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Abstract—This paper proposes a mathematical framework for 
modelling the evolution of dynamic networks. Such framework 
allows the time analysis of the relationship between the dynamic 
laws and the network characterizing features (degree distribu­
tion, clustering coefficient, controllability indexes, etc.) providing 
new insight on the network properties. The framework also 
allows to relate and generalize existing inference procedures for 
modelling real world time evolving complex systems. 
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I. INTRODUCTION 

IN the last decade the modelling of complex networks 
[1], [2], [3] has become a very active research field 

since many different complex systems share some essential 
common features which can be gathered in a network model 
[4]. Although network elements can represent very different 
entities depending on the phenomenon being analyzed, still 
some common characteristics seem to be ubiquitous in many 
models. For instance, common patterns usually appear in 
social networks ([5]), biology networks ([6]), technological 
networks ([7], [8]) or information networks ([9], [10]). 

The common features of these (usually very large) networks 
rely on statistical properties; hence, random graph models have 
been successfully employed for characterizing such networks. 
Starting from the seminal model [11] which served as a 
baseline for comparative purposes, several more sophisticated 
models have been proposed to explain the behavior of complex 
networks. 

The characterization of complex networks can be addressed 
by considering them as either static or dynamic entities. The 
most frequent static perspective is grounded on constructing 
a probability space (i.e., a probability measure on the space 
of possible networks); this probability model allows for a 
compact network characterization and it can be employed for 
several purposes (e.g., link/edge detection). Network evolution 
models gather information along time and they are (often im­
plicitly) grounded on the construction of a stochastic process 
on the space of possible networks. They can be very useful 
for network completion or prediction. Here we formalize this 
perspective. 

II. GENERATION MODELS. PROBABILITY SPACE 

The most simple network generation models define a prob­
ability space associated with the set of all possible networks. 

Such space can be denoted by (Q,Y¡g,P), where Q is the 
sample space (or set of possible networks), Eg corresponds 
with the set of all possible events, and P is a probability 
measure on Eg. 

A. Sample space 

In order to construct Q one has to define the set of 
variables which characterize a given network (the simplest 
model considers G := {V, E}, where V is a set of vertices 
and E is a set of edges). Here, two basic situations can be 
encountered: V is a fixed set which does not change with 
time. Then \V\ = n and E is the set of all possible edges, 
with cardinal \E\ = (™). Hence, in this case a network G¿ 
is defined by its corresponding set Ei c E, and we have 
\Q\ = 2lBL Alternatively, Vt may change with time. In such 
case, we can consider V to represent the maximum set of edges 
over time, so that Vt c V. Then, all Vt c V (with \Vt\ = nt) 
has an associated set of possible edges Et, which satisfies 
|St| = ("2). Therefore, the set of all possible networks 
over time must gather all these possibilities and will satisfy 
l^l = E v , c v 2 ^ l = 0 ( 2 l £ l ) . 

B. Set of events Eg 

Since Q is considered to be a finite set, a natural (and the 
largest) a-algebra (set of events) can be defined as Eg = 
Power set of Q. Note that any property V defined in relation to 
networks (e.g., being connected, containing triangles, having 
a given degree k, etc.) is associated with a given element of 
the set of events {Q-p e Eg) or a subset of the sample space 
(9r c G). 

C. Probability measure 

Again, since Q is finite, it suffices to define P(G), Ve? e Q, 
all the elementary events. For a fixed set of nodes V, the 
random network is defined by a set of \E\ random variables 
(the edge indicators of the network). In general \Q\ = 2^1 
may be too large for an explicit definition of each P{G); 
hence, manageable laws are desirable for defining P, based 
on simplifying or regularity assumptions. 

Typically, hypothesis such as distribution uniformity or 
independence among some variables (considered to represent 
known properties of the phenomenon to be modelled) are 
employed allowing for an easier construction or definition of 
P. 

