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Outline

• Systems Biology: GRO simulator
• Synthetic Biology: PLASWIRES project, Directed

Evolution.
• DNA Computing: Inference with DNA 

molecules.
• Lab automation: EVOPROG project



One-gene genetic oscillator with a positive 
feedback loop and a negative interaction

Miró-Bueno JM, Rodríguez-Patón A (2011) A Simple Negative Interaction in the Positive 
Transcriptional Feedback of a Single Gene Is Sufficient to Produce Reliable Oscillations. PLoS
ONE 6(11): e27414. doi:10.1371/journal.pone.0027414 



One-gene genetic oscillator with a positive 
feedback loop and a negative interaction

PLoS ONE 6(11):	e27414.	
doi:10.1371/journal.pone.0027414



DNA	Computing	in	LIA	group
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DNA	device based on strand displacement.	
NATURAL	COMPUTING,	13(4),	549-557.
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Computational modelling

The most frequent approaches for simulating genetic
circuits are:
• Differential Equations (DEs)
– High precision at single-cell level
– Scale poorly to large-scale colonies and spatial

component is not easily reproduced
• Agent/Individual based Models (IbMs)
– Perform better at a large scale
– Not as precise as DEs (most IbMs are rule based)
– Provide a good spatial environment



LIA

• We are interested in designing, simulating and 
studying multicellular genetic circuits that run in 
bacterial colonies.

• We wan to simulate cell-cell communication
based on conjugation: space is important

-------------------------------------------------------------
• Agent/Individual based Models (IbMs): are best

suited for this purpose.



State of the Art: IbMs

• CellModeller
– Python library for simulating bacterial colonies

developed by U. Cambridge and Microsoft 
Research.

– Simulates 2D or 3D colonies of rod-shaped
bacteria.

– Simulations are implemented through DEs or
through rules.

– Runs on OpenCL and reaches up to 32000 
simulated bacteria in 30 mins.



State of the Art: IbMs (II)

• iDynoMiCS
– Developed by J.U. Kreft lab at University of 

Birmingham
– Simulates 2D and 3D bacterial colonies.
– Simulations are implemented through rules (XML 

parametrization and Java).
– Goal is to study biofilm formation.



State of the Art: IbMs (III)

• BactoSIM
– Developed by LIA – UPM.
– Simulates 2D spherical bacterial colonies.
– Simulations are implemented through rules (based

on Repast - Java).
– Reaches 106 bacteria in 1 hour.
– The goal of BactoSIM is to study bacterial

conjugation.



State of the Art: IbMs (IV)

• GRO 
– Developed by Klavins lab at University of 

Washington.
– Simulates 2D rod-shaped bacterial colonies.
– Simulations are implemented through rules (gro 

language – based on guarded commands).
– Reaches around 104 bacteria in 1 hour.
– Aimed at simulating multicellular behaviors.



IbMs

• At LIA, we (have) work(ed) with these IbMs:
– iDynoMiCS
– BactoSIM
– GRO

• A brief summary of our work will now be 
presented.



iDynoMiCS



iDynoMiCS - Conjugation

AND gate



iDynoMiCS – Growth

Bacteria growing with rod-shaped bacteria and shoving



BactoSIM



BactoSIM – Measuring phage infectivity

Phage

Uninfected bacterium

Infected bacterium

T = 0 mins T = 125 mins



GRO



GRO



GRO



GRO

• Developed at Klavins Lab
(University of Washington)

• IbM based on guarded
commands and functional
programming.

• GRO is mainly concerned
with studying bacterial colony
growth and multicellular
behaviors based on signals.

• Chipmunk acts as GRO’s
physics engine.



Some limitations of GRO

• Bacterial conjugation is not implemented.
• GRO is slow, it reaches about 20000 bacteria in 

4 hours.
• Describing an experiment with guarded

commands is unnatural for biologists.
• Colony growth does not take into account

nutrient uptake.



GRO, improved by LIA

• We have implemented the following
functionalities for GRO:
– Bacterial conjugation
– New shoving algorithm (CellEngine)
– New genetic module
– New nutrient uptake and growth module 

(CellSignal)



Implementation of conjugation process

• Conjugation was implemented atop the
modified GRO (using CellEngine)

“Aura” calculation to retrieve a bacterium’s neighbors

25



Conjugative plasmid:	will you survive?



Implementation of conjugation process

• GRO’s source code was modified to include
conjugation process in its workflow

Integrate growth
and contact
dynamics

Update cell state

For each cell:
a) Conjugate (if it’s time)
b) Increase volume
c) Evaluate guarded

commands
d) Check for divisions and 

create daughter cells if
necessaryRemove dead

cells

Integrate diffusion
and degradation of 
signals

Adapted from Jang et al., 2012 27



GRO – Conjugation rules

• A bacterium conjugates in GRO under the
following circumstances:
– It has a conjugative plasmid
– A probability of conjugation is calculated from a 

ratio between the # of average conjugations per life
cycle, the # of timesteps and the # of neighbor
bacteria.

28



CellEngine: a new fast shoving algorithm

• CellEngine, a new shoving algorithm
• Based on the grouping of bacteria in rings



CellEngine: algorithm

1. Find bacteria in the edge of the colony
2. Recursively create rings of bacteria of a certain

width w inwards until reaching the center of the
colony

3. Once the center is found, repeat for all rings
starting at the center and moving outwards:

1. Relax overlaps of ring i as if it were an independent
colony. Assume the inner ring (i+1) as a wall and the
outer ring (i-1) as non-existent.

