
Using Internet-based Technologies in a 
University Satellite Project 

Juan A. de la Puente Jorge Garrido Emilio Salazar 
Juan Zamorano Alejandro Alonso 

Abstract: UPMSat2 is an experimental micro-satellite mission that is being developed at UPM. 
The mission is intended to be used as a technological demonstrator as well as an educational 
platform. This paper focuses on the on-board computer system and the control functions 
implemented on it from an educational perspective. The project is used both in graduate 
courses and graduation projects as a basis for examples and a source of topics for laboratory 
work. Students work in designing and developing software for various satellite subsystems, and 
they use a set of web and internet-based technologies to access project documents and develop 
software in a collaborative work setup. The paper describes the use of internet tools by student 
teams and makes an assessment of the contribution of the tools to their work. 

Keywords: Internet-Based Control Education; Web-Based Educational Environments; 
Problem-based Learning. 

1. INTRODUCTION 

UPMSat2 is an experimental satellite mission intended to 
be used as a technical demonstrator and an educational 
platform. It is being developed at UPM, the Technical 
University of Madrid, by a team including several re­
search groups and industrial companies from Spain and 
other European countries. The project is led by IDR,1 

a research institute linked to the School of Aerospace 
Engineering. IDR is responsible for the overall design of 
the satellite, as well as the mechanical, thermal, power, 
and attitude control subsystems. The STRAST group, 2 

to which the authors of this paper belong, is in charge of all 
on-board and ground software development (de la Puente 
et al., 2014b). The on-board computer (OBC) hardware 
is being built by TECNOBIT, 3 with the collaboration of 
the STRAST group. 

The satellite has an external envelope of 0.5 x 0.5 x 0.6 m, 
and a mass of approximately 50 kg, thus being in the 
micro-satellite range (figure 1). It is planned to be set on a 
sun-synchronous polar orbit (Fortescue et al., 2011) with 
an altitude of 600 km and a period of 97 min. Energy is 
provided by solar cell panels. Ground communications are 
based on a radio equipment operating in the VHF 400 MHz 
band. The expected launch date is in the second quarter 
of 2016. 

The attitude control system is based on a simple con­
trol method based on magnetic field sensors and actu­
ators (Cubas et al., 2015). Using a solar sensor and a 

Fig. 1. UPMSat2 satellite platform 

reaction wheel for attitude control is part of an experiment 
that will be carried out during the mission. 

The main features of the on-board software system are 
described in section 2. The uses of the project in educa­
tion, and the needs arising from a distributed educational 
framework, are discussed in section 3. The internet-based 
tools that have been used to fulfil such needs are presented 
in section 4. Finally, conclusions and hints for future work 
are included in section 5. 

2. UPMSAT2 ON-BOARD SOFTWARE 

2.1 Software architecture 

The on-board software system performs control, commu­
nications, and monitoring functions that can be grouped 
as follows: 

• Platform monitoring and control (housekeeping). Ba­
sic satellite data, such as voltages and tempera­
tures at different points, are periodically sampled and 
checked in order to assess the status of the satellite. 



• On-board data handling (OBDH). Telecommands 
(TC) received from the ground stations are decoded 
and executed, and telemetry (TM) messages with 
housekeeping and other data are sent to ground as 
required. 

• Attitude determination and control (ADCS). The 
control algorithm is executed periodically, taking as 
inputs magnetometer readings, and generating mag-
netorquer commands in order to keep the attitude of 
the satellite aligned with the specified reference. 

• Experiment management. The satellite includes some 
experiments, e.g. alternative attitude control methods 
and testing special devices, which are executed when 
commanded from ground. 

According to the functional requirements, the software 
system has been decomposed into the four subsystems 
depicted in figure 2. 

