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Abstract—The design in 2008 of a device with a memristive
characteristic has had a great impact in electronics, specially at the
nanometer scale. This device, whose existence was predicted by Leon
Chua in 1971 for symmetry reasons, is governed in a flux-controlled
setting by a relation of the form i = W (ϕ)v, and systematically leads
to the presence of non-isolated equilibria. In this communication we
examine how the stability of such manifolds of equilibria may break
down when normal hyperbolicity fails. This phenomenon may be due
to the transition of an eigenvalue either through the origin or through
infinity. Our approach is a graph-theoretic one, aiming at the analysis
of such phenomena in terms of the topology of the digraph underlying
the circuit.
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I. INTRODUCTION

MEMRISTORS are electronic devices defined by a

charge-flux characteristic. Their existence was pre-

dicted for symmetry reasons by Leon Chua in 1971, since

resistors, capacitors and inductors are defined by voltage-

current, charge-voltage and flux-current relations, respectively.

The charge-flux characteristic was the only one lacking in

this set of relations, since the charge-current and the flux-

voltage pairs are related by the electromagnetic laws q′ = i,

ϕ′ = v. The design of such a memory-resistor or memristor

at the nanometer scale announced by an HP team in 2008 [1]

has driven a lot of attention to these devices. The flux-charge

relation may have either a charge-controlled form ϕ = φ(q)
or a flux-controlled one q = σ(ϕ) [2]. We will focus on the

latter but dual results apply to the charge-controlled case.

Applications of memristors and other memory devices are

being reported in many fields: see [3], [4], [5], [6], [7], [8],

[9], [10], [11], [12], [13], [14], [15], [16], [17] and references

therein. In particular, a significant impact in industry is ex-

pected to happen in the near future because of the use of

memristors in non-volatile memory design. Not only from the

point of view of applications but also from a mathematical

perspective this device poses challenging problems. In this

communication we focus on stability problems related to the

systematic presence of manifolds of non-isolated equilibria

in circuits including this device. These problems will be

addressed in Section III, after compiling some introductory

material on Section II. Finally, some concluding remarks can

be found on Section II.
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II. MEMRISTIVE CIRCUITS

A. The memristor

As indicated above, a flux-controlled memristor is defined

by a nonlinear, differentiable relation

q = σ(ϕ);

time derivation yields, by means of the identities q′ = i, ϕ′ =
v, the current-voltage characteristic

i = W (ϕ)v, (1)

where W (ϕ) = σ′(ϕ) is the memductance. The dual case is

defined by a flux-charge relation ϕ = φ(q) which yields a

voltage-current characteristic of the form

v = M(q)i, (2)

where M(q) = φ′(q) is the so-called memristance. Note that

(2) is reminiscent of Ohm’s law, but the “resistance” M(q)
now depends on the charge q, which is the time-integral of

the current i; for this reason the device’ characteristic keeps

track of its own history. The name memristor, which is an

abbreviation of memory-resistor, comes from this remark [2].

Similar remarks apply to the flux-controlled case defined by

(1); this form will be assumed throughout the document.

B. Branch-oriented modelling of memristive circuits

For the sake of simplicity we will focus the attention

on a restricted class of memristive circuits, just including

flux-controlled memristors, voltage-controlled resistors, and

capacitors. We will refer to these as WGC-circuits. Dual

devices (charge-controlled memristors, current-controlled re-

sistors, and inductors) as well as voltage and current sources

are precluded in order to keep the discussion as simple as

possible, but the results may be proved to hold in general. The

essential mathematical aspects of the discussion are already

present in WGC-circuits. To focus on cases with a one-

dimensional manifold (that is, a line) of equilibria we will

further assume that the circuit has a unique memristor.

Such circuits can be described by the differential-algebraic

model (cf. [18], [19])

ϕ′

m
= vm (3)

C(vc)v
′

c
= ic (4)

0 = Bmvm +Bcvc +Brvr (5)

0 = QmW (ϕm)vm +Qcic +Qrg(vr). (6)

Here the subscripts m, c, r correspond to memristors, capaci-

tors and resistors; C(vc) is the incremental capacitance matrix,
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and ir = g(vr) is the current-voltage characteristic of resis-

tors, which is assumed to be differentiable; the incremental

conductance matrix is then G(vr) = g′(vr). Note that (3)-(6)

is a branch-oriented model (cf. [18]) which uses a description

of Kirchhoff laws in the form Bv = 0, Qi = 0 in terms of

reduced loop and cutset matrices B and Q. The columns of

these matrices are split according to the nature of the different

devices, so that B = (Bm Bc Br), Q = (Qm Qc Qr)
(find details in [18], [20]).

Working scenario. Both C(vc) and G(vr) are assumed to be

positive definite everywhere; in circuit-theoretic terms, this

means that capacitors and resistors are strictly locally passive.

