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A b s t r a c t . Regularization is necessary to avoid overfitting when the 
number of data samples is low compared to the number of parameters 
of the model. In this paper, we introduce a flexible L1 regularization 
for the multivariate von Mises distribution. We also propose a circular 
distance that can be used to estimate the Kullback-Leibler divergence 
between two circular distributions by means of sampling, and also serves 
as goodness-of-fit measure. We compare the models on synthetic data 
and real morphological data from human neurons and show that the 
regularized model achieves better results than non regularized von Mises 
model. 

1 Introduction 

Directional data is ubiquitous in science, from the direction of the wind to the 
branching angles of the trees. However, directional data has been traditionally 
treated as regular linear data despite of its different nature. Directional statistics 
[4] provides specific tools for modelling directional data. If the normal distribu­
tion is the most famous distribution for linear data, the von Mises distribution 
[6] is its analogue for directional data. 

If we extend the von Mises as a multivariate distribution [3], we face the 
problem that no closed formulation is known for the normalization term when the 
number of variables is greater than two, and, therefore it cannot be easily fitted 
nor compared to other distributions. We introduce a computationally optimized 
version of the full pseudo-likelihood as well as a circular distance to address these 
problems. 

Another problem in some application areas, like neuroscience, is that data 
is scarce and expensive. In these situations regularization is needed to prevent 
overfitting. We propose a L1 regularization for the multivariate von Mises dis­
tribution that allows us to introduce prior beliefs on the relation between the 
variables. 



This paper is organized as follows. Section 2 reviews the univariate and mul-
tivariate von Mises distributions. In Sect. 3 we propose a circular distance that 
is applied to estimate the KL divergence between two distributions. Then, in 
Sect. 4 we compare the von Mises distribution to the Gaussian distribution over 
synthetic data using the approximated KL divergence as the evaluation metric. 
We repeat the same process on real data from human neurons in Sect. 5, this time 
using the approximated KL-divergence as a two-sample test, and show that the 
regularized multivariate von Mises distribution always achieves better results. 
We conclude the paper in Sect. 6 with a final discussion and some proposals for 
future work. 

2 The Multivariate von Mises Distribution 

Directional statistics is a field within statistics that deals with angles, or equiva-
lently, directions in space. Among the variety of directional distributions, the von 
Mises distribution is particularly noteworthy since it is considered the circular 
analogue of the normal distribution but having better mathematical properties 
than the wrapped-normal distribution [3,5,8]. 

The univariate von Mises distribution belongs to the exponential family and 
its density function is given by: 

fvM(Q; Mi K)= exp {K cos (6 — JJ,)} (1) 
27T7O(K) 

where /x is the mean angle and K the concentration parameter, i.e. the inverse of 
the variance, and IQ is the modified Bessel function of order 0. 

Based on its exponential definition, we can define a multivariate von Mises dis­
tribution [3] analogous to the multivariate normal distribution. For 0 = (9\,..., 6P) 
the density function is defined as: 

/ M V M ( ^ ; M , K , A ) = exp {K cos(9 — /LX) + s i n ( 0 — /Lx)Asin(0 — /LX) } 
Z(K, A) 2 

(2) 
where /LX = (/xi, ...,(J,P) and K = («i,..., KP) are the multidimensional equivalents 
of fj, and K in the univariate von Mises respectively, and A = (Ajj) is a p x p 
symmetric matrix with Xu = 0 and \j > 0. 

Unfortunately, the normalization term Z(K, A) does not have a known closed-
form formula for any p greater than two, so it has to be approximated numeri­
cally, making the calculation of the density function intractable computationally. 

2.1 Pseudo-Likelihood 

Due to the complexity of computing the normalization term in the density func­
tion of Eq. (2) it is not practical to use the likelihood as the target function to 
fit the multivariate von Mises distribution given a set of data samples [3]. In this 
same article, the authors propose to use the pseudo-likelihood as a consistent 



approximation of the likelihood term. Since each marginal conditional term for 
the multivariate von Mises is a univariate von Mises, the full pseudo-likelihood 
for a p-dimensional 0 = (Oij) that contains N independent samples can be 
expressed as: 

N p 1 

PC(0\ii, K, A) = (2n)-Np TT FT v ( ) exp {id cos(^ ,- - A4)} (3) 

where /z*. and K* are, respectively, the j-th marginal mean and concentration 
given the i-th data sample: 

h = fj,j + arctan 

K* = IK1- + ( S 

^2t ,. Xjti sin(6iti — fj,i) \ 

Kj J 

Xj i s in(0j ; — /J;))2 

(4) 

