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ABSTRACT 

Although there has been a significant proliferation of 3D dis
plays in the last decade, the availability of 3D content is still 
scant compared to the volume of 2D data. To fill this gap, 
automatic 2D to 3D conversion algorithms are needed. In this 
paper, we present an automatic approach, inspired by machine 
learning principles, for estimating the depth of a 2D image. 
The depth of a query image is inferred from a dataset of color 
and depth images by searching this repository for images that 
are photometrically similar to the query. We measure the pho
tometric similarity between two images by comparing their 
GIST descriptors. Since not all regions in the query image 
require the same visual attention, we give more weight in 
the GIST-descriptor comparison to regions with high saliency. 
Subsequently, we fuse the depths of the most similar images 
and adaptively filter the result to obtain a depth estimate. Our 
experimental results indicate that the proposed algorithm out
performs other state-of-the-art approaches on the commonly-
used Kinect-NYU dataset. 

Index Terms— 2D-to-3D Image Conversion, Depth 
maps, GIST Descriptor, Saliency 

1. INTRODUCTION 

In the last decade, we have witnessed a significant growth in 
the availability of 3-D devices, such as TVs, cinema projec
tors, video game consoles, DVD/Blu-Ray players and even 
smartphones. However, the availability of 3D content, such 
as 3D movies or 3D broadcasting, has been lagging behind, 
thus creating a gap in the 3-D production chain. To rectify this 
situation, different automatic and semi-automatic algorithms 
have been developed that convert 2D content into 3D. 

The process of 2D-to-3D conversion usually consists of 
two main stages. In the first one, the depth of a single 2D 
image is extracted, and in the second one, a new image is 
generated from the original one and the extracted depth to 
form a stereo-pair. In this paper, we are only focused on the 
first stage, which is more challenging. 

Recently, several learning-based algorithms have been 
developed as an alternative to heuristics-based 2D-to-3D con
version methods, often employed in commercial products. 
The key idea behind these methods is that two images with 
a high photometric similarity will likely have a similar depth 
structure. Saxenaetal [1] [2] developed a supervised learning 
approach for estimating the scene depth from a single image 
using an image parsing strategy and Markov Random Fields 
to infer 3D locations and orientations. Better depth estima
tion results were achieved in [3] [4] through the incorporation 
of semantic labels and more sophisticated models. A similar 
strategy, but transferring depth data instead of labels, was de
veloped by Konrad et al [5]. Following this approach, Karsch 
et al [6] added a depth optimization step to assure its smooth
ness and consistency with candidate depth maps, and also ex
tended the approach to handle videos. More recently, Konrad 
et al [7] [8] presented a computationally-efficient approach 
by discarding the SIFT-flow based image alignment, using 
HOG features to find photometrically-similar images and 
enhancing the final depth map by means of Cross-Bilateral 
Filtering. They accomplished to reduce the processing time 
by several orders of magnitude primarily due to skipping the 
SIFT-flow alignment that turned out to bring minimal qual
ity gains while incurring very high computational cost. A 
new approach, based on LBP features and using an adaptive 
number of similar images in the conversion was introduced 
by Herrera et al [9]. Since the computational cost of such 
methods is proportional to the size of the dataset used, the ap
proach becomes impractical on very large datasets where the 
number of similar images to a query is very large. To alleviate 
this problem, Herrera et al [10] presented a clustering-based 
hierarchical search that improves the efficiency of the search 
process. However, the above algorithms assign the same im
portance to the whole query image when searching for similar 
images in a dataset without taking into account the different 
visual attention that different parts of an image attract. 

In this paper, we propose a new automatic 2D-to-3D im
age conversion approach based on machine learning. Instead 
of using HOG or LBP features to assess the similarity be
tween a query image and database images, we use the GIST 
descriptor [11], which provides a holistic representation of the 
scene by measuring its global properties. Furthermore, due 
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across the selected depth maps using a set of weights 
derived from the distance metric of the third module. 

5. Filtering: In this last module, we refine the fused depth 
map by applying a cross-bilateral filter (CBF) to re
move spurious depth variations and to force the align
ment of the edges between the depth estimate Dc and 
the query image Q. As a result, we obtain a refined 
depth map estimate Dest for query image Q. 

Details of each stage are provided below. This approach 
is an extension of our previous work [9] with two main contri
butions. The first contribution is the use of a GIST-based de
scriptor as a representation of structure in color images. The 
second contribution is the use of saliency-based weights in 
order to focus the search for similar images on regions where 
visual attention is higher. 

Fig. 1. Block diagram of the proposed 2D-to-3D conversion 
method. 

to the varying visual importance of different regions in the 
query image, we propose to focus the algorithm on visually-
important areas by exploiting the saliency of the query. 

2. ALGORITHM DESCRIPTION 

Given a color query image Q and an RGBD database DB, 
composed of a set of color images I and their corresponding 
depth maps D, the purpose of the approach is to obtain an 
estimate of the depth map of Q. This algorithm is divided 
into five main modules (see Fig 1). 