We also assume that g(0) = 0, and focus the analysis on the

line of equilibria defined by the vanishing of the right-hand

side of (3)-(6) when vm = ic = vc = vr = 0, in order to

examine the qualitative behavior of the system as the variable

ϕm changes along this line. Specifically, we will assume that

W (0) = 0 and W ′(0) 6= 0, so that the memristor becomes

active as ϕm undergoes the null value. Recall that a memristor

is said to be strictly locally passive (resp. active) at a given

value of ϕ if W (ϕ) > 0 (resp. W (ϕ) < 0).

The vanishing of W may lead to the loss of normal

hyperbolicity of the line of equilibria described above. An

m-dimensional manifold of equilibrium points in an n-

dimensional system is said to be normally hyperbolic if n−m

eigenvalues of the linearization are away from the imaginary

axis [21]: note that m eigenvalues necessarily vanish because

of the presence of an m-dimensional manifold of equilibria.

In our context, depending on the topology of the circuit and,

specifically, on the location of the memristor, the vanishing

of the memductance W may result in the loss of normal

hyperbolicity and different bifurcation phenomena may follow.

Some of these phenomena are addressed in the main results

reported in this communication, which can be found in Section

III below.

III. STABILITY BREAKDOWN

A. Double zero eigenvalue

The linearization of a dynamical system along a line of

equilibria obviously displays a null eigenvalue. When a second

eigenvalue undergoes the origin, a transcritical bifurcation

without parameters occurs generically [22], [23], [24]. If the

remaining eigenvalues have negative real parts, this implies

that the line of equilibria experiences a loss of stability in

the region where the bifurcating eigenvalue becomes positive

(find details in the references just cited). We discuss below

certain circuit-theoretic conditions which characterize this

phenomenon for the set of circuits presented above.

Proposition 1. Consider the system (3)-(6) in the working

scenario described above. If the circuit has a unique WC-

cutset which actually includes the memristor, and there are

neither C-loops nor C-cutsets, then the null eigenvalue of the

linearization of (3)-(6) along the line of equilibria becomes

a double one at the origin. This corresponds to a second

eigenvalue which crosses the origin and becomes positive as

W becomes negative (that is, as the memristor becomes strictly

locally active) when ϕ varies. The remaining eigenvalues have

negative real parts, and therefore this transition implies the

loss of stability of the equilibrium line when W becomes

negative.

Both the statement and the proof of this result make use

of some notions and properties of digraph theory which we

compile in what follows. Find detailed introductions to digraph

theory and its use in circuit analysis in [18], [19], [20], [25],

[26], [27] A loop or cycle in a directed graph (or digraph) is

the set of branches in a closed path without self-intersections.

A cutset K is a set of branches whose removal increases

the number of connected components of the digraph, and

which is minimal with respect to this property, that is, the

removal of any proper subset of K does not increase the

number of components. In a connected digraph, a cutset is

just a minimal disconnecting set of branches. The removal of

the branches of a cutset increases the number of connected

components by exactly one. We assume that the digraph

has neither bridges (cutsets defined by a single branch) nor

selfloops (loops formed by a unique branch).

Given a set K of branches, we will denote by BK (resp.

QK) the submatrix of B (resp. of Q) defined by the columns

which correspond to K-branches. The absence of loops or

cutsets including only K-devices can be easily characterized in

terms of BK and QK ; specifically, K does not include cutsets

if and only if BK has full column rank (i.e. kerBK = {0})

and, analogously, it does not include loops if and only if QK

has full column rank.

Proof of proposition 1: The linearization of (3)-(6) at

a generic equilibrium is defined by the matrix pencil (cf.

subsection III-B below) λA− J , where

A =









1 0 0 0 0
0 C(0) 0 0 0
0 0 0 0 0
0 0 0 0 0









, (7)

and J is the matrix of partial derivatives of the right-hand side

of (3)-(6) with respect to the variables ϕm, vc, vm, ic, vr, that

is,

J =









0 0 1 0 0
0 0 0 Ic 0
0 Bc Bm 0 Br

0 0 QmW (ϕm) Qc QrG(0)









. (8)

One can easily check that det(λA− J) reads as

det









λ 0 −1 0 0
0 λC(0) 0 −Ic 0
0 −Bc −Bm 0 −Br

0 0 −QmW (ϕm) −Qc −QrG(0)









,

(9)



and, for ϕ = 0,

det









λ 0 −1 0 0
0 λC(0) 0 −Ic 0
0 −Bc −Bm 0 −Br

0 0 0 −Qc −QrG(0)









,

since W (0) = 0 because of the working assumptions. In this

case, λ = 0 is indeed a double zero eigenvalue because of the

fact that
(

Bc Bm Br

0 0 QrG(0)

)

(10)

is a singular matrix with a minimal rank deficiency: this

is a consequence of the existence of a unique WC-cutset,

which makes the kernel of (Bc Bm) non-trivial and, actually,

one-dimensional. The positive definiteness of the conductance

matrix G(0) transfers this minimal rank deficiency to the

matrix (10) and this implies that the null eigenvalue is indeed

a double one when ϕ = 0.

