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ABSTRACT 
We study synchronization in a ring of three unidirectional coupled chaotic coupled chaotic Rössler oscillator in the presence of a small mismatch between their natural frequencies ω1 < 

ω2 < ω3 . The forward (1  2  3  1) and the backward (1 2  3  1) coupling directions are considered. As the coupling strength increases, the common route to synchronization 
for both configurations is: intermittent phase synchronization imperfect phase synchronization  perfect phase synchronization  lag or anticipated synchronization. The difference in 
synchronization scenario for the two configurations occurs only for small couplings in the regime of intermittent phase synchronization characterized by the time-averaged dominant 
frequency in the chaotic power spectrum and the slope of the time dependence of the difference between the oscillators’ phases. Although phase synchronization is more easily achieved 
for the backward coupling configuration, the forward coupling results in significant coherence enhancement which occurs within a narrow range of the coupling strengths as soon as the 
oscillators synchronize their phases. In this regime all oscillators behave almost periodically. 

Introduction 
Synchronization is commonly understood as a collective state of coupled systems. 

Generally, synchronization means some relations between functions of different processes 

due to their interactions [1]. As a result of synchronization, coupled oscillatory systems 

adjust their individual frequencies in a certain relation.  

The notion of synchronization has been extended to chaotic dynamics since the 

appearance of the work of Fujisaka and Yamada [2] who first demonstrated that two 

identical chaotic systems can change their individual behaviors from uncorrelated 

oscillations to completely identical oscillations as the coupling strength is increased.  

Model 
The Rössler oscillator is a prototypical system frequently used for studying synchronization 

of chaotic oscillators [6]. We consider two possible configurations shown in Fig.1.: (a) The 

forward (1  2  3  1) and (b) he backward (1 2  3  1) coupling directions.  

Figure 1: Ring configurations of three oscillators unidirectional coupled in (a) forward and (b) backward directions. 

        

Any of them can be described by the following system of equations: 
 

where i, j = 1, 2, 3 (i ≠ j) is the oscillator number, xi, yi, zi, are the state variables of the ith 

oscillator, ω1 = 0.95, ω2 = 0.97 and  ω3 = 0.99 are the oscillators’ natural frequencies, and  is 

the coupling strength. A slave oscillator i is coupled through variable xj of a neighboring 

master oscillator j. Being uncoupled (σ = 0), the oscillators are chaotic for a = 0.165, b = 

0.2, and c = 10. Starting from different initial conditions, they oscillate asynchronously, as 

seen from the time series in Fig. 2 (a) 

Figure 2: (a) Timer series and (b) power spectra of x variables of three uncoupled Rössler oscillators demonstrating asynchronous chaotic 
behavior with dominant frequencies, Ω1

0, Ω2
0 and Ω3

0. 

The chaotic power spectra of the system variables, as those shown in Fig. 2 (b), exhibit 

maxima at the dominant frequencies:  Ω1
0  ≈ 0.975, Ω2

0 ≈ 0.998, Ω3
0 ≈ 1.02. Due to the 

system nonlinearity, these frequencies are a little higher than the natural frequencies of 

the corresponding oscillators. 

Now, we consider how synchronization emerges when the coupling strength increases. 

Quantitatively, phase synchronization between a pair of oscillators I and j can be 

characterized by the difference between their instantaneous phases  𝜃𝑖𝑗 = 𝜙𝑖 − 𝜙𝑗 where  

𝜙1 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦𝑖,𝑗

𝑥𝑖,𝑗  (ref). Since the oscillators have distinct natural frequencies, 𝜃𝑖𝑗 of the 

uncoupled oscillators either increases or decreases monotonically in time (depending on a 

sign of the frequency mismatch). The oscillators begin to interact already for a very small 

coupling strength (σ > 5 x 10-3) that manifests itself as the appearance of irregular 

windows of phase synchronization in the time series. This regime is referred to as 

intermittent phase synchronization. 

This situation is illustrated in Fig. 3, where we plot the time dependences of 𝜃21 situation 

where for three different coupling strengths. The horizontal parts of these dependences 

correspond to the windows of phase synchronization where the dominant frequency of the 

slave oscillator is locked by the corresponding master oscillator. 

