U§e.
a' F, is unsatisfiable

Outline

Systems Biology: GRO simulator

Synthetic Biology: PLASWIRES project,
Directed Evolution.

DNA Computing: Inference with
DNA molecules.

Lab automation: EVOPROG project

Applying ICT for biology Automation
A general view

Inteligencia S
Artificial 3
Laboratorio 2
www._lia.upm.es ()2

Automated Protocol Execution in Biology-

Graphical Language for

Protocol Description

Graphical languages for Lab protocol description

CONTAINER
Container ID -

Discard after use [
Seal/Lid @

Thermo block
Container
Cycles
lemperature

Duration

Sanger Sequencing
Container
Range: Row
Range: Column
Dale Reference

PIPETTE

Source Container

From

Range: Row

Range: Column
Destination Containes
To
Range: Row
Range: Column

Spectrophotometer
Container
Range: Row
Range: Column
wavelength
excitabion
emission
Num_flashes
Data Ref

4 Transfer
Distnbute
Consolidate
Mix
Dispense

DSttt o i nt

To

Colony picking
Source Container
From
Range: Row
Range: Column
Destination Container
To
Range: Row
Range: Column
Minimum colony count

From

Gel
Ladder

Gel Electrophoresis
Source Container

Range: Row
Range: Column

Duration

INCUBATE
Container
Temperature
Duration
Shaking
CO2 percent

Centrifugation
Contamner

Data reference

Cell Spreading
Source Container
From
Range: Row
Range: Column
Destination Container
To
Range: Row
Range: Column
Volume

Acceleration
Duration

Channel name =53
Voltage Range _low
Voltage range: high

Area [j Height 4 Weight ¥
Color name

Emssion Wavelength
Excitation Wavelength

Area 4 Height § Weight ¥

do

Graphical languages for Lab protocol description

checkSetupProcess B8 | £

W max Time - R

do

set () to | MeasureoD with: [N

ODSensor
(OD - il >~ I 1)

m F e
L Proportion - RLRBEFTYI - oo e

S

ceel |/ CER B ©

LI Proportion - LU P~ | 2 0

S

else £Y21 Proportion = £
S

set LI Proportion - JI x - I Rate -

Tranfer with:
container

rate | GECED
set QMETEEITED to || getvoume wit: [N
container
i)
do | Tranfer with:
container
culture

rate

FinalizeProtoc ol
=

Y initaize /ariables
P Rate - L AN 2"
P max Time - LA 1000}

o) to [IZEEe]s) with: ODSensor
Ly item -)

set u: "! V?"r: ::n to ‘Im
£-4 volumeMedia - KL 200 |

to UIELIE] with: container, culture, rate

to [EEYLIMIEY with: container
retun | (ELED

L} checkSetupProcess

(] FinalizeProtoc ol

set to | initializeContainer with:
initialSetup (T Y volumeCeliContainer ~

oo LTI o | tmescortaner o [

initialSetup create list with
set (ESESIEIERD to (| inttakzeContaner with: [N

create empty list

Working on each stage of the process...

f%\
$ Ju

_ Team of biologists)

Experimental protocol

Lab Platform

Lab Interface

Execution

EVOPROG Project

Project title Project number Call (part) identifier Funding scheme
General-Purpose Programmable Evolution Machine on a Chip 610730 FP7-1CT-2013-10 Collaborative project

In our EVOPROG consortium we will program phage and bacteria to compute our combinatorial optimisation algorithms by constructing and using a
high-throughput droplet device for the directed evolution of biomolecules de novo, integrating for the first time in silico and in vivo evolution. For
this, we will develop a general-purpose 3D biochip utilizing computational and fluidics automation which could also be applied to perform in vivo
molecular biology operations in high-throughput (including time-dependent characterisations of gene expression levels using fluorescent proteins).

University Involved People
University of Warwick (UWAR) Dr. Alfonso Jaramillo (Coordinator)
Ms. Mariel Montesinos
Universidad Politecnica de Madrid (UPM) Dr. Alfonso Rodriguez-Patén
Imperial College of Science, Technology and Medicine (IC) Dr. Mark Isalan
Consejo Superior de Investigaciones Cientificas (CSIC) Dr. Victor de Lorenzo
University of Glasgow (UoG) Dr. Lee Cronin
University d'Evry-Val d'Essonne (UEVE) Dr. Alfonso Jaramillo
Dr. Shensi Shen
Dr. Ilias Tagkopoulos

EVOPROG project: LIA’s Tasks

Transforming biologists’ thoughts and designs in real instructions
and parameters for the Evoprog machine

Task 2: Generic high-
level language

Task 1: Visual Language Task 3: Compiler to Parameters

for Biologists E Machine code l

’
4
’
’

\
N
N
N

Evoprog biological

machine Living matter

Program based on

High Level)
Language Instruction Set (Programmable
Architecture - .
Evolution Machine)
Biologist
We are \ Standard
here!l! . Architecture for

(Definition of ISA)

IIE

www ha upm es

