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Abstract. One of the main research topics in machine learning nowa-
days is the improvement of the inference and learning processes in proba-
bilistic graphical models. Traditionally, inference and learning have been
treated separately, but given that the structure of the model conditions
the inference complexity, most learning methods will sometimes produce
inefficient inference models. In this paper we propose a new representa-
tion for discrete probability distributions that allows efficiently evaluat-
ing the inference complexity of the models during the learning process.
We use this representation to create procedures for learning low infer-
ence complexity Bayesian networks. Experimental results show that the
proposed methods obtain tractable models that improve the accuracy of
the predictions provided by approximate inference in models obtained
with a well-known Bayesian network learner.

Keywords: Probabilistic graphical models, Bayesian networks, arith-
metic circuits, network polynomials, structure learning, thin models

1 Introduction

Bayesian networks (BNs) are very powerful tools for concisely modelling proba-
bility distributions of a set of random variables. In the past years there has been
a huge interest in the creation of new methods for learning the structure of BNs
from data. The main approaches focus on improving the accuracy (mainly the
likelihood) of the networks, learning sometimes spurius relations among variables
and increasing the inference complexity of the resulting models. Some methods
include a penalization for the representation complexity of the network using the
number of parameters of the model [1, 6], but the representation complexity and
the inference complexity are sometimes very different for the same model [5].
In practice, performing exact inference in the models learned using this type of
methods is usually computationally expensive and sometimes intractable. The
most common solution is then to resort to approximate inference, deteriorating
the inference accuracy of the models.

A possible solution to learn models with tractable exact inference is to use
an estimation of the inference complexity as a penalization during the learning
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process. In junction trees (JTs) the inference complexity is exponential in the
size of the largest clique of the tree, which is called treewidth, and it is a good
indicator of the inference complexity for probabilistic models. There are some
approaches that learn low-treewidth JTs, which are usually called thin JTs [3],
using a bounded treewidth to restrict the inference complexity [7, 9, 15]. A dif-
ferent approach, closely related to our work, uses the incremental compilation of
arithmetic circuits (ACs) to obtain tractable models [13].

In this work we propose a new representation to complement Bayesian net-
works during the learning process, such that it can be used as an inference
complexity indicator, and also providing a framework for exact inference.

The rest of the paper is organized as follows. Section 2 is an introduction to
network polynomials (NPs). Section 3 describes the new model, which we call
polynomial trees (PTs), and introduces learning and inference procedures for
PTs. Section 4 shows the experimental results. Section 5 gives the conclusive
remarks and future research lines.

2 Network Polynomials

The probability distribution implicit in any BN B can be also represented as a
network polynomial [8], that is, a multi-linear function over two types of vari-
ables, indicators Ixi and parameters θxi|πi

= P (Xi = xi|PaB(Xi) = πi), where
PaB(Xi) are the parents of Xi in B. The indicators are Boolean functions that
return 1 if Xi = xi or if the value of Xi is unknown, and 0 otherwise. The
probability distribution of discrete variables X1, . . . , Xn in an NP is described
as:

P (X1 = x1, . . . , Xn = xn) =

n∑
i=1

∏
xi∈ΩXi

πi∈ΩPaB(Xi)

Ixi
θxi|πi

where we use xi ∈ ΩXi to represent each configuration xi of variable Xi, and
πi ∈ ΩPaB(Xi) to represent each configuration πi of the parents of Xi.

This function represents the joint probability over a set of variables. NPs
allow answering any arbitrary marginal or conditional probabilistic query in
linear time in the size (number of sums and products) of the polynomial.

2.1 Arithmetic Circuits

The size of the NPs grows exponentially with the number of variables, making
inference nearly intractable for common-size networks. Trying to overcome this
difficulty, Darwiche [8] proposed the use of ACs to represent NPs, using the
distributive properties of the polynomials to reduce the complexity of the NP
function.

ACs are directed acyclic graphs (DAGs) in which the inner nodes (nodes with
children) are addition (+) and multiplication (×) nodes and the leaves (nodes
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without children) are numeric variables or constants. Performing inference in the
circuits is straightforward and linear in the number of arcs of the graph. The
circuit can be evaluated bottom-up by computing the operations represented by
each inner node (+,×) from the values of its children, starting from the leaves.

For example, the AC shown in Fig. 1 represents the NP shown in (1). In
the examples shown in this paper we only use Boolean variables, and for each
variable Xi we will refer to Xi = True as xi and Xi = False as ¬xi.

P (A,B) = IaIbθaθb|a + IaI¬bθaθ¬b|a + I¬aIbθ¬aθb|¬a + I¬aI¬bθ¬aθ¬b|¬a . (1)

+

xx

+ +

xx x x

ϑa
Ia ϑ¬a I¬a

ϑb a Ib ϑb ¬a ϑ¬b a I¬b ϑ¬b ¬a

Fig. 1: AC representation for the NP of (1).