1. GIST-based descriptors: The first module is the com
putation of GIST-based descriptors of the images, that 
represent the structure of the images. This is an online 
process for each image Q but an offline process for im
ages in the dataset DB, so they can be computed before 
the conversion process starts. 

2. Saliency-based weights: The second module of the al
gorithm is the computation of saliency-based weights 
of Q that will be used to focus the effort in the regions 
that require higher visual attention. 

3. Search for similar images: Here, a search is performed 
in order to find the closest images to Q in database DB 
from a photometrical point of view. For this purpose, 
a saliency based weighted Euclidean distance is com
puted between GIST descriptors of Q and each image 
I, and the k most similar images are selected. 

4. Depth fusion: In this module, we fuse the depth maps 
of the most similar images selected in the previous step 
to obtain a preliminary depth map estimate Dc. To ac
complish this, we apply a weighted depth averaging 

2.1. Feature descriptor 

Color images in the database DB with similar structure to 
the query image Q will be used in the depth estimation pro
cess. To find out which images in the dataset are similar to 
the query image, we characterize the images by a feature de
scriptor that represents the structure of the image. This image 
feature descriptor is based on GIST [11], which provides a 
compact representation of the image structure. The overall 
descriptor is computed by dividing the image into 16 tiles (4 
horizontally and 4 vertically), and obtaining a GIST descrip
tor per tile. Then, for image I, the descriptors of every tile 
are stacked in a single vector F(I), which characterizes the 
whole image: 

F(I) = [GLST(ii) GIST{t2 GIST(t16)], (1) 

where GIST{U) is the GIST descriptor of the tile i of the 
image 

These descriptors are pre-calculated off-line for the whole 
dataset DB before the beginning of the conversion process, 
while for the query image Q this task is computed online at 
the beginning of the process. 

2.2. Saliency weights 

In parallel with the feature descriptor computation, saliency-
based weights are first computed and then used in the search 
for similar images by assigning more importance to those ar
eas that require higher visual attention. First of all, a saliency 
map of Q is computed using the approach of Harel et al [12]. 
Then, this saliency map is divided into 16 tiles (4 horizontally 
and 4 vertically) as was done for the GIST-descriptor calcu
lation in the previous section, and the average of saliency in 
each tile is computed to obtain S(t). These average saliency 
values will be used to weight the distance between GIST de
scriptors. Fig. 2 shows some examples of the saliency maps 
generated. 



Fig. 2. Two examples of query images and their saliency 
maps 

2.3. Search for similar images 

The structure similarity between Q and a candidate color im
age in DB is computed by the Euclidean distance of the fea
ture descriptors weighted by the saliency weights S(t) as fol
lows: 

M~ £,*(*«) ' ( ) 

where p{n) is the resulting weighted Euclidean distance, 
GISTQ is the GIST-based feature descriptor of the query 
image Q, GISTIn is the same descriptor for image In from 
database DB, and 5(í¿) is the saliency weight for tile r\ 
discussed in the previous section. 

After computing the distance p{n) in (2) for all images 
In from database DB, k images with the lowest value of p 
are considered the most similar ones and are selected for fur
ther processing. Fig. 3 shows two examples of query images 
and its three most similar images to these ones in DB. The 
number of images A; is a key parameter and the selection of its 
value is described in the experimental results section. 

2.4. Depth fusion 

The depth maps of k images selected in the previous stage 
are combined to obtain the initial depth map of the query Q 
capturing the 3D structure of the scene depicted in Q. The 
more similar an image is to the query Q, the higher should be 
its depth contribution to the final depth estimate. Specifically, 
each depth map is weighted by the inverse of the weighted 
distance value computed in the previous stage as follows 

k 

Dc = Í2~!-,Dn, (3) 

where Dc is the result of of depth fusion, Dn is the depth 
map associated with image In and k is the number of images 
selected by similarity search in the previous stage 2.3. The 
resulting Dc is a preliminary depth estimate of Q. 

This approach is consistent since, on one hand outliers 
have been removed or at least reduced by using only images 
with high similarity to query image Q. On the other hand, 
images are weighted according to their similarity, so the effect 
of potential outliers is also reduced. 

Fig. 3. First column: query image; next three columns: k=3 
most similar images to the query sorted by similarity value in 
descending order. 

2.5. Filtering 

After depth fusion, a globally consistent depth estimate is ob
tained. However, this preliminary depth estimate contains lo
cal inconsistencies around the edges due to the smoothing 
generated by the weighted average filtering the depth maps 
of k most similar images. In order to enhance edges and align 
them with respect to the original edges of the query image Q, 
while preserving a globally-consistent depth of the prelimi
nary estimate, we apply cross-bilateral filtering. 

