
Biocircuits engineering and bio-design automation:
some recent results”

Alfonso Rodríguez-Patón
arpaton@fi.upm.es

@LIA_UPM

Newcastle University, June 15, 2015

LIA members
• Professors:	

– Andrei Paun
– Petr Sosík
– Iván	Pau
– Daniel	Manrique

• PhD	students:	
– Martín	Gutiérrez
– Paula	Gregorio
– Guillermo	Pérez
– Ismael	Gómez
– Vishal Gupta
– Antonio	García
– Marcos	Rodríguez

• Master	students:	Irene	Serrano,	Laura	Puente,	Luis	Enrique	Muñoz

Outline

• Systems Biology: GRO simulator
• Synthetic Biology: PLASWIRES project, Directed

Evolution.
• DNA Computing: Inference with DNA

molecules.
• Lab automation: EVOPROG project

One-gene genetic oscillator with a positive
feedback loop and a negative interaction

Miró-Bueno JM, Rodríguez-Patón A (2011) A Simple Negative Interaction in the Positive
Transcriptional Feedback of a Single Gene Is Sufficient to Produce Reliable Oscillations. PLoS
ONE 6(11): e27414. doi:10.1371/journal.pone.0027414

One-gene genetic oscillator with a positive
feedback loop and a negative interaction

PLoS ONE 6(11):	e27414.	
doi:10.1371/journal.pone.0027414

DNA	Computing	in	LIA	group

Sainz	de	Murieta,	I.,	&	Rodriguez-Paton,	A.	
(2014).	Probabilistic reasoning with a	Bayesian
DNA	device based on strand displacement.	
NATURAL	COMPUTING,	13(4),	549-557.

Rodríguez-Patón,	A.,	de	Murieta,	I.	S.,	&	Sosík,	
P.	(2014).	DNA	strand displacement system
running logic programs.	Biosystems,	115,	5-12.
Chicago

Computational modelling

The most frequent approaches for simulating genetic
circuits are:
• Differential Equations (DEs)
– High precision at single-cell level
– Scale poorly to large-scale colonies and spatial

component is not easily reproduced
• Agent/Individual based Models (IbMs)
– Perform better at a large scale
– Not as precise as DEs (most IbMs are rule based)
– Provide a good spatial environment

LIA

• We are interested in designing, simulating and
studying multicellular genetic circuits that run in
bacterial colonies.

• We wan to simulate cell-cell communication
based on conjugation: space is important

• Agent/Individual based Models (IbMs): are best

suited for this purpose.

State of the Art: IbMs

• CellModeller
– Python library for simulating bacterial colonies

developed by U. Cambridge and Microsoft
Research.

– Simulates 2D or 3D colonies of rod-shaped
bacteria.

– Simulations are implemented through DEs or
through rules.

– Runs on OpenCL and reaches up to 32000
simulated bacteria in 30 mins.

State of the Art: IbMs (II)

• iDynoMiCS
– Developed by J.U. Kreft lab at University of

Birmingham
– Simulates 2D and 3D bacterial colonies.
– Simulations are implemented through rules (XML

parametrization and Java).
– Goal is to study biofilm formation.

State of the Art: IbMs (III)

• BactoSIM
– Developed by LIA – UPM.
– Simulates 2D spherical bacterial colonies.
– Simulations are implemented through rules (based

on Repast - Java).
– Reaches 106 bacteria in 1 hour.
– The goal of BactoSIM is to study bacterial

conjugation.

State of the Art: IbMs (IV)

• GRO
– Developed by Klavins lab at University of

Washington.
– Simulates 2D rod-shaped bacterial colonies.
– Simulations are implemented through rules (gro

language – based on guarded commands).
– Reaches around 104 bacteria in 1 hour.
– Aimed at simulating multicellular behaviors.

IbMs

• At LIA, we (have) work(ed) with these IbMs:
– iDynoMiCS
– BactoSIM
– GRO

• A brief summary of our work will now be
presented.

iDynoMiCS

iDynoMiCS - Conjugation

AND gate

iDynoMiCS – Growth

Bacteria growing with rod-shaped bacteria and shoving

BactoSIM

BactoSIM – Measuring phage infectivity

Phage

Uninfected bacterium

Infected bacterium

T = 0 mins T = 125 mins

GRO

GRO

GRO

GRO

• Developed at Klavins Lab
(University of Washington)

• IbM based on guarded
commands and functional
programming.