ADC sensors 
- magnetometres 
- solar cells 

ADC actuators 
- magnetorquers 
- reaction wheel 

Housekeeping 

temperatures 
voltages 
currents 

I platform experiments Experiments 

*U3WSS* 
-use-

wv 
Q Logbook 

Fn Platform 

Fig. 4. High-level design structure 

2.3 Source code development 

The execution platform is a LEON3-based computer 
board (Gaisler, 2012) using a radiation-hardened FPGA. 
The Ravenscar profile of the Ada programming lan­
guage (Taft et al., 2006) has been chosen for the im­
plementation, due to it support for developing high-
integrity real-time software and its wide use in space sys­
tems (Garrido et al., 2015). The software runs on the bare 
hardware, using the Open Ravenscar Real-Time Kernel 
(ORK) (Zamorano and Ruiz, 2002) which is part of the 
GNAT for LEON compilation system (Ruiz, 2005). 

Fig. 2. Functional decomposition of the satellite software 3. EDUCATIONAL ACTIVITIES 

2.2 Software design 

A model-based engineering process (de la Puente et al., 
2014a) has been used to design the satellite software. 
Figure 3 shows the main phases of the process, where 
a platform-independent model (PIM) is first built with­
out taking into account the limitations of the hardware 
and operating system platform. A platform-specific model 
(PSM) is then derived using a description of the platform 
and the deployment of software subsystems onto it. This 
is a detailed design model from which source code can be 
automatically generated or manually produced, depending 
on the development requirements. Figure 4 shows the high-
level design organization of the on-board software 

PIM 

Data 
view 

Interface 
view 

Functional 
view 

Model transformation PSM 

Deployment 
view 

Concurrency 
view 

Code generation 

C 

Fig. 3. Model-driven software process 

3.1 Overview 

The UPMSat2 project has been used as a basis for ed­
ucational activities at UPM. The students participat­
ing in them follow different curricula, oriented towards 
Telecommunications Engineering, Aerospace Engineering, 
and Computer Science, and work in two different campuses 
distant 18 km from each other. They can also work at 
home or other locations outside the campus. This kind 
of organization obviously requires support for distributed 
collaborative work, in order to enable the students and 
teachers to share project assets and participate in discus­
sions irrespective or their physical location. 

The activities in which the students can take part are 
introduced in the following paragraphs. 

3.2 Regular undergraduate and graduate courses 

Different parts of the project are used as examples in 
undergraduate and graduate courses at the Informatics 
School of UPM. For example, low-level code, including 
some VHDL code for the FPGA system, is used in a course 
on Industrial Informatics. Other software modules are used 
in master courses on Embedded Systems and on Real-Time 
Systems. 

The main use of the project in regular courses has been in 
the UPM Master program in Space Technologies, specif­
ically in the Software Engineering and the Real Time 
courses. This program has now been superseded by a new 
Master on Space Systems, in which all parts of the satellite, 



including mechanical, thermal, and electrical subsystems, 
are being used as basis for project based learning. The 
software subsystem, in particular, is used in two courses 
on Data Handling and Satellite Communications. The 
program is taught at the Aerospace Engineering School. 

Students in these courses use the basic software system 
as a basis for alternative variants and sample code devel­
opment. The ECSS E40, E-80, and Q-80 standards4 are 
used to illustrate the software development process and 
the verification and validation requirements. 

3.3 Special seminars 

A seminar on the UPMSat2 software system is offered on a 
yearly basis as an elective in the Telecommunications En­
gineering undergraduate curriculum. The ECSS software 
engineering process and the basic software technologies 
used in the UPMSat2 are exposed to the students who 
participate in the course in order to improve their skills in 
embedded software engineering. The seminar is also used 
to select volunteers to do their graduation project with the 
real-time systems group. 

3.4 Graduation projects 

All undergraduate programs at UPM require a graduation 
project with an estimated workload of 300 to 360 hours 
(12 ECTS credits). A number of students have done their 
graduation projects with the STRAST group, working on 
the development of prototype modules of the UPMSat2 
software system. The students work under the supervision 
of a member of the group, and must produce a project 
report as well as a working software product, complete 
with tests and documentation. Some students have also 
worked on master-level projects, which are typically longer 
(up to 30 ECTS credits) thus allowing for more complete 
developments. 

4. INTERNET-BASED TOOLS 

4-1 Requirements 

The various activities described in the previous section 
are carried out by the students at different locations: class­
room, laboratory, library, or even home. While a few activi­
ties may require the student's presence in a laboratory (e.g. 
testing with real hardware), most software development 
activities can be performed on personal computers, on a 
distributed basis. Therefore, in order to work efficiently in 
a distributed organization, an appropriate internet-based 
collaborative environment has to be set up. 