(5) 
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2.2 Optimization 

Given a set of samples, to compute the parameters of the multivariate von 
Mises distribution that maximize the pseudo-likelihood we define a minimization 
problem where the loss function is minus the natural logarithm of the pseudo-
likelihood defined in (3). This loss function can be written as: 

N p 

L(6\fi, n, A) = (pN) log(2-7r) + > > {log(Io(al) — K* cos(6ij — /x*-)} (6) 
i=i j=i 

We simplified the loss function (6) to reduce its complexity (from a compu­
tational point of view) by expressing sums as matrix products and by applying 
trigonometric properties to reduce the number of operations to be computed, 
specifically, to avoid the computation of the tangent inverse function. To do so, 
the first step is to define the N x p matrix $ as: 

$ = sin(0 — /LX)A 

Then, we can reduce the second term in the sum using some simple trigono­
metric identities: 

K1J cos(6ij — p?j) = Kl(cos(6ij) cos(/J,*) + sin(^jij) sin(/x*-)) 

• / cos(#j j — P-J)KJ sin(#j j — p,j)4>i j \ 
= KA ,—.— + — : — 

Kli Kli 

As result we obtain a more compact version of the loss function, that do not 
require to compute the tangent inverse: 

N p 

Lc(6\fi, K,A) = YJJ2 [log(Jo(4)) " cos(0i,j - A*j)«j " sin(0i,j ~ Vj)<Pi,j] (7) 
i=i j=i 



To find the minima for function (7) we will use the quasi-newton L-BFGS-
B algorithm [10] which is an extension of the well-known L-BFGS method that 
supports simple constraints such as KJ > 0. This method only requires to evaluate 
the loss function and its partial derivatives. Since the optimal fj, parameter is 
the vector formed by the marginal means, only partial derivatives with respect 
to K and A need to be computed in order to use this method. Please note that 
AQ stands for -r- where I\ is the modified Bessel function of order 1. 

I0 

dLc 
N 

i=\ 
M<) cos(0j j — fj,j) (8) 

dLc 
N 

i=\ 

s in(0 j & — yUfc) M< <j)j}k — s in(^j j — fj,j) (9) 

A comparison of the fitting execution time between the regular loss function 
provided by [8] based on the Eq. (6) and the optimized version in (7) was per­
formed for a 5-dimensional von Mises distribution. Both methods were imple­
mented in ANSI C and executed in similar conditions. The results in Fig. 1 
show that the optimized version is significantly faster as the number of samples 
increase. 
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Fig . 1 . Mean fitting time per number of samples of a 5-dimensional von Mises function. 
Each execution was repeated 100 times with 2 additional warm-up iterations. 

2.3 Regularization 

The regularized learning of the multivariate von Mises distribution has already 
been proposed by other authors [8]. However, from a Bayesian point of view, if 
we penalize equally all components in matrix A as it is done in the standard L\ 
regularization, we are adding the prior belief that all components Xij are similar 
(in scale terms) which may not correspond with our previous knowledge of the 
problem as it is studied in [9] for the multivariate normal distribution. 

To add prior knowledge about the structure we propose a generalized version 
of the L\ penalization for the multivariate von Mises distribution where each 



component Ajj is individually weighted. To do so, a symmetric penalization 
matrix \I/ is defined with the only restriction that all elements should be positive. 
Then, the function to minimize is: 

v 
g(0\n, K, A) = Lc(0|/i, K,A) + J2J2 lAj,*#j,fc (10) 

J =1 k=j 

Although the absolute value of \ j is not a differentiable at 0, we can find 
a differentiable function that approximates the absolute value with arbitrary 
precision. Bearing in mind that the number of real values that can be represented 
in a computer is finite, i.e. the minimum distance between real values is given by 
what is known as the machine epsilon, we can treat the absolute value function 
as if it was differentiable at any point. Then we just need to add a new term to 
the partial derivative with respect to Xjtk: 

Jr = S^ + s9n(x3,k)'^3,k (11) 

where sgn is the sign function that evaluates sgn(0) = 0. 

3 Evaluation 

The impossibility to express the normalization term of the multivariate von 
Mises distribution (12) as a closed formula for any p restrains the use of typ­
ical measures of divergence between distributions such as the Kullback-Leibler 
divergence since we cannot evaluate the density function in any point, which 
also impedes the use more powerful goodness of fit tests. 

Other authors have used the angle between original and fitted parameters 
[8] or the pseudo-likelihood value [3] as evaluation metrics, but these approaches 
are either only applicable to synthetic data from a known distribution or rely on 
the approximated likelihood. 