Figure 3: Phase difference 𝜃21 between oscillators 2 

and 1 as a function of time for σ = 6.6 x 10-3 (upper blue 

line), 26.4 x 10-3 (middle green line), and 46.2 x 10-

3(lower black line). The dashed line is a linear fit for the 

middle dependence with slope α. The horizontal parts 

of these dependences indicate the regions of 
intermittent phase synchronization. 
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Intermittent Phase Synchronization and Deterministic 

Coherence Resonance 
In the forward coupling configuration, the sequence of the closest spaced oscillators (1 

 2  3  1) is arranged so that the natural frequency of a slave oscillator is higher 

than the frequency of a corresponding master oscillator, i.e. ω1 < ω2 < ω3. Thus, 

oscillator 1 is master for oscillator 2, and oscillator 2 is master for oscillator 3, while 

oscillators 2 and 3 are slaves for 1 and 2, respectively. In the backward coupling 

configuration, the sequence of the most closely spaced oscillators (3 2  1) is 

arranged so that the natural frequency of a slave oscillator is lower than the frequency of 

the slave oscillator leads to phase synchronization. To characterize intermittent phase 

synchronization, we use the time-averaged dominant frequency 𝛺  and slope α. 

Figure 4: (a,b) Time-averaged dominant frequencies 𝛺𝑖  and slopes αij as a function of coupling strength for (a,c) forward and 
(b,d) backward directions. 

In the region of phase synchronization, synchronization quality is characterized by 

comparing amplitudes of coupled oscillators. The commonly used measures of lag and 

anticipated synchronization are cross-correlation and similarity functions, C and S, 

defined respectively as [3, 4]. The higher maximum cross-correlation Cmax and the lower 

minimum similarity Smin mean better synchronization. Figure 5 show how similarity vary 

with the coupling strength.  

Figure 5: (a) minimum similarity as a function of coupling strength for every pair of oscillators for forward and (b) for backward 
directions of coupling. 

For small coupling (σ < 0.048) in the region of intermittent phase synchronization, Cmax is 

very low [Fig. 5(a,b)], while Smin [Fig. 5(c,d)] is very high. As the coupling increases from 

σ = 0.048 to σ = 0.180, imperfect phase synchronization becomes perfect thus resulting 

in slowly increasing Cmax and slowly decreasing Smin. In this regime the phase difference 

𝜃 fluctuates around its average value, but does not extend the modulation period, i.e. 

𝜃𝜖[−𝜋, 𝜋]. As σ increases, the amplitude of these fluctuations decreases leading to 

perfect phase synchronization. 

Figure 6: (a) NSTD, with DCR at σ = 0.185  and (b) Time series for this coupling value in the forward direction. (c) NSTD, with 
DCR at σ = 0.1749  and (b) Time series for this coupling value in the backward direction. 

Conclusions 
We have studied the route to synchronization in a ring of three unidirectional coupled 

Rössler oscillators with small mismatch between their natural frequencies ω1 < ω2 < ω3,in 

forward (1  2  3  1) and the backward (1 2  3  1) coupling directions. As the 

coupling strength increases, the oscillators first synchronize their phases intermittently 

and then adjust their amplitudes. We quantitatively characterized intermittent phase 

synchronization by the time-averaged dominant frequency in the power spectrum of 

every oscillator and the linearly approximated slope of the time-dependent phase 

difference for each pair of the coupled oscillator. Then, we have observed that  phase 

synchronization is more easily achieved when a master is faster than a slave.  

Finally, We have analyzed not only forward but also backward direction and we found 

Deterministic Resonance Coherence for both scenarios, although there are some 

differences: each scenario has a specific couple value to reach Deterministic Resonance 

Coherence. The more sensitive to coupling is the backward direction. 

𝒙 𝒊 = −𝒘𝒊 · 𝒚𝒊 − 𝒛𝒊 + 𝝈 · 𝒙𝒋 − 𝒙𝒊  

𝒚 
𝒊
= 𝒘𝒊 · 𝒙𝒊 + 𝒂 · 𝒚

𝒊
 

𝒛 𝒊 =  𝒃 + 𝒛𝒊 · (𝒙𝒊 − 𝒄) 