The main needs that such an environment must fulfil are: 

(1) Communications: in addition to basic email, tele­
conference facilities enabling remote meetings are 
needed. 

(2) Document management: basic documentation, such 
as ECSS standards, and project-wide documents 
must be accessible to all the participants in the 
project in such a way that updates are immediately 
accessible. The documents must be under version 

4 European Cooperation for Space Standardization, www.ecss.nl. 

control so that the users can track the changes and 
retrieve older versions whenever needed. 

(3) Modelling tools. Using a model-driven engineering 
approach requires system modelling software and 
tools to be available to all the participants in the 
project. Sharing models should be possible through a 
central server, and the same requirements on updates 
and control version as for document management 
should be fulfilled. 

(4) Code. Source code must available to all the partici­
pants in the project. Advanced version control mech­
anisms, including branching support for experimental 
developments and tagging of relevant versions, are 
also needed. The compilation chain tools must be 
shared by all the team members, and updating to new 
versions must be done in controlled ways in order to 
ensure consistency among software modules. 

There is no single tool that fulfils all the above needs, and 
therefore the collaborative environment had to be built 
using an assortment of internet-based tools. An additional 
requirement is that the tools should be open source or free 
software whenever possible, or at least be available at a 
low cost for universities. 

The next section describes the architecture of the collab­
orative work environment and the choice of tools that are 
being used in the project. 

4-2 Architecture and tools 

Figure 5 shows the overall architecture of the UPMSat2 in­
ternet environment. It is a classical two-level architecture, 
with a public area that can ben accessed by anybody and 
a private area that is only accessible to the team members. 

The public area is rooted at the STRAST UPMSat2 
portal, 5 which is also linked to the project pages at IDR. 6 

Its contents include general information about the project 
and the student-oriented activities, a list of publications 
and public documents, and a Twitter widget where the 
last tweets from the project account can be seen. 

The private area is isolated from the internet by a firewall, 
and can only be accessed from the departamental network. 
Team members can get access from any other network by 
using a virtual private network (VPN) access. It contains 
collaborative work tools that cover the requirements stated 
in the previous section. The tools have been selected 
for functionality, availability, ease of use, and cost. A 
description of the main tools that are being used by the 
project team follows. 

Communication tools. The Scopia videoconferencing 
system7 is being used across all parts of the UPMSat2 
project, with a central server run by IDR. The Scopia 
desktop client is freely available for the most common op­
erating systems, and provides all the required functionality 
for holding project-wide remote meetings. Alternatively, 
Skype8 has been used by smaller groups for short meet­
ings because of its widespread availability and ease of use. 

5 web.dit.upm.es/str/upmsat2 
6 www.idr.upm.es/tec_espacial/upmsat2-eng/01_UPMSAT2.html 
7 www.avaya.c om 
8 www.skype.com 

http://www.ecss.nl
http://web.dit.upm.es/str/upmsat2
http://www.idr.upm.es/tec_espacial/upmsat2-eng/01_UPMSAT2.html
http://www.avaya.c
http://www.skype.com


external users team members 
Source code control. Source code development tools 
include the GNAT compilation chain and other tools 
included in the GNAT Programming S tud io 1 3 graphic 
environment. The tools are installed on the s tudents ' 
computers, but all the source code is managed through 
a central repository under version control. 

The source code control tool tha t has been selected for the 
project is Subversion.1 4 This system enables a team of 
software developers to work in a distributed environment. 
Source files are stored in a central repository which can be 
accessed through a variety of internet protocols, including 
svn, ssh, https, and webdav. The system has all needed 
features for collaborative block, including file locking, 
conflict detection, branching and merging, and flexible 
authorization schemes. 

