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There is currently a growing interest in developing devices that can be used to exploit energy from oceans. In the recent past, the
search for oil and gas at ever-greater depths has led to the evolution of deviceswithwhich these resources are extracted.These devices
range from those that simply rest on the seabed to those that are fully floating and anchored to it.This trend can be considered as the
basis needed to understand the future evolution of devices for harnessing depth renewable resources. This paper presents a simple
dynamic modeling and a nonlinear multivariable control model-based system for a new three-degree-of-freedom underwater
generator with which energy from depth marine currents is harnessed when reference trajectory tracking for the emersion
maneuvers needed to carry out maintenance tasks is performed. The goodness of both the model and the proposed controller
has been demonstrated through the development of various simulations in the MATLAB-Simulink environment. Additionally, the
validation of the control algorithms was carried out by using the dynamic model offered by the simulation environment Orcina
OrcaFlex (software for the dynamic analysis for offshore marine systems) through the MATLAB-OrcaFlex interface.

1. Introduction

The growing interest in the exploitation of marine renewable
energies began several years ago, and various devices with
which to harness energy from seas have therefore been
conceived or developed (see [1–3]), their main natural energy
sources being wind, waves, and marine currents.

One of the most promising sources of marine energy is
the exploitation of tidal or oceanic water flows [4–7], and
the industry’s effort is currently focused on the so-called
first generation devices [8] (fixed to the sea bottom and
suitable for sites with depths below 40m). But there are an
increasing number of second-generation devices that have
been conceived to be moored to the sea bottom with an
expected similar trend to that which has taken place during
the development of oil and gas platforms that must access
resources at increasingly greater depths [9].

This evolution has led these devices to evolve from being
anchored to the seabed to being located in a floating location,

and the most appropriate ways and means to perform
maintenance tasks have therefore also had to evolve these
kinds of devices [10–15].

The successful installation of these kinds of devices for
harnessing energy from depth currents can only take place
once it has been proved that they are both technically and
economically feasible in comparison to other traditional
energy sources. One well knownway in which to reduce costs
is by successively automating more tasks, thus signifying less
human intervention or the possibility of using the cheapest
general purpose ships rather than high cost special vessels for
maintenance purposes. In [16] are studied the automatic ma-
neuvering emersion and immersion of one of these devices.

Nowadays there exist different devices with the following
main alternatives for performing maintenance tasks:

(i) There is the use of a servo actuated crabbing based
system to move the main generation unit from the
support structure. See different devices from [17, 18].
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(ii) There is the use of elevation and placement by means
of floating cranes. See [19–23].

(iii) There is the use of a ballast management system to
generate vertical forces, thus enabling the device’s
emersion and immersion movements to be con-
trolled. See [24–26].

A new family of generators is briefly presented in this work.
They use a mooring system based on buoys and wires that
allow the device to be located at the desired position on
the seabed and positioned at any desired depth of the layer
with almost no human resources. By simply disconnecting
stern wire that joins the generator to the seabed and a
proper management of the ballast water that is strategically
located inside the generator, it is possible to perform closed
loop emersion and immersion maneuvers with three degrees
of freedom (DoFs), two orientation angles and a depth
control, in such a way that the process of moving from a
submerged and vertically disposed state to a floating and
horizontally disposed one and vice versa can be carried out
fully automatically without any kind of human intervention.

This paper presents a new dynamic model for this new
family of second-generation tidal energy converters [8, 27,
28] for simulation and control design purposes [29, 30].
The proposed model is very simple, fully parameterized, and
easily scalable with minimum computer effort. Very simple
models have already been used to control complex devices
with a good performance and good correspondence among
simulated and experimental signals. For example, in [31], a
simple model based on only one lumped mass and a special
kinematic uncoupling design was used to model a three-
degree-of-freedom flexible arm with complex nonlinear and
time variant dynamics. This simplified dynamic model was
employed as a basis for various controllers, which were used
to control this robot with excellent results [32]. Another
different system, in this case, a stair-climbingmobility system,
was also modeled with only one lumped mass [33] and this
simple dynamic model has been used as the basis for various
control systems (see, a.e., [34]).

In a similar manner to that shown above, the dynamic
model proposed in this paper is based on the computation
of the values of only four lumped masses, which are han-
dled solely by buoying forces applied to three star-shaped
distributed equilateral torpedoes on the pod (nacelle) of
the generator. The model developed exhibits time-varying,
nonlinear, and strongly coupled behavior. It was, mean-
while, necessary to design the control law based on the
dynamic model developed in such a way that it would
have a successful closed loop behavior when the underwater
three-DoF tidal energy converter performs emersion and
immersion maneuvers with only passive buoyancy forces. In
this work, the proposed control system is characterized by
its simplicity, computational efficiency, and easy implementa-
tion in a microprocessor-/microcontroller-based system.The
proposed control law is composed of the following two main
terms: (i) a matrix that is responsible for decoupling the open
loop dynamics from one degree of freedom with regard to
the others and (ii) a feedback controller based on centrifugal

Figure 1: Main appearance of a generator for unidirectional cur-
rents.

andCoriolis force cancellation and a simplemultivariable and
diagonal PD controller.