• GRO is mainly concerned
with studying bacterial colony
growth and multicellular
behaviors based on signals.

• Chipmunk acts as GRO’s
physics engine.

Some limitations of GRO

• Bacterial conjugation is not implemented.
• GRO is slow, it reaches about 20000 bacteria in

4 hours.
• Describing an experiment with guarded

commands is unnatural for biologists.
• Colony growth does not take into account

nutrient uptake.

GRO, improved by LIA

• We have implemented the following
functionalities for GRO:
– Bacterial conjugation
– New shoving algorithm (CellEngine)
– New genetic module
– New nutrient uptake and growth module

(CellSignal)

Implementation of conjugation process

• Conjugation was implemented atop the
modified GRO (using CellEngine)

“Aura” calculation to retrieve a bacterium’s neighbors

25

Conjugative plasmid:	will you survive?

Implementation of conjugation process

• GRO’s source code was modified to include
conjugation process in its workflow

Integrate growth
and contact
dynamics

Update cell state

For each cell:
a) Conjugate (if it’s time)
b) Increase volume
c) Evaluate guarded

commands
d) Check for divisions and

create daughter cells if
necessaryRemove dead

cells

Integrate diffusion
and degradation of
signals

Adapted from Jang et al., 2012 27

GRO – Conjugation rules

• A bacterium conjugates in GRO under the
following circumstances:
– It has a conjugative plasmid
– A probability of conjugation is calculated from a

ratio between the # of average conjugations per life
cycle, the # of timesteps and the # of neighbor
bacteria.

28

CellEngine: a new fast shoving algorithm

• CellEngine, a new shoving algorithm
• Based on the grouping of bacteria in rings

CellEngine: algorithm

1. Find bacteria in the edge of the colony
2. Recursively create rings of bacteria of a certain

width w inwards until reaching the center of the
colony

3. Once the center is found, repeat for all rings
starting at the center and moving outwards:

1. Relax overlaps of ring i as if it were an independent
colony. Assume the inner ring (i+1) as a wall and the
outer ring (i-1) as non-existent.

2. Relocate ring i-1 outwards around ring i.

CellEngine execution

Ring calculation

CellEngine execution

Ring calculation and growth (large scale)

CellEngine vs. Chipmunk

GRO (CellEngine) GRO (Chipmunk)

Growth test

CellEngine execution

Bacterial colony growth

CellEngine execution

Cell alignment calculation

CellEngine – some numbers

GRO (Chipmunk) GRO (CellEngine)
Cells Total time (hours) Total time (hours)

1 0.00 0.00
500 0.00 0.00
1000 0.01 0.00
2000 0.02 0.00
4000 0.08 0.00
8000 0.41 0.00
16000 2.14 0.00
20000 4.02 0.01
100000 > 168 0.05

Genetic module

• Boolean values for the proteins: 0/1
• Boolean values for the state of the genes: ON/OFF
• How long must be a gene ON to produce enough protein to

be considered as 1? Half-life activation time.
• How long must be a gene OFF to consider its associated

protein takes value 0? Half-life degradation time.
• Promoters: Boolean logic gates: AND, OR, etc.
• Noise: Probability that a gene ON(OFF) switch to OFF(ON)

respectively, without any change in the inputs
• Similar to a Probabilistic Asynchronous Boolean Network

with delays. Or a piecewise-linear differential equation.

Example: Repressilator

Original design of the Repressilator

Example: Repressilator

Guarded command based source code for the Repressilator

Example: Repressilator

Genetic design based source code for the Repressilator

Example: Repressilator

Repressilator in GRO Wet-lab Repressilator

Example: Edge detector

Plasmid-plasmid interaction

Nutrient uptake and growth module

Colony growth with underlying nutrient uptake

We’re working on more features…

• A simplified and faster version of signal diffusion
• Phage (lytic and non-lytic) dynamics.
• A new genetic module more “precise” with

probabilities and threshold values of time for
0/1 protein states.