In the following we illustrate different simplifying proce­
dures for constructing different P measures or distributions. 
It is important to note that a network obtained via any of 
such procedures could have also been obtained as the outcome 
of a random sample based on a different procedure (with a 



different P measure or distribution). Hence, expressions such 
as "ER network" should be qualified to "ER distribution-based 
generated network". 

1) Erdos-Renyi (ER) procedure [12]: This procedure is 
grounded on a uniformity assumption. It considers Q as the 
set of networks with n vertices, and it defines: 

P(O) = i ^ 
VGegn 

(1) 

where Qm is the set of networks having m edges, whose size 
is given by \Qm\ = (^ ' ) , where \E\ = (™). 

Networks created (as a sample) following the ER procedure 
are usually called ER networks. 

2) Gilbert model [13]: This network model considers that 
each of the edge indicators is a Bernoulli random variable with 
probability p (with same value of p for each link). The number 
of edges in the networks generated by this model follows a 
Binomial distribution with parameters \E\ and p. Note that 
the conditional distribution for a fixed number of edges m is 
uniform, thus being equivalent to the ER model. 

3) Range dependent random graphs [14]: These models 
also consider that each edge e¿ indicator is a Bernoulli random 
variable with probability pi = /(r¿), where r¿ is the range (a 
distance measure) between the pair of nodes linked by e¿. 

4) Kronecker graphs [15]: These models are based on the 
generation of matrices via Kronecker products, being math­
ematically tractable while generating networks with desired 
structural properties (heavy tail distributions, densification, 
etc.). 

5) Exponential Random Graphs Models (ERGMs) [16]: 
Random Networks can be generally modelled by: 

P{G) = 
exp(0*s(G)) 

£ G ' e £ ? exp(0 ' S (G ' ) ) ' 
VGeg (2) 

where 9 is a vector of parameters and s is a vector of 
features (sufficient statistics). In general, for any type of 
random network distribution, the size of s could be huge, each 
component gathering information associated with any arbitrary 
subset of nodes in the network. 

ERGM models are grounded on some simplifying assump­
tions which allow for an easy definition or characterization 
of P via conditional probabilities. This fact guarantees that 
the definition of the distribution only requires a reduced set 
{ s i , . . . , sfc} of features, which allows for a good practical 
applicability. 

a) Markov graphs [17]: The term Markov Graph defines 
a sub-family of distributions (or measures) for graphs with 
even stronger simplifying conditional independence properties. 
A random graph is a Markov Graph if non-incident edges 
(i.e., edges between disjoint pairs of nodes) are independent 
conditional on the rest of the graph. The Markov Graph 
assumption guarantees that the the set { s i ; . . . , sk} of features 
only needs to consider triangles and A;-stars. (Note that the 
term Markov Network or Markov Field is also employed when 
considering dependence graphs for random variables; here we 
use the term to refer to families of distributions on networks.) 

D. Inference of Random Network Models 

If we consider a given network to be a sample from a 
Random Network model, strong assumptions (i.e. inductive 
bias) must be imposed for carrying out a model inference 
from that single sample (network). (A similar circumstance 
shows up when addressing parameter estimation for vector 
joint distributions by making use of a single or few vector 
samples; such estimation can be carried out if strong (e.g. 
Markov type) simplifying assumptions are assumed in the 
model. In addition, sometimes only partial knowledge of the 
network (sub-network) is available. 

1) Inference of Markov Graphs: The Markov Graph model 
assumption provides a strong inductive bias which also allows 
for model inference from a single sample (network). Usually, 
the inference procedure to obtain P is carried out as follows: 
the ERGM structure is assumed on P and, given a (sample) 
network and a set s of chosen features (number of links, 
number of triangles, etc.), a maximum likelihood estimate for 6 
is constructed. The resulting network distribution model max­
imizes the likelihood of the sample network and all networks 
with the same features s [18]. This fundamental procedure 
leads to a whole family of models [19]. Nevertheless, the 
standard likelihood techniques for the Markov models are not 
immediately applicable because of the complicated functional 
dependence of the normalizing constant c on the parameters. 
Hence, practical estimation procedures need to perform a 
sampling in the network (which could also be interpreted as 
analyzing an appropriate sub-network) via, for instance, Gibbs 
sampling [20], pseudo-likelihood techniques [21], or stochastic 
approximation based procedures [22], [23]. 