Darwiche [8] uses ACs as a complementary representation obtained by the
compilation of BNs to perform tractable exact inference. The first approach to
learn ACs directly from data was proposed by Lowd and Domingos [13]. It uses
a greedy search process that penalizes each circuit with its inference complexity,
given by the number of arcs of the circuit. A drawback of using ACs is that their
size can be huge when the number of variables in the model is not small.

3 Polynomial Trees

State-of-the-art methods for learning thin models, such as ACs and thin JTs,
consider a very restricted search space in each iteration due to the difficulty of
making incremental changes in these models. PTs have a simpler representation,
so the cost of incrementally compiling any local change done to a BN (arc addi-
tions, removals or reversions) is lower, allowing a more flexible learning process
of low inference complexity models.

We introduce PTs as a new graphical representation of NPs. For simplicity,
we also maintain the BN representation to show the conditional dependences
between the variables of the model. Each PT is associated to a BN, and it
represents a factorization of the NP encoded by the BN. A PT P associated to
a BN B over a set of variables X = {X1, . . . , Xn} consists of:

1. A set of nodes XP = {∗} ∪ X , where ∗ is the root node.
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2. An indicator set I = {I(Xi), . . . , I(Xn)}, where each indicator I(Xi) ∈ I
can take any value of Xi or the value ∅.

3. A set of directed arcs that represent a topological ordering of the nodes in
XP , forming a tree structure.

Fig. 2 is an example of a BN (a) and a PT associated to the BN (b).
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Fig. 2: Structure of a BN (a), and a PT associated to the BN (b)

The soundness of a PT is the property that guarantees that it can perform
exact inference correctly for any probabilistic query that could be asked to the
model, and it is defined as:

Definition 1. Let P be a PT over XP = {∗}∪X with an associated BN B over
X , and let PredP(Xi) be the predecessors of Xi in P. P is sound for B if and
only if ∀Xi ∈ X it holds that ∀Xj ∈ PaB(Xi), Xj ∈ PredP(Xi).

If in a PT P associated to a BN B there is at least one node Xi that has
a parent Xj in B that does not belong to PredP(Xi), then exact inference will
fail, because I(Xj) will be set to ∅ when we evaluate Xi.

3.1 Inference in Polynomial Trees

Given a BN B, a PT P and an evidence e, the probability of e in the model
can be computed as follows. First, we need to initialize the indicator set I =
{I(Xi), . . . , I(Xn)} with the values in e, setting the indicators of the vari-
ables that do not appear in e to ∅. Let ChP(Xi) be the children of Xi in
P. We need to evaluate the root node ∗ given I using query(B,P, ∗, I) =∏
Xk∈ChP(∗) query(B,P, Xk, I). The rest of the nodes can be recursively com-

puted by evaluating:

query(B,P, Xi, I) =
∑

xi∈ΩCi

θxi|πXi
·

∏
Xj∈ChP(Xi)

query(B,P, Xj , IXi
) (2)

where ΩCi
= ΩXi

if I(Xi) = ∅ and ΩCi
= {I(Xi)} otherwise, πXi

is a set with
the value of each parent of Xi in I, and IXi

is the set of indicators obtained
after setting the value of I(Xi) to xi in I.

Fig. 3 shows an example of how to perform exact inference in a simple PT
to answer the probabilistic query P (a,¬b).
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(c) Polynomial generated using (2)

Fig. 3: Inference example. By asking the probabilistic query P (a,¬b) to the BN
and to its associated PT shown in (a) and (b) respectively, the indicators should
be set to I = {a,¬b,∅,∅}. The polynomial P (a,¬b) = (θd+θ¬d)·(θa·θ¬b|a·(θc|a+
θ¬c|a)), that is shown graphically in (c), represents the operations performed by
(2) to answer this query.

3.2 Evaluating the Complexity of Polynomial Trees

In most state-of-the-art methods for learning thin probabilistic models the tree-
width is used as an estimation of the inference complexity. Obtaining the tree-
width of a graph is an NP-complete problem, so in most methods estimations
are used [5]. It is simple to obtain an upper bound in the inference complexity
of a PT efficiently. The method used in this paper for the complexity evaluation
of PTs obtains the maximum number of operations required to evaluate (2).
It works recursively, obtaining the number of sums and products required to
perform inference in each node, which is given by:

eval(P, Xi) = |ΩXi
| ·

1 +
∑

Xj∈Ch(P,Xi)

(1 + eval(P, Xj))

− 1 . (3)

Basically, each node Xi requires |ΩXi
|·
∑
Xj∈Ch(P,Xi)

(1+eval(P, Xj)) operations

to compute (2) for each children of Xi, multiplying the resulting values, and
|ΩXi

| − 1 operations to sum the results for each instance of Xi.