The paper is organized as follows: after providing a
brief description of the proposed family of generators in
Section 2, Section 3 shows how the derivation of the pro-
posed dynamic model of the submerged device was derived
when performing coupled three-degree-of-freedommotions.
Section 4 proposes the solution adopted to control the sys-
tem. Section 5 presents the numerical simulations obtained to
validate the proposed dynamic model and the proposed con-
trol algorithm. In particular, different smooth robotic-based
trajectories were used to perform uncoupled simultaneous
multiple degree-of-freedom motions. Finally, Section 6 is
devoted to the conclusions of the paper, along with proposals
for immediate future works.

2. System Description

A brief description of the proposed family of generators
is now presented (see [27], a.e.). These generators were
conceived to extract energy from marine currents and to
fulfill the following four main features: (i) being valid for
operation at depths greater than 40m, (ii) minimum installa-
tion support structure and civil works, (iii) being floating and
easily transportable device, and (iv) being fully automated for
emersion and immersion maneuvers.

Figure 1 shows the general view of one of the proposed
devices. It is composed of a three-fixed pitch blade propeller
and a central pod (gondola), and the shaft of the propeller is
coupled to an electrical generator by means of a multiplier
gearbox. Three main radial and symmetrically distributed
columns start at the pod and end at three torpedoes of an
approximately cylindrical shape. These torpedoes contain
the inner ballast system used to apply hydrostatic forces to
the generator. Another of the principal missions of these
torpedoes, which are aligned to the direction of the current, is



Mathematical Problems in Engineering 3

Table 1: Main features.

A.6.7 model U1Mmodel (Figure 1)
Power (kW) 600 1,000
Stream highest velocity (m/s) 2.0 1.8
Seabed depth (m) 60/100 80
Propeller diameter (m) 20 32
Minimum blade end depth (m) 15 34
Rotor/gear output (rpm) 12/1500 12/750
Structure material Steel Steel

Figure 2: Mooring system based on wires and buoys.

to minimize rotations around themain axis of the whole gen-
erator by using hydrodynamic force compensation when it is
extracting energy and the propeller reaction causes heeling
torques. Three structural bars starting at the torpedoes and
ending in front of the propeller have been added for mooring
purposes.

The main features of two of the conceived generators are
briefly presented in Table 1.

Various anchoring or mooring systems can be used to
place the generator in the sea at the desired position. Figure 2
shows a simplemooring systembased onwires and buoys that
allows the device to be positioned at the desired depth. By
simply providing the generator with positive floatability, the
wires become under strain and the device can be moored in
both the desired position and depth and is ready to harness
energy.

When employing the emersion maneuver procedure, the
device has to evolve from its vertical and submerged operat-
ing position and orientation (usually denominated as posture
or attitude) to its maintenance and transportation position
and orientation (floating horizontally) (see Figure 3). This
movement is achieved in three basic sequential steps: (1) by
providing the device with zero buoyancy rather than positive
buoyancy; (2) by releasing the sternwire; and (3) bymanaging
the water in the ballast tanks.

3. Dynamic Model

Obtaining a dynamic model of the device shown previously
under three DoFs in order to perform submerged motions
is an important step for the simulation and design control
algorithms needed to perform an emersion maneuver in
a fully automatic closed loop mode. The proposed model
is based on the following assumptions (see Figure 4 for
details):

(i) Only four lumped masses are considered.

(ii) Added masses are constant, well known, and those
which are lumped are also considered.

(iii) Vertical translation (one DoF) dynamics and rotation
(two DoFs) dynamics are fully uncoupled.

(iv) Viscous friction is modeled as being constant and
fully uncoupled.

(v) The device free-surface interaction (considered
semisubmergible) is not considered in this paper.

(vi) The influences of residual flow of water, waves, or
wind effects are considered as external perturbations
in the model.

A fixed reference frame S
0
is defined as an orthogonal

reference frame whose 𝑧-axis is vertical. Zero depth (𝑧 =

0) is computed at the level of the sea (free surface) and
the vertical plane (𝑥, 𝑧) always contains the center of the
generator. Only the depth of the center of the generator is
related to this reference frame, and components 𝑥 and 𝑦 of
the generator with regard to S

0
are not considered. The other

twodegrees of freedom (only rotations around axes𝑥
𝐺
and𝑦
𝐺

are possible) are definedwith regard to the other intermediate
reference frame, S

𝐺
, whose origin is at the center gravity of the

generator andwhose plane (𝑥
𝐺
, 𝑦
𝐺
) is placed on an absolutely

horizontal plane (parallel to the sea surface). If the generator
is positioned with null orientation (𝜑

𝑥
= 0, 𝜃

𝑦
= 0), the 𝑥

𝐺
-

axis remains perpendicular to the plane of the generator and
the 𝑧
𝐺
-axis is placed vertically and forms a symmetry axis that

is aligned with the mass denoted as𝑚
3
.