III. EVOLUTION MODELS. STOCHASTIC PROCESSES 

In this section we model evolution networks as Markovian 
stochastic processes. These processes {Gt, t eT} satisfy the 
condition 

P{Gt = G/Fs) = P{Gt = G/Gs (3) 

Among these processes, we can select a special class of 
stochastic dynamical systems: 

Gt+i = F(Gt,wt), (4) 

where the random process wt has an associated measurable 
space (W, W) adapted to the filtration T so that VA e W, 
it satisfies P{wt = A/Fs) = P{wt = A/ws). In general, A 
defines a property on W. 

In the following, we propose stochastic dynamical systems 
for characterizing evolving networks. 

A. State space and time evolution. Evolution equations 

The state space comes from the definition of the set of all 
possible networks Q, and the (discrete) time variable can be 
defined upon two natural options: 

. Define time instants where the probability space (i.e., the 
filtration Ft) does change. 

. Define only time instants where the value of the state 
vector (i.e., the network) does change. 



Considering the already defined state space structure, the 
general evolution formulation of (4) can be broken down into: 

E, i + i 

Vt+1 = Fv(yt,Et,wt), 

Et+1 = FE(Vt,Et,wt), 

where wt is a stochastic process. 

(5) 

(6) 

B. Generation processes associated with ER and Gilbert mod­
els 

1) Generation process for Erdos-Renyi distribution: The 
ER model basic generating procedure is defined as follows: 

• Fix a set of vertices V (with \V\ = n), so that Q is 
determined by the set of all possible edges E. 

. Define the subset of networks with exactly m edges, 
Qm c Q. 

• Randomly select a network from Qm, based on the 
probability distribution described in (1). 

Alternatively, one can define a growing dynamic process 
that characterizes the usual "construction" procedure whose 
final outcome can be interpreted as a sample from a network 
following the ER distribution: 

. V fixed (i.e., Vt = V, Vt), 

. £o = 0, 

. Et+1 = FE(Vt,Et,wt) = Et U {et}, where et is ran­
domly selected among the elements of E \ Et, according 
to a uniform distribution. 

For t = m, Em has m elements, Gm G Qm and P{Gm = 
G) = TJ—^ , VG G Qm (uniform), corresponding to a network 
which follows the Erdos-Renyi distribution. In Figure 1 this 
generation model has been simulated and the evolution of the 
network clustering coefficient along time has been computed. 
As expected, as time increases such coefficient tends to 
linearly increase with time. 

Fig. 1. Clustering time evolution in ER model generation procedure. 

2) Generation process for Gilbert distribution: The follow­
ing process can also be related to the Gilbert network model: 

• V fixed, 
. £o = 0, 

EtU {et}, with prob. p, 
Et, with prob. I —p. 

where e¡ corresponds to the t-th element of E = 
{e\,...e\E\} (depending on the relevance of node or­
dering one may also employ any alternative permutation 
of this set). 

For a given t, the distribution associated with graph Gt is 
characterized as follows: 

• |St| follows a binomial distribution B{t,p) (hence, 
E[\Et\]=t-p). 

. P(Gt = G) = _ P{\Et\=m) vc? G g„ (uniform), m G 
) follows an ER {0, . . . ,t} (Note that P{Gt/\Et\ = 

distribution with parameter m.) 
Note that this process is defined for t G { 0 , 1 , . . . , \E\}. An 

alternative associated process can be defined, for instance, by 
randomly selecting et G E \ Et, which would eventually end 
up converging to a fully connected network. 