3.3 Incremental Compilation of PTs

To evaluate the inference complexity of each network using (3) it is necessary
to have a compiled PT in each step of the learning process. As compiling a PT
from scratch every time is intractable, we have created a group of procedures
to compile incrementally in PTs any local change (arc additions, deletions and
reversals) that could be done in a BN during the learning process. Next, we
show the general procedure used to compile PTs incrementally. The methods
are described in detail in [4].
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Arc Addition. When compiling in a PT P the addition of an arc (Xout → Xin)
in a BN B we can face three possible scenarios:

1. Xout ∈ PredP(Xin): P is sound for B after the addition, so no changes are
required.

2. Xin ∈ PredP(Xout): In this scenario, it is necessary to set Xout as a prede-
cessor of Xin in P and reconfigure the positions of the nodes between Xout

and Xin to obtain a PT sound for B. First, let S be the set of nodes that are
predecessors of Xout and descendants of Xin in P. For each node Xi ∈ S, if
Xi is a descendant of Xin in B it must be also set as a descendant of Xin

in P. Otherwise, for each children Xj of Xi in P, we set PaP(Xj) to the
deepest predecessor of Xin in P that is also a descendant of Xin in B.

3. Xout /∈ Pred(Xin) and Xin /∈ Pred(Xout): In this case node Xout and its
predecessors in P are set as predecessors of Xin in P.

Arc Deletion. After an arc deletion in a BN B, it is not necessary to make any
changes in its corresponding PT P.

Arc Reversal. To compile the reversal of arc Xout → Xin we compile first the
deletion of arcXout → Xin and then the addition of the reversed arcXin → Xout.

3.4 Polynomial Tree Optimization

Although the methods proposed above assure the soundness of the compiled PTs,
the obtained models may be far from optimal. We say that a PT P is optimal
for a BN B if it is the PT with minimum inference complexity (measured by (3))
that is sound for B.

To avoid the rejection of good solutions because of a poor incremental com-
pilation we perform an optimization process for each PT candidate during the
search. The optimization procedure visits iteratively the nodes to be optimized
and consists of two phases. The first phase does a smooth optimization, so it
visits the deepest node available in the PT in each step. The second phase is
only performed if it is possible to reduce the complexity of the PT obtained after
the first phase, in which case it visits the shallowest node available in the PT to
seek bigger changes in the inference complexity.

The key of the optimization process is to find the right local movements that
minimize (3) in each iteration. The main idea of the procedure is to swap the
position in P of the node to be optimized Xopt with its parent PaP(Xopt) and
check if the change reduces (3).

3.5 Learning Polynomial Trees from Data

It is straightforward to learn PTs in combination with any score+search method
that applies local changes during the search, such as greedy or local stochastic
search methods. In each step of the learning process we should use the compila-
tion and optimization procedures shown before and then penalize each candidate
for its inference complexity, as given by (3).



Actas de la XVI Conferencia CAEPIA, Albacete Nov 2015 17

Therefore, we penalize the log-likelihood (LL) to measure the accuracy of
each model, favoring candidates with low inference complexity. For a dataset D
of size N , the scoring function is defined as:

scorePT (B,P, D) = LL(B, D)− kn · eval(P, ∗)− kp · |B|

where kn and kp represent the weight of inference complexity and of the number
of parameters of the BN |B| respectively for the model penalization.

To learn the structure of PTs, we use the methods proposed above in com-
bination with the 2 iterations constrained hill-climbing (2iCHC) algorithm [11].
2iCHC learns the structure of BNs using the hill-climbing (HC) algorithm with a
forbidden parents list to constrain the search space, reducing the learning time of
HC while assuring the return of a minimal I-map. We call the resulting method
hill-climbing for polynomial trees (HCPT).

4 Experimental Results

In this section we show and discuss the results obtained for inference and learning
using PTs. The idea is to check the impact of including the PT framework to
the original method, in this case 2iCHC, and compare the accuracy of inference
and the computational cost in both models.

The datasets used in this work were generated from three real-world BNs.
WIN95PTS is a medium network for handling printer troubleshooting in Win-
dows 95, PATHFINDER is a large network for the diagnosis of lymph-node
diseases [12], and MUNIN1 is a large size network for the diagnosis of neuro-
muscular disorders [2]. The basic properties of each BN are shown in Table 1.
We have generated 25000 learning samples and 40000 testing samples from each
network.