The fact that this second null eigenvalue actually crosses

the origin as ϕ varies follows from the characterization of

the transcritical bifurcation without parameters reported in

[22], [23], [24]. Skipping technical details for the sake of

brevity, this is specifically a consequence of the assumption

W ′(0) 6= 0; note that, together with W (0) = 0, this yields a

sign change in W (ϕ) as ϕ undergoes the null value. Owing

to the results in [28], for positive values of W (recall that

both G(0) and C(0) are positive definite) all non-vanishing

eigenvalues have non-positive real parts, one real eigenvalue

actually becoming positive as W takes on negative values.

Finally, the fact that the remaining eigenvalues are away from

the imaginary axis follows from the results discussed in [29],

according to which the absence of inductors is enough to

guarantee, under the assumed absence of C-loops and C-

cutsets, that no purely imaginary eigenvalues are depicted in

the linearized problem.

Example 1. Proposition 1 above provides a circuit-theoretic

description of the topological reasons supporting the stability

loss example discussed in [30]. Indeed, the simplest instance of

a circuit verifying the assumptions in Proposition 1 is depicted

in Figure 1.

W C

Fig. 1. Example 1

Assuming that the capacitor is a linear one, with positive

capacitance C, the circuit equations amount to (cf. [30])

ϕ′

m
= v

Cv′ = −W (ϕm)v.

It is a simple matter to check that the equilibrium line, defined

by v = 0 and parameterized by ϕm, becomes unstable as W

becomes negative. The two eigenvalues can be checked to read,

at a generic equilibrium,

λ1 = 0, λ2 = −
W (ϕm)

C
,

and, assuming W (0) = 0, W ′(0) 6= 0, we have at the origin a

double zero eigenvalue with geometric multiplicity one which

is indeed responsible for the stability breakdown; note that,

indeed, the second eigenvalue becomes positive as W takes

on negative values.

In circuit-theoretic terms, this is just a consequence of the

fact that the two branches of the circuit define a WC-cutset;

together with the absence of C-loops and C-cutsets, this means

that Proposition 1 applies.

B. Eigenvalue divergence through ±∞

It is interesting to note that the dual behavior to the one

above may be depicted by divergence of one eigenvalue of the

pencil λA− J , with A and J given in (7) and (8). Given two

matrices A, B in R
n×n the matrix pencil {A,B} is defined

as the one-parameter family λA + B. If the polynomial (in

λ) det(λA + B) does not vanish identically (that is, if there

exists at least one value of λ for which det(λA + B) 6= 0),

the matrix pencil is called regular. The (finite) eigenvalues of

a regular matrix pencil {A,B} are the values of λ ∈ C for

which det(λA+ B) = 0. The polynomial det(λA+ B) of a

regular pencil has in general a degree m ≤ n, with m < n

when A is a singular matrix; in the latter case case we say

that the pencil has n−m infinite eigenvalues.

In our setting, provided that the derivative of the right-hand

side of (3)-(6) with respect to the variables vm, ic, vr is non-

singular, then the pencil λA − J has exactly m eigenvalues,

where m is the total number of memristors and capacitors,

because of the index-one nature of the differential-algebraic

equations modelling the circuit [18], [19]. By contrast, the

vanishing of W (ϕ) at a given value of ϕ may result in the

appearance of additional infinite eigenvalues and, again, in a

stability breakdown along the line of equilibria; this can be

seen as a result of the index jump resulting from the singularity

(cf. [30], [31], [32]).

We illustrate this behavior by means of a simple example,

obtained after replacing the capacitor in Figure 1 by an

inductor, as depicted in Figure 2. The key idea is that, open-

circuiting the memristor, the circuit results in an L-cutset,

which yields an index-two circuit configuration.

W L

Fig. 2. Example 2



The circuit equations now read as

ϕ′

m
= v (11)

Li′ = −v (12)

0 = i−W (ϕm)v. (13)

Assume L > 0. One eigenvalue of (11)-(13) is fixed at

the origin, consistently with the existence of the branch of

equilibria defined by the identities i = v = 0. The second

eigenvalue can be checked to read as

−1

LW (ϕm)

and jumps from −∞ to +∞ as W crosses zero and becomes

negative. Note that, again, the change of stability occurs along

the line of equilibria.

A topological characterization of this phenomenon in mem-

ristive circuits, in analogous terms to the ones of Proposition

1, is the object of undergoing research.

IV. CONCLUSION

Many mathematical properties of memristive circuits remain

to be solved. Some chaotic phenomena have been explored

in [33], [34], [35], but a complete analysis of the analytical

properties of manifolds of equilibria in problems with one

or several memristors has not yet been fully addressed in

the literature. Such results should be relevant in practical

applications involving memristors and other mem-devices.
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