C. Growing processes 

Network growth has been analyzed in the last two decades 
as a mechanism for explaining some network special features, 
such as long tail degree distributions. Many growing models 
with given properties have been proposed in the literature [9], 
[24], [25]. All these models can be stated in the following 
framework: 

. G0 = (V0, E0), starting network, 
• Vf+1 = VtU{vt}, where vt G V\Vt is chosen (depending 

on the relevance of node ordering, this selection can be 
done at random). 

• Et+í = Et U AEt, 
where AEt = {e\,... el

t*} C E\ Et is chosen following 
a given law C. 

Law C for selecting AEt determines the specific model, and 
it can be formalized via: 

• F = (FV,FE), 
• Property A associated with the filtration Tt (i.e, C 

depends on wt G A or wt £ A). 

In Figure 2 the time evolution of the clustering coefficient 
for a BA model is presented. As expected, as time increases 
such coefficient tends to decrease [26], [27]. 

D. Evolution processes 

In the last decade, several specific evolving models which 
include addition and deletion of nodes and links have been 
proposed in the literature. In [28] the time evolution of the 
degree distribution is computed, and in [29] a model based on 
the range dependent model [14] is proposed. Alternatively, the 
ERGMs models have been extended to the TERGMs (Time 
Exponential Random Graph Models): in [30] the transition 
probabilities are modelled based on a temporal dependence 
Markov assumption, whereas in [31] this type of models 
are refined to separately characterize link formation and link 
duration phenomena. Finally, a more general form gathering 
longer time dependencies is presented in [32]. 

In general, all these evolution process can be framed within 
the following formulation: 
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Fig. 2. Clustering time evolution in BA model generation procedure. Fig. 3. Estimated ERGM 6\ time evolution in ER model 
procedure. 
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which means that, in each iteration, the network can grow or 
diminish depending on C (i.e., F and wt). 

Many different features can be analyzed for a given model 
using stochastic processes techniques. The time evolution 
analysis of relevant features (clustering coefficient, degree 
distribution, controllability indexes, etc.), can shed light on 
the relationship among them. 

+ 

-

E. Inference in evolution processes 

The presented analytical framework allows to relate differ­
ent inference procedures used for static networks and evolution 
models. The inference methods to construct an ERGM for the 
probability space in a network model make use of a single 
network as a sample; on the other hand, evolution models are 
built from a sample of an evolving process (knowledge of the 
network over a period of time). TERGMs are aimed to infer 
such time evolution models. 

An interesting approach for time evolution analysis is the 
characterization of model parameter estimates along time. 
This information may be helpful for comparison between 
models and prediction purposes. In the following we apply this 
characterization procedure to the ER and BA models. Figures 
3 and 4 show the time evolution of #i (related to density) 
and §2 (related to number of triangles) coefficients estimated 
via an ERGM for an ER generation process. Note that this 
evolution matches with the known evolution of density and 
number of triangles in the ER generation process. 

Figures 5 and 6 show the time evolution of 6\ and §2 
coefficients estimated via an ERGM for a BA generation 
process. These results can be employed for prediction even 
in an increasing number of nodes scenario. 

Fig. 4. Estimated ERGM 82 time evolution in ER model 
procedure. 

•Am 

Fig. 5. Estimated ERGM 9\ time evolution in BA model 
procedure. 
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IV. CONCLUDING REMARKS AND FUTURE WORK 

A mathematical framework has been proposed for charac­
terizing time evolving networks. Such framework allows the 
study of many different features, whose time evolution analysis 
may provide new insight on network properties. It also allows 
to relate inference procedures used for static networks and 
evolution models. The simulations illustrate the possibility of 
predicting model evolution even in scenarios where the number 
of nodes increases. 

Future work is focused on the time evolution analysis of the 
relationship between the type of evolution laws, the computed 
inference models and network characterizing features (clus­
tering coefficient, degree distribution, controllability indexes, 
etc.). The application of this inference techniques in evolution 
processes may provide a way to compute models applicable 
to real world time evolving complex systems. 
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