To overcome these drawbacks, we propose to use the approximation of the 
KL divergence for multivariate distributions [7] as evaluation measure. This app­
roach takes two sets of samples as input (one from each distribution or one from 
the real data and the other sampled from the learned model) and uses the dis­
tance to the A;-th nearest neighbor to approximate the KL divergence. Given 
two sets of samples {Xi}"=1 and {Yj}™ 1 from two p-dimensional distributions 
P and Q, the approximated KL divergence [7] between P and Q is computed as: 

n r / \ i 
ˆ n i m P V~^ /rfc(xi) \ m 
Dk(P\\Q)= — / log (—) + log (12) 

n ^-^ st.Xj n — 1 
i=1 « 1 

where rfc(xi) and Sfc(xi) are the distance to the A;-th nearest neighbour of Xi in 
X \ Xi and Y respectively. 

To generate samples from the multivariate von Mises distribution we can 
either use a rejection sampling algorithm [5] for small or moderate p or use a 



Gibbs sampler for higher p [8]. However, we still need to define a distance that 
computes the distance between two multivariate circular points. We defined a 
distance between two points a,b G [0, 2ir)p in Eq. (13) that takes into account 
the periodicity of circular data. 

d(a,b) = ||a-6*||2 

where: 

b* =(b*)?=1 = < bi + 2 n 

[h -2TT 

4 Multivariate von Mises vs. Multivariate Gaussian 

For high values of the concentration parameter, the univariate von Mises distrib­
ution approximates a normal distribution on the circumference. This behaviour 
extends to the multivariate case. However, it is not clear yet how this behaviour 
is affected either by the A parameter or the dimension p [8]. 

We used the empiric KL divergence defined in [7] along with the distance 
proposed in Sect. 3 to design a set of experiments with the aim of studying the 
behaviour of the multivariate normal and von Mises distribution when fitting 
circular data with different configurations. In addition, a regularized von Mises 
distribution is included in the comparison with penalization matrix \I/ = (">pi,j) = 
|i - j | , which is similar to the A band matrix configuration in the experiments, 
and it also matches the penalization used in Sect. 5. 

We generated random samples from different configurations of parameters, 
varying: (a) The number of variables from 4 to 50; (b) the number of samples 
from 10 to 500 in the simplest case (4 variables) and from 50 to 1000 in the 
most complex (50 variables); (c) the concentration vector K from a vector where 
all values were equal to 0.1 to a vector where all values were 7.0; and (d) the 
A matrix from a very sparse configuration where all elements were equal to 
zero to a dense configuration where all elements were distinct of zero. For all 
configurations and variables the mean value fj, was fixed at ir. 

The procedure below is repeated for each combination of parameters 20 times 
to compute the approximate KL divergence as the average of all 20 results: 

1. A set of N p-dimensional samples are generated from a multivariate von Mises 
distribution with parameters /LX0, n0 and Ao 

2. Multivariate normal and von Mises (regularized and non-regularized) distri­
butions parameters are fitted from the N samples 

3. Another set of m p-dimensional samples are generated from both original 
distribution and learned ones. Please note that m can be different from N. 
Then, the empiric approximation of the KL divergence is computed using 
these m samples 

if |Oi-bi| <7T 

if |a,i-bi| >TT and a; > TT (13) 

if |a,i-bi| >TT andai <TT 
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(a) p = 4, m = 500 (b) p = 50, m = 1000 

Fig. 2. Approximated KL divergence for low concentration K and very sparse A. 

The results for a sparse A matrix with low concentration K can be seen in 
Fig. 2. Both von Mises distributions obtain better results than the multivariate 
normal distribution. If the number of samples is high enough, the regularized 
and non regularized von Mises perform similarly. As expected, the number of 
samples needed to obtain the same fit in both regularized and non regularized 
distributions is higher as the number of variables increases. 
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(a) p = 4, m = 500 (b) p = 50, m = 1000 

Fig. 3. Approximated KL divergence for high concentration K and dense A. 

In Fig. 3 we can see the results for the opposite case, high concentration K and 
dense A matrix. In this case with high concentration the multivariate normal 
distribution obtains similar or better results than the von Mises distribution. 
It is important to note that although the penalization matrix does not exactly 
match the real AQ matrix structure, i.e. we do not have a perfect prior, the 
regularized version still performs equally or better than the non regularized one. 
In all cases we observe that the regularized von Mises distribution produces a 
better fit when the number of samples is low. 

Plots in Fig. 4 depict how the variation of the concentration parameter affects 
each of the distributions under evaluation for a fairly high number of samples 
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Fig. 4. Approximated KL divergence for concentration K varying and banded A. 