4-3 Laboratory facilities 

Fig. 5. UPMSat2 Internet environment 

Document management. Although some public docu­
ments are stored on a plain web server in the public 
area, a more sophisticated kind of document manager 
is needed to keep track of changes and provide more 
elaborate access control. Simple solutions such as those 
provided by GoogleDrive 9 do not provide enough facilities 
for sharing and access control as needed by the project. Al­
fresco Community Edition 10 has been chosen instead for 
its availability as free software and its flexibility. Project 
documents are stored in a central server run by STRAST, 
and can be accessed by means of a web server. 

Two kinds of modelling tools are used Modelling tools. 
in the project: 

• Dynamic modelling tools. Simulink1 1 is used to 
model the spacecrafts dynamics and to tune the 
a t t i tude control parameters . Code for the a t t i tude 
control algorithm is automatically generated from the 
Simulink model using the Simulink code generator. 

• Architectural modelling tools. Software models de­
veloped in the model-driven software process (de la 
Puente et al., 2014a) are mostly coded using the 
AADL (Feiler, 2012) and ASN.l (ITU, 2008) lan­
guages. The models are created and edited with the 
TASTE toolset 1 2 (Perrotin et al., 2012), which also 
uses other kinds of files, all in source text format. 

The modelling tools have to be installed on the s tudents ' 
individual computers, but the models are shared in a 
central repository. In order to keep track of the changes 
and make the models, the same source code control tools 
as for the implementation code (see below) are used, thus 
collapsing the model and code repositories in figure 5 above 
into one single repository. 

TASTE uses only textual languages for its model files, but 
Simulink model files are in binary formats. Therefore, in 
order to avoid possible conflicts when handling the models, 
the Simulink file types must be registered as binary files. 

www.google.com/drive/ 
3www.alfresco.com 
1 www.mathworks.com/products/simulink 
2 taste.tuxfamily.org 

Most student activities involve some amount of laboratory 
work. Most of it is related to the development of high-
level software, and does not require any special facili­
ties beyond ordinary PCs running GNU/Linux, with the 
GNAT compilation chain and its graphic environment as 
above described. The native x86/linux compilation chain 
is installed on the students and general programming lab 
computers for this purpose. 

Compilation & 
debugging tools 

development computer 

serial interface 

On-Board 
Software 

OBC board 

serial 
interface 

A&D 
interfaces 

Spacecraft & 
environment 

model 

simulation computer 

Fig. 6. Laboratory setup. 

However, some activities, especially for students working 
on graduation projects or master theses, require access to 
the OBC hardware, including inpu t /ou tpu t devices and 
some sensors and actuators. In order to support this kind 
of activities, a specific laboratory has been set up including 
the following facilities: 

• Development computer: a GNU/Linux workstation 
with a cross-compilation chain generating Leon3 exe­
cutable code, including remote debugging software. 

• An engineering model of the OBC based on an F P G A 
development board with a LEON processor, memory 
and other device cores. 

• A simulation computer running MATLAB/Simulink 
with specific I / O boards: serial ports, analog outputs , 
and digital input and outputs . 

• Electronic instruments such as oscilloscopes and mul­
timeters. 

www.adacore.com 
4 subversion.apache.org 

http://www.google.com/drive/
http://www.alfresco.com
http://www.mathworks.com/products/simulink
http://www.adacore.com


The simulation computer runs simulation models of the 
spacecraft dynamics and the orbital conditions in order 
to test the ADC software. It also runs lower-level simula­
tion software for the radio equipment and other satellite 
hardware. 

The development computer is connected to the internet 
and can be accessed via remote login. The students can 
develop software modules on their computers and then 
upload them to the laboratory for cross-compilation and 
loading on the OBC board. In this way, realistic hardware-
in-the-loop testing can be carried out for most of the 
satellite software modules. 

4-4 Usage 

The above described internet tools have been extensively 
used throughout the project time line. Students have 
used the document repository to have easy access to 
specification and design documents, and the model tools 
to generate skeleton source code and explore changes in 
the models. 

The source code control system has been the most useful 
tool for the students' work. They have been able to start 
new developments as code branches, without affecting the 
mainstream code. The student code can later be merged 
into the mainstream, if the teachers find it correct and 
complete, including a full set of unit tests, which are 
also stored in the repository. If several students work 
on the same code module, the system detects possible 
conflicts and helps resolving them. In this way they are 
encouraged to experiment and look at the code written 
by others, which contributes to enhancing their ability to 
write correct code and increasing their productivity. 