Table 1: Basic properties of the BNs used for the experiments
WIN95PTS PATHFINDER MUNIN1

Number of nodes 76 135 186
Number of arcs 112 200 273
Number of parameters 574 77155 15622
Average Markov blanket size 5.92 3.04 3.81

To evaluate the inference accuracy we have used the mean square error (MSE)
between the results obtained performing inference in the learned model (Q) and
the probability in the test dataset (P ). The error is computed using a set of 500
samples from the test data, while the rest of the samples are used to compute the
probability of each query in the test dataset (P ). From each sample we generate
a conditional probability query P (V |E) with randomly selected query (V ) and
evidence (E) variables. In each test we vary the number of evidence variables
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from 10% to 25% of the total, letting the number of query variables fixed at
15%. The MSE is defined by:

MSE(P,Q) =
1

m

m∑
i=1

(P (v(i)|e(i))−Q(v(i)|e(i)))2

where v(i) is the instantiation of V in sample i, e(i) is the instantiation of E in
sample i, and m is the number of samples.

4.1 Learning Results

This work focuses on providing a framework for the incremental compilation of
PTs that can be easily applied in most score+search methods. Therefore, we were
interested in comparing an existing BN learning method to a modified version
of this method using PTs. The models obtained by the incremental compilation
of PTs are learned using the HCPT method, that is an adaptation of 2iCHC,
and they are compared with the BNs learned using the 2iCHC algorithm in
combination with the minimum description length (MDL) [6]. Parameters kn
and kp were set empirically to 0.5 and 1 respectively.

Table 2: Learning results
WIN95PTS PATHFINDER MUNIN1

2iCHC HCPT 2iCHC HCPT 2iCHC HCPT

Log Likelihood −9.11 −9.62 −27.19 −26.75 −41.78 −45.73
Number of arcs 120 131 138 140 220 210
Number of parameters 620 435 1266 1273 2085 2190
Learning time 0 h 12 m 0 h 14 m 1 h 51 m 2 h 34 m 5 h 37 m 6 h 53 m

The results (Table 2) show that the differences in the likelihood are small.
The time required for the learning process is a bit higher in HCPT than in
2iCHC, but the time needed for the incremental compilation of PTs is small
compared with the time spent by the scores. Nevertheless, we focus on reducing
the inference complexity rather than the learning time, given that the learning
process is usually performed only once, while inference is usually performed
multiple times.

4.2 Inference Results

Next, we compare the performance of exact inference in the learned PTs against
approximate inference in the BNs learned with the 2iCHC algorithm. We do
not use exact inference in the models learned with 2iCHC because its computa-
tional cost is too high for large networks. We use the likelihood weighting (LW)
algorithm [10, 14] for approximate inference. The results are presented in Fig. 4.
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Fig. 4: Inference results comparing quick LW (100 samples) ,
medium LW (1000 samples) , slow LW (2000 samples) , and
exact inference with PTs . The computational cost displayed is the
mean time (in seconds) of all the queries answered by each BN.

The inference results show that using PTs improves the accuracy of the
answers provided by the models obtained with 2iCHC in combination with LW.
The computational cost of performing exact inference in PTs is lower than the
cost of using 2iCHC and medium (1000 samples) or slow (2000 samples) LW,
and similar to the cost of performing quick LW (200 samples), that produces
always the less accurate answers in the tests.

5 Conclusions and Future Research

We developed a new model for the graphical representation of NPs. The new
representation is simple and intuitive, and it allows evaluating the inference
complexity of the candidate models during the learning process, providing also
an exact inference framework. The experimental results show that using the
incremental compilation of PTs combined with existing BN learning methods
obtains models with low inference complexity. In the tests, the accuracy of the
answers provided by exact inference in PTs outperformed those provided by the
models learned with a state-of-the-art BN learning method using approximate
inference.

Future research may focus on learning PTs for multidimensional classification
and learning PTs with latent variables.
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(2014)

5. Beygelzimer, A., Rish, I.: Approximability of probability distributions. In: Advances
in Neural Information Processing Systems. pp. 377–384 (2004)

6. Bouckaert, R.R.: Probabilistic network construction using the minimum descrip-
tion length principle. In: Symbolic and Quantitative Approaches to Reasoning and
Uncertainty, pp. 41–48. Springer (1993)

7. Chechetka, A., Guestrin, C.: Efficient principled learning of thin junction trees. In:
Advances in Neural Information Processing Systems. pp. 273–280 (2008)

8. Darwiche, A.: A differential approach to inference in Bayesian networks. Journal of
the Association for Computing Machinery 50(3), 280–305 (2003)

9. Elidan, G., Gould, S.: Learning bounded treewidth Bayesian networks. In: Advances
in Neural Information Processing Systems. pp. 417–424 (2009)

10. Fung, R.M., Chang, K.C.: Weighing and integrating evidence for stochastic simu-
lation in Bayesian networks. In: Uncertainty in Artificial Intelligence. pp. 209–220
(1989)
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