Cross-bilateral filtering is a variant of bilateral filtering 
(an edge preserving smoothing filtering) where the Gaussian 
function is controlled by an external intensity image [13]. In 
this case, the query image Q is used to control the smooth
ing. Moreover, cross-bilateral filtering reduces the noise in 
homogeneous areas, and enhances and aligns the edges of the 
estimated depth map with respect to the query image. 

Formally, it can be expressed as: 

Dest = ^77— ^2Dc{y)gd{x - y)gQ{Q{x) - Q{y)) 

^ v (4) 
W{x) = Y,9d{x - y)gQ(Q(x) - Q(y)), 

y 

where Dest is the final estimated depth map, #<¡(x) and gq (x) 
are Gaussian functions, and Q{x) is the intensity value of 
pixel x in query image Q. The Gaussian function #d(x) is 
calculated over positions in the depth image, while the Gaus
sian function gq (x) is computed over intensities of the query 
image Q, thus enforcing directional smoothing. As a result 
of this process, the depth map is generally smoothed, while 
preserving the edges of the query image. 

3. EXPERIMENTAL RESULTS 

The proposed approach has been tested using the Kinect-
NYU dataset [14] . It consists of 1449 pairs of images and 
their corresponding depth maps. The resolution of the color 
images and depth maps is 640 x 480 pixels. However, they 
have been resized to 320 x 240 for computational efficiency 
and for a straightforward comparison with the results pre
sented by previous works. 



Fig. 4. From left to right: ground truth depth, query image 
and depth estimate computed by the proposed algorithm. 

To quantitatively evaluate the performance of the pro
posed approach, we applied leave-one-out cross-validation 
(LOOCV) as follows. We chose one image+depth pair from 
the NYU database as our query, and treated the remaining 
pairs in DB as the 3D image repository. We applied the pro
posed algorithm to every image+depth pair in this repository. 
Fig. 4 shows two examples of the result of this process. 

As the quality metric, we employed normalized cross-
covariance between the estimated depth and the ground truth 
depth defined as follows: 

n _ J2X (Dest [x] - nocst) (DQ [X\ - HDQ ) 
N(JDcst<?DQ 

where N is the number of pixels in Dest and DQ (ground-
truth depth of the query image Q), /x£>est and ¡IBQ are the 
empirical means of Dest and DQ, respectively, while <7Dsst 

and ODQ are the corresponding empirical standard deviations. 
The normalized cross-covariance C takes values from -1 to 
+1 (values close to +1 indicate that the depth maps are very 
similar an values close to -1 suggest they are complementary). 

A key parameter of this algorithm is the number k of 
depth maps used in depth fusion 2.4. This parameter has been 
selected by running the LOOCV test for each image in the 
dataset for different values of k, and then averaging the re
sults of the cross-covariance across all tests. As can be seen 
in Fig. 5, the maximum value of C is achieved for k = 30. 
Nevertheless, the exact value of k is not critical since very 
similar values of C are obtained for a wide range of k values 
(in this case for k = 20 - 50, the value of C stays close to 
the maximum). The method seems robust to variations of this 
parameter. 

We compute the average and median value of metric C 
obtained in the LOOCV test across all images in the Kinect-
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Fig. 5. Variation of the quality metric C a s a function of the 
number k of images used in the conversion. 

NYU dataset and compare the proposed approach with the 
Depth Transfer approach by Karsch et al. [6], the HOG-based 
Depth Learning solution of Konrad et al. [8] and the LBP-
Based Learning algorithm of Herrera et al [9]. The results are 
shown in Table 1, where, as can be observed, the proposed 
approach outperforms the results of the other state-of-the-art 
methods for both the average the median of the metric C. This 
improvement of the results is attributed to the use of the GIST 
features, and the saliency based weights used to select the k 
most similar images. It is worth noting that the proposed ap
proach outperforms even the depth transfer approach [6], that 
is significantly more complex (it includes an image rectifica
tion step). 

Algorithm 

HOG-Based Depth Learning [8] 
Depth Transfer [6] 
LBP-Based Depth Learning [9] 
GIST-Saliency Based (ours) 

C (average) 

0.55 
0.62 
0.61 
0.63 

C (median) 

0.60 
0.67 
0.67 
0.69 

Table 1. Evaluation of state-of-the-art algorithms using 
the average the median of metric C in the Kinect-NYU 
database. The results have been computed across 1449 im
ages in LOOCV test. 

4. CONCLUSIONS 

In this paper, an automatic method for estimating the depth of 
a scene from a single 2D query image has been presented. A 
machine learning inspired approach has been adopted that in
fers the 3D structure of the scene using a database composed 
of pairs of color and depth images. Our method uses GIST-
based features, and saliency-based weights, to estimate those 
images in the database that are most similar to a given query 
image. Then their depth maps are combined and filtered to 
obtain the final depth estimate. Experimental results on the 
Kinect-NYU dataset demonstrate an improved performance 
over state-of-the-art methods. 
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