2. Relocate ring i-1 outwards around ring i.



CellEngine execution

Ring calculation



CellEngine execution

Ring calculation and growth (large scale)



CellEngine vs. Chipmunk

GRO (CellEngine) GRO (Chipmunk)

Growth test



CellEngine execution

Bacterial colony growth



CellEngine execution

Cell alignment calculation



CellEngine – some numbers

GRO (Chipmunk) GRO (CellEngine)
Cells Total time (hours) Total time (hours)

1 0.00 0.00
500 0.00 0.00
1000 0.01 0.00
2000 0.02 0.00
4000 0.08 0.00
8000 0.41 0.00
16000 2.14 0.00
20000 4.02 0.01
100000 > 168 0.05



Genetic module

• Boolean values for the proteins: 0/1 
• Boolean values for the state of the genes: ON/OFF
• How long must be a gene ON to produce enough protein to

be considered as 1? Half-life activation time. 
• How long must be a gene OFF to consider its associated

protein takes value 0? Half-life degradation time. 
• Promoters: Boolean logic gates: AND, OR, etc.
• Noise: Probability that a gene ON(OFF) switch to OFF(ON) 

respectively, without any change in the inputs
• Similar to a Probabilistic Asynchronous Boolean Network 

with delays. Or a piecewise-linear differential equation. 



Example: Repressilator

Original design of the Repressilator



Example: Repressilator

Guarded command based source code for the Repressilator



Example: Repressilator

Genetic design based source code for the Repressilator



Example: Repressilator

Repressilator in GRO Wet-lab Repressilator



Example: Edge detector

Plasmid-plasmid interaction



Nutrient uptake and growth module

Colony growth with underlying nutrient uptake



We’re working on more features…

• A simplified and faster version of signal diffusion
• Phage (lytic and non-lytic) dynamics.
• A new genetic module more “precise” with

probabilities and threshold values of time for
0/1 protein states.

• 3D simulations: Morpheus, Biocellion



Perspectives

GRO

SBOL

Quantitative data

GRO source
code



Outline
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project, Directed Evolution.
• DNA Computing: Inference with DNA 

molecules.
• Lab automation: EVOPROG project



PLASWIRES project
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An Autonomous In Vivo Dual Selection Protocol
for Boolean Genetic Circuits

Beneš, D., Sosík, P., & Rodríguez-Patón, A. (2015). An Autonomous In Vivo Dual Selection Protocol for
Boolean Genetic Circuits. Artificial Life 21: 247–260 (2015)  doi:10.1162/ARTL_a_00160 



An Autonomous In Vivo Dual Selection Protocol
for Boolean Genetic Circuits

Beneš, D., Sosík, P., & Rodríguez-Patón, A. (2015). An Autonomous In Vivo Dual Selection Protocol for
Boolean Genetic Circuits. Artificial Life 21: 247–260 (2015)  doi:10.1162/ARTL_a_00160 
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Inference with DNA molecules



Basic Inference rules: modus ponens and 
modus tollens

Modus Ponens states that from P and the implication 
P → Q one can deduce Q. 

If P, then Q
P.
Therefore, Q 

Modus Tollens states that from NOT-Q and  the 
implication P → Q one can deduce NOT-P.

If P, then Q
Not-Q.

Therefore, Not-P



Previous works: Inference with DNA molecules



DNA strand displacement and competitive
hybridization



Inference with DNA strand displacement



Special case of resolution: Modus Ponens

Modus	Ponens



Special case of resolution: Modus Tollens

Modus	Tollens



Solving SAT applying resolution with 
autonomous 4-way branch migration

Examples:
F1= B∧¬B is unsatisfiable. 
F2 = (A ∨ B) ∧ (¬ B ∨ C) is satisfiable. 
F3= ¬A ∧ (A ∨ B) ∧ ¬B is unsatisfiable. 

Applying resolution to all the clauses, if a refutation can be 
derived from the initial formula, then the formula is 
unsatisfiable. A refutation is a sequence of clauses 
obtained by iterated application of the resolution rule that 
finish in the empty clause.

In our experimental set-up the cover strands contains a 
fluorescent marker so the empty clause corresponds to a 
non-fluorescent double-stranded molecule with nicks 
between all parts encoding variables. 



4-way DNA branch migration: B∧¬B

Autonomous	resolution	determines	that F1=	B∧¬B is	unsatisfiable:	we	get	the	empty	clause	

4-way	branch	migration	 Strand	exchangeAnnealing	



Solving SAT applying resolution with 
autonomous 4-way branch migration

Resolvant clause:	A∨ C
No	empty	clause.	F2 is	satisfiable.

Resolution



Empty	clause.	
F3 is	unsatisfiable

Resolution

Resolution

Solving SAT applying resolution with 
autonomous 4-way branch migration
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Applying ICT for biology Automation
A general view



Automated	Equipment	
Pipelines

(Transcriptics,	ECL)

Open	Source	Pipetting	
Robots

(OpenTrons,	Modular	Science)

Bio-Design	and	Workflow	
Language

(Autoprotocol,	Antha)

Flow	control	on	Fluidic	
Devices

(Aqua,	EvoCoder)

Graphical	Language	for	
Protocol	Description

Automated Protocol Execution in Biology-



Graphical languages for Lab protocol description



Graphical languages for Lab protocol description



Team of	biologists

Experimental	protocol

Working on each stage of the process…

Lab Platform Lab Interface Lab Automation

Execution



EVOPROG Project



EVOPROG project: LIA’s Tasks

Evoprog biological
machine

(Programmable
Evolution Machine)

Parameters

Standard
Architecture for
(Definition of	ISA)

Program based on
Instruction Set	
Architecture

High	Level
Language

Biologist

We	are	
here!!!

Task 3:	Compiler to	
Machine	code

Living	matter

Transforming biologists’	thoughts and	designs in	real	instructions
and	parameters for the Evoprog machine

Task 1:	Visual	Language
for Biologists

Task 2:	Generic high-
level language