5. CONCLUSIONS AND FUTURE WORK 

Using internet-based tools in the UPMSat2 project has 
proved to be both a flexible and powerful approach to 
collaborative work, not only for professors and researchers, 
but also for students. Feedback from students who have 
worked on the project has been very positive, and they 
have stressed the fact that they have been able to get 
a taste of real work in industry even in an academic 
environment. The use of the system architecture, models, 
and implementation code in classroom examples has also 
be very fruitful, and has given the students attending the 
courses a more realistic view of the problems that can be 
found in an industrial environment. 

The UPMSat2 software is now in its production phase, but 
we are still planning to use it as a basis for experimental 
developments and teaching activities. 

ACKNOWLEDGEMENTS 

We would like to acknowledge the work of the UPM 
students who have participated on the project: Pablo 
del Hoyo, Gonzalo Pérez-Tomé, Víctor Tomás, Verónica 
Gómez, Diana Marín, and Beatriz Lacruz. 

We would also like to acknowledge the valuable collabora­
tion with the IDR team. 

REFERENCES 
Cubas, J., Farrahi, A., and Pindado, S. (2015). Mag­

netic attitude control for satellites in polar or sun-
synchronous orbits. Journal of Guidance, Control, and 
Dynamics, 1-12. doi:10.2514/l.G000751. 

de la Puente, J.A., Garrido, J., Zamorano, J., and Alonso, 
A. (2014a). Model-driven design of real-time software 
for an experimental satellite. In E. Boje and X. Xia 
(eds.), Proceedings of the 19th IF AC World Congress, 
1592-1598. IFAC-PapersOnLine. 

de la Puente, J.A., Zamorano, J., Alonso, A., Garrido, J., 
Salazar, E., and de Miguel, M.A. (2014b). Experience 
in spacecraft on-board software development. Ada User 
Journal, 35(1), 55-60. 

Feiler, P. (2012). Architecture Analysis & Design Language 
— SAE AADL AS5506B. SAE. 

Fortescue, P., Swinerd, G., and Stark, J. (2011). Spacecraft 
Systems Engineering. Wiley, 4 edition. 

Gaisler (2012). LEON3 - High-performance SPARC 
V8 32-bit Processor. GRLIB IP Core User's Manual. 
Gaisler Research. 

Garrido, J., Zamorano, J., de la Puente, J.A., Alonso, A., 
and Salazar, E. (2015). Ada, the programming language 
of choice for the UPMSat-2 satellite. In Data Systems 
in Aerospace — DASIA 2015. Eurospace. 

ITU (2008). Abstract Syntax Notation One (ASN.l). 
Recommendations ITU-T X.680-683. 

Perrotin, M., Delange, J., Schiele, A., and Tsiodras, T. 
(2012). TASTE: A real-time software engineering tool-
chain overview, status, and future. In I. Ober and 
I. Ober (eds.), SDL 2011: Integrating System and Soft­
ware Modeling, volume 7083 of Lecture Notes in Com­
puter Science. Springer. 

Ruiz, J.F. (2005). GNAT Pro for on-board mission-critical 
space applications. In T. Vardanega and A. Wellings 
(eds.), Reliable Software Technologies — Ada-Europe 
2005, volume 3555 of LNCS. Springer-Verlag. 

Taft, S.T., Duff, R.A., Brukardt, R.L., Plóedereder, E., 
andLeroy, P. (eds.) (2006). Ada 2005 Reference Manual. 
Language and Standard Libraries. International Stan­
dard ISO/IEC 8652:1995/'Amd 1:2007. Number 4348 
in Lecture Notes in Computer Science. Springer-Verlag. 

Zamorano, J. and Ruiz, J.F. (2002). GNAT/ORK: 
An open cross-development environment for embedded 
Ravenscar-Ada software. In E.F. Camacho, L. Basañez, 
and J.A. de la Puente (eds.), Proceedings of the 15th 
IF AC World Congress. IFAC-PapersOnLine. 


