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ABSTRACT

The proper selection of development mechanisms and
tools is essential for the final success of any engineer-
ing project. This is also true when it comes to software
development. Furthermore, when the system shows very
specific and hard to meet requirements, as it happens for
high-integrity real-time systems, the appropriate selec-
tion is crucial. For this kind of systems, Ada has proven
to be a successful companion, and satellites are not an ex-
ception. The paper presents the reasons behind the selec-
tion of Ada for the UPMSat-2 development, along with
the experience and examples on its usage.
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1. INTRODUCTION

The UPMSat-2 project is aimed at developing an experi-
mental micro-satellite mission that can be used as a tech-
nical demonstrator and an educational platform. It is be-
ing carried out in a collaborative way by several UPM
research groups and industrial companies. The STRAST
group is responsible for all the on-board and ground soft-
ware development (de la Puente et al., 2014b). In order to
fulfil its technology demonstrator purpose, the UPMSat-2
payload consists of a set of experiments proposed by dif-
ferent Spanish companies, the European Space Agency
(ESA), and other UPM research groups. The aim of
these experiments is focused on testing new equipment
behaviour in space conditions.

The satellite has an external envelope of 0.5×0.5×0.6 m,
as shown in figure 1, and a total mass of 50 kg approxi-
mately. The satellite will be set on a low Earth noon sun-
synchronous polar orbit (Fortescue et al., 2011), with an
expected altitude of 600 km and a period of 97 min. En-
ergy is provided by solar cell panels located on the sides
of the satellite. Radio communications with the ground
segment are ensured by a radio equipment operating in
the VHF 400 MHz band, with a linear antenna located on
the top of the satellite structure.

Figure 1. General view of the satellite platform

An on-board computer (OBC) carries out all the data han-
dling, supervision and control functions of the satellite,
including the management of the payload experiments.
It is based on a LEON3 processor (Gaisler) with 4 MB
SRAM, 1 MB EEPROM, timers, analog inputs, and dig-
ital I/O.
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Figure 2. UPMSat-2 on-board software architecture.

The software architecture is shown in figure 2. The on-
board software consists of a number of subsystems that
control the operation of the satellite.
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The main subsystems are:

• Attitude determination and control system (ADCS).
This subsystem controls the attitude of the satellite
based on measurements of the Earth magnetic field.
The basic actuators are magnetorquers, although a
reaction wheel can be used as an experiment.

• Platform monitoring. This subsystem is in charge of
periodically checking the structural conditions of the
satellite, including housekeeping data such as tem-
peratures and power supply voltages. Housekeep-
ing data are periodically sent to ground by means of
telemetry messages.

• Telemetry and telecommand (TMTC). This subsys-
tem handles all the communications between the
satellite and the ground segment using the radio
equipment.

• Payload manager. This subsystem manages the exe-
cution of the experiments. Experiments are staterted
upon receipt of specific telecommands, and the re-
sults are sent to ground through telemetry messages.

• Storage. This subsystem manages the use of non-
volatile memory to store relevant data, preventing
data loss in case of a computer shut down.

The ADCS, platform monitoring, and TMTC subsystems
have been assigned criticality level B as per EDCSS-Q-
80C (ECSS), and the other subsystems have classified as
level C.

2. ON-BOARD SOFTWARE DEVELOPMENT

2.1. Language choice

Ada 2005 has been chosen as the main language for the
UPMSat2 on-board software, due to its outstanding char-
acteristics for the development of high-integrity embed-
ded systems (Taft et al., 2006; Barnes, 2008). The most
relevant of these properties are:

Strong typing. This feature enables many potential er-
rors to be detected at compilation time. Unlike other
strongly typed languages, Ada has a rich set of mecha-
nisms for user-defined types, including subtypes, derived
types, and tagged types, thus enabling checking for valid-
ity while letting programmers use the best suited type for
each purpose. Access types enable safe pointer usage,
thus avoiding dangling pointers and other vulnerability
sources found in other programming languages.

Reusability Generics and type extension provide a
strong basis for reuse. The Ada approach to object-
oriented programming, where encapsulation is sepa-
rated from type extension, defines a flexible program-
ming model that enables programmers to choose differ-
ent paradigms, depending on the use of extensions, in-
heritance, and interfaces (Rosen, 1992).

Support for concurrency and real-time. The Ada
concurrency model is very complete and powerful, and
the extensive support of real-time mechanisms is very
helpful for developing complex systems such as those
found in on-board software.