(N = 100 and N = 300 respectively). In Fig.4a we observe that both ver­
sions of the multivariate von Mises obtain similar results, independently of the 
concentration, due to the high number of samples with respect to the number 
of variables. It is also interesting to note that as the concentration parameter 
increases, the normal distribution approaches the von Mises, getting similar KL 
values for K > 2.0 in both Fig. 4a and b. From Fig. 4b we can preliminarily say 
that the improvement of the regularized distribution it is not affected by the 
concentration parameter K. 

5 Validation on Morphological Da ta from Human 
Neurons 

Neurons, the very basic component of the nervous system, can be divided into 
the cell body, dendrites and axon. Pyramidal cells is one of the most important 
types of neurons that have special basal dendrites, a set of dendrites that grows 
from the base of the cell body. In order to understand the differences between 
pyramidal neurons from different genders, species, brain regions, etc. it is impor­
tant to characterize the grow direction of these basal dendrites, which also helps 
to simulate and understand the functionality of these neurons. 

We downloaded a set of 3D reconstructions of human pyramidal neurons [2] 
from NeuroMorpho.Org [1], a public repository of neural reconstructions. The 
data includes gender and age, as well as other metadata related to the brain 
region or the reconstruction method. We restricted our selection to reconstruc­
tions from adults and with neurons belonging to the occipital lobe or the frontal 
lobe. 

The original data in plain text format was parsed and the angles between den­
drites were measured. To establish a criteria on variable ordering, the longest 
dendrite was taken as the principal and angles where numbered following a 
counter-clockwise ordering as depicted in Fig. 5. It is noteworthy that for a neu­
ron with p dendrites, we have p — 1 angles since the last one is completely 
determined by the rest. 



Fig . 5 . Inter-dendrite angles. 

We fitted a von Mises regularized distribution with a penalization matrix that 
grows with respect to the distance between angles. e.g. in Fig. 5 the value of ψ1,4 
is 2 (the shortest path between angles 1 and 4 is 1-5-4). We performed repeated 
train and test validation with 100 repetitions and use the empiric approximation 
KL divergence defined in Sect. 3 as evaluation metric. In each repetition, a 75 % 
of the original samples were selected at random as training set, leaving the 
remaining portion as the test set. In addition we also fitted a regular von Mises 
distribution for comparison purposes. Results are displayed in Table 1. In every 
case the regularized distribution obtains similar or better results. 

Table 1 . KL - divergence results for inter-dendrite angles. 

Dendrites (p + 1) 
5 
5 
5 
5 
5 
5 
6 
6 
6 

Gender 
Male 
Fe m a l e 
All 
Male 
Fe m a l e 
All 
Male 
Fe m a l e 
All 

Brain Region 
Occipital lobe 
Occipital lobe 
Occipital lobe 
Frontal lobe 
Frontal lobe 
Frontal lobe 
Frontal lobe 
Frontal lobe 
Frontal lobe 

Samples (N) 
19 
28 
47 
21 
21 
42 
16 
12 
28 

vM 
0.95 
0.76 
0.58 
0.86 
0.81 
0.50 
1.28 
1.41 
1.13 

vM Regularized 
0.80 
0.74 
0.57 
0.76 
0.65 
0.49 
1.17 
1.33 
0.96 

A summary of the multivariate von Mises function fitted is shown in Fig. 6. 
The rose plots in the diagonal depict the marginal distributions in the original 
data, the numbers in the upper triangle are the λi,j parameters of the multivari-
ate von Mises while the values in the first column correspond to the mean and 
concentration parameters. 
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F ig . 6. Angles between dendrites from adult occipital lobe neurons with 5 basal den-
drites (Color figure online). 

6 Conclusion and Future Work 

This paper introduces a computationally optimized formulation of the pseudo-
likelihood for the multivariate von Mises distribution that reduces fitting time 
and provides better scalability. We also propose a multivariate circular distance 
that can be used to compute an empirical approximation of the Kullback-Leibler 
divergence. We have studied the behaviour of normal and von Mises distributions 
using this approximated measure as reference. 

Also, a generalized L1-penalization for the multivariate von Mises distrib­
ution has been proposed and tested in cases where the number of samples is 
low. We applied the regularized model to the angles between basal dendrites of 
human pyramidal cells. A thorough study of the penalization matrix needs to be 
done in order to clarify the parameter scale and the impact in the final result. 

All methods described in this paper will be published in an R package that 
will support sampling and fitting of the multivariate von Mises distribution as 
well as multivariate circular plots and statistics. 
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