• 3D simulations: Morpheus, Biocellion

Perspectives

GRO

SBOL

Quantitative data

GRO source
code

Outline

• Systems Biology: GRO simulator
• Synthetic Biology: PLASWIRES

project, Directed Evolution.
• DNA Computing: Inference with DNA

molecules.
• Lab automation: EVOPROG project

PLASWIRES project

Outline

• Systems Biology: GRO simulator
• Synthetic Biology: PLASWIRES project,

Directed Evolution.
• DNA Computing: Inference with DNA

molecules.
• Lab automation: EVOPROG project

An Autonomous In Vivo Dual Selection Protocol
for Boolean Genetic Circuits

Beneš, D., Sosík, P., & Rodríguez-Patón, A. (2015). An Autonomous In Vivo Dual Selection Protocol for
Boolean Genetic Circuits. Artificial Life 21: 247–260 (2015) doi:10.1162/ARTL_a_00160

An Autonomous In Vivo Dual Selection Protocol
for Boolean Genetic Circuits

Beneš, D., Sosík, P., & Rodríguez-Patón, A. (2015). An Autonomous In Vivo Dual Selection Protocol for
Boolean Genetic Circuits. Artificial Life 21: 247–260 (2015) doi:10.1162/ARTL_a_00160

Outline

• Systems Biology: GRO simulator
• Synthetic Biology: PLASWIRES project,

Directed Evolution.
• DNA Computing: Inference with

DNA molecules.
• Lab automation: EVOPROG project

Inference with DNA molecules

Basic Inference rules: modus ponens and
modus tollens

Modus Ponens states that from P and the implication
P → Q one can deduce Q.

If P, then Q
P.
Therefore, Q

Modus Tollens states that from NOT-Q and the
implication P → Q one can deduce NOT-P.

If P, then Q
Not-Q.

Therefore, Not-P

Previous works: Inference with DNA molecules

DNA strand displacement and competitive
hybridization

Inference with DNA strand displacement

Special case of resolution: Modus Ponens

Modus	Ponens

Special case of resolution: Modus Tollens

Modus	Tollens

Solving SAT applying resolution with
autonomous 4-way branch migration

Examples:
F1= B∧¬B is unsatisfiable.
F2 = (A ∨ B) ∧ (¬ B ∨ C) is satisfiable.
F3= ¬A ∧ (A ∨ B) ∧ ¬B is unsatisfiable.

Applying resolution to all the clauses, if a refutation can be
derived from the initial formula, then the formula is
unsatisfiable. A refutation is a sequence of clauses
obtained by iterated application of the resolution rule that
finish in the empty clause.

In our experimental set-up the cover strands contains a
fluorescent marker so the empty clause corresponds to a
non-fluorescent double-stranded molecule with nicks
between all parts encoding variables.

4-way DNA branch migration: B∧¬B

Autonomous	resolution	determines	that F1=	B∧¬B is	unsatisfiable:	we	get	the	empty	clause	

4-way	branch	migration	 Strand	exchangeAnnealing	

Solving SAT applying resolution with
autonomous 4-way branch migration

Resolvant clause:	A∨ C
No	empty	clause.	F2 is	satisfiable.

Resolution

Empty	clause.	
F3 is	unsatisfiable

Resolution

Resolution

Solving SAT applying resolution with
autonomous 4-way branch migration

Outline

• Systems Biology: GRO simulator
• Synthetic Biology: PLASWIRES project,

Directed Evolution.
• DNA Computing: Inference with

DNA molecules.
• Lab automation: EVOPROG project

Applying ICT for biology Automation
A general view

Automated	Equipment	
Pipelines

(Transcriptics,	ECL)

Open	Source	Pipetting	
Robots

(OpenTrons,	Modular	Science)

Bio-Design	and	Workflow	
Language

(Autoprotocol,	Antha)

Flow	control	on	Fluidic	
Devices

(Aqua,	EvoCoder)

Graphical	Language	for	
Protocol	Description

Automated Protocol Execution in Biology-

Graphical languages for Lab protocol description

Graphical languages for Lab protocol description

Team of	biologists

Experimental	protocol

Working on each stage of the process…

Lab Platform Lab Interface Lab Automation

Execution

EVOPROG Project

EVOPROG project: LIA’s Tasks

Evoprog biological
machine

(Programmable
Evolution Machine)

Parameters

Standard
Architecture for
(Definition of	ISA)

Program based on
Instruction Set	
Architecture

High	Level
Language

Biologist

We	are	
here!!!

Task 3:	Compiler to	
Machine	code

Living	matter

Transforming biologists’	thoughts and	designs in	real	instructions
and	parameters for the Evoprog machine

Task 1:	Visual	Language
for Biologists

Task 2:	Generic high-
level language