Support for high-integrity software development
Ada has a rich set of built-in restrictions (ISO/IEC) that
can be applied in order to facilitate the use of software
validation and verification techniques. The restrictions
limit the use of some language features which, while con-
tributing to the expressiveness of the language, may lead
to unbounded or indeterministic behaviour. Examples of
this are dynamic storage and unbounded type declara-
tions.

Schedulability analysis techniques have a significant role
in high-integrity systems verification. The Ada Raven-
scar profile (Burns et al., 1998, 2003) restricts tasking
to an analysable model that can be implemented by a
lightweight kernel. The profile was incorporated into the
Ada 2005 standard.

SPARK (Barnes, 2013; AdaCore, d) is a language in-
tended for developing high-integrity systems which is
based on Ada. It limits the language in the same sense
as the native restrictions, and includes formal annotations
that can be used with an extensive set of verification tools.

Hardware interfaces and low-level programming.
Representation clauses and interrupt handling are pow-
erful tools for addressing specific interfacing require-
ments as those arising when accessing hardware de-
vices. Device drivers can thus be written in a safe way
while keeping an abstract view of the hardware, and can
be made compatible with the Ravenscar restrictions as
shown by López et al. (2010).3

Mixed language development Ada supports mixed-
language development by means of import and export
pragmas, and representation clauses. In the case of the
UPMSat2 software this is an important feature in order
to integrate the ADCS control algorithm code, which is
automatically generated in C from a Simulink model.

Based on above considerations, the UPMSat2 develop-
ment team decided to use Ada 2005 with the Ravenscar
profile tasking restrictions as the main language for the
project.



2.2. Development tools

In order to properly support the use of of Ada and the
project requirements, the GNAT Pro compilation chain
for LEON3 (Ruiz, 2005) has been chosen, together with
other Ada related tools, such as the GNAT Programming
Studio (AdaCore, a), GNATcoverage (AdaCore, b), and
CodePeer (AdaCore, c). The GNAT run-time system in-
cludes the Open Ravenscar Real-time Kernel, ORK, de-
veloped at UPM (de la Puente et al., 2000; Zamorano and
Ruiz, 2003). ORK was designed so as to to keep its im-
plementation as simple as possible, focusing on robust-
ness and predictability.

3. PROJECT EXPERIENCE

The UPMSat2 project is still under development, and the
on-board software system has not been completed yet.
However, there is already some experience with the soft-
ware development process and tools.

The software is being developed using a model-driven ap-
proach (de la Puente et al., 2014b). The production ver-
sion of the software is being developed using the TASTE
toolset (Perrotin et al., 2012) and the AADL(Feiler,
2012), ASN.1 (ITU, 2008), and SDL (ITU, 2011) as mod-
elling languages. Simulink (Mathworks, 2013) has been
used to model the attitude control algorithm, from which
sequential C code has been automatically generated. The
code is integrated into skeleton Ravenscar Ada code gen-
erated by TASTE (de la Puente et al., 2014a).

Figure 3 shows a high-level view of the software archi-
tectural model.

Figure 3. AADL model of the on-board software system.

An alternative experimental version for a partitioned,
IMA platform has also been developed using UML-based
tools (Salazar et al., 2014). The implementation approach
is similar, with functional C code being integrated into
Ada code skeletons generated from the high-level mod-
els.

The resulting source code has been fed into the compila-
tion chain. Some functional modules have been directly
written in Ada using GPS. Ada code, both handwritten
and tool-generated, and C code generated from Simulink,
have been integrated using the GPS environment. The in-
terfacing features of Ada have been used extensively for
this purpose, making it rather simple to build a multi lan-
guage system.

The GNAT compilation chain has been used to produce a
LEON3 executable code image, which can be loaded into
the OBC hardware, and then tested and debugged, using
the GRMON monitor (Gaisler Research, 2013).

We are currently in the process of verifying all the soft-
ware subsystems, for which purpose the CodePeer tool
is being of great help. The real-time behaviour is be-
ing analysed using WCET and response-time analysis
tools (Garrido et al., 2012).

4. CONCLUSIONS

The main features that support the choice of Ada as the
main programming language for the UPMSat2 project
have been analysed. We believe that this choice is ex-
tensible to other small satellite projects, in which the ro-
bustness and tool availability can lead to highly reliable
software systems at a reasonable cost.

The experience with several specific features of the lan-
guage has been addressed, with promising preliminary re-
sults.
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