If we consider now the actuators, which are responsible
for creating the buoyancy forces, they are ideally located at
the same positions at which each of these lumped masses is
considered to be placed.These actuators will produce vertical
component forces only that are obtained as differences
between buoyancy forces (really produced by actuators) and
forces due to gravity. Each of these masses (denoted and
numbered with subindex 𝑖 = 1, 2, 3) is formed of both real
mass𝑚

𝐺𝑖
and added mass𝑚ADD𝑖 and is

𝑚
𝑖
= 𝑚
𝐺𝑖
+ 𝑚ADD𝑖, (1)

𝑓
𝑖
= (𝜌
𝑊
𝑉
𝑖
− 𝑚
𝑖
) 𝑔, (2)

where 𝑉
𝑖
is the volume fraction of the generator correspond-

ing to the 𝑖th-mass. Under static equilibrium conditions
(𝜌
𝑊
𝑉
𝑖
= 𝑚
𝑖
), no forces are produced and the generator will

remain in its previous state without any kind of motion. In
the opposite sense, if motion of the generator is desired, each
actuator will produce an incremental force that has to be
computed as an increase in either mass or volume (with the
opposite sign). For the sake of clarity, volume increments are
considered to be responsible for creating buoyancy forces.
Consider

𝑓
𝑖
= +𝑔𝜌

𝑊
Δ𝑉
𝑖
. (3)
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Figure 3: Final stages of the emersion maneuver.
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Figure 4: Main parameters and magnitudes.

The force vector applied to the generator with regard to the
fixed reference frame S

0
(also with regard to S

𝐺
) can be

expressed in amatrix form as the sum of all the vertical forces
produced by actuators:

F = (
𝐹
𝑥

𝐹
𝑦

𝐹
𝑧

) = (

0

0

𝑓
1
+ 𝑓
2
+ 𝑓
3

). (4)

3.1. Forces and Torques Involved. Let us consider a local frame
S placed at the center of the central cylinder of the generator
at which its center of gravity is located.This S frame is defined
as follows: the 𝑢-axis is perpendicular to the plane of the
generator, the 𝑤-axis is located in the opposite direction to
the lower mass 𝑚

3
(see Figure 4), and the V-axis is located

at the plane of the generator and forms a right-hand frame.
The central mass 𝑚CG is then located at the following local
position:

PCLOC = (0 0 0)
𝑇 (5)

while the three resting lumped masses are located at the
center of gravity of each of the three torpedoes with local
coordinates (for the sake of simplicity, notations 𝑐𝛼 ≡ cos(𝛼)
and 𝑠𝛼 ≡ sin(𝛼) are used):

P
1LOC = (

0

−𝐿𝑠60
∘

𝐿𝑐60
∘

),

P
2LOC = (

0

𝐿𝑠60
∘

𝐿𝑐60
∘

),

P
3LOC = (

0

0

−𝐿

) .

(6)

According to the definition of the second frame, S
𝐺
, the

relation of the orientation of both the S and S
𝐺
frames can

easily be obtained by computing the rotation matrix that
relates the local generator orientation with regard to the S

𝐺

reference system.This rotation is the result of composing the
next two elementary rotations with regard to the next axes
(first horizontal 𝑥

𝐺
-axis and then horizontal 𝑦

𝐺
-axis basic

rotations):

R = R (𝑌, 𝜃
𝑦
) ⋅ R (𝑋, 𝜑

𝑥
) ⋅ I3×3, (7)

R = (
𝑐𝜃
𝑦
0 𝑠𝜃
𝑦

0 1 0

−𝑠𝜃
𝑦
0 𝑐𝜃
𝑦

) ⋅(

1 0 0

0 𝑐𝜑
𝑥
−𝑠𝜑
𝑥

0 𝑠𝜑
𝑥
𝑐𝜑
𝑥

)

= (

𝑐𝜃
𝑦
𝑠𝜃
𝑦
𝑠𝜑
𝑥
𝑠𝜃
𝑦
𝑐𝜑
𝑥

0 𝑐𝜑
𝑥

−𝑠𝜑
𝑥

−𝑠𝜃
𝑦
𝑐𝜃
𝑦
𝑠𝜑
𝑥
𝑐𝜃
𝑦
𝑐𝜑
𝑥

).

(8)
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The positions of the three lumped masses with regard to S
𝐺

can therefore be written as

P1 = R ⋅ P
1LOC = (

𝐿𝑠𝜃 (−𝑠60
∘
𝑠𝜑
𝑥
+ 𝑐60
∘
𝑐𝜑
𝑥
)

−𝐿 (𝑠60
∘
𝑐𝜑
𝑥
− 𝑐60
∘
𝑠𝜑
𝑥
)

𝐿𝑐𝜃 (−𝑠60
∘
𝑠𝜑
𝑥
+ 𝑐60
∘
𝑐𝜑
𝑥
)

) ,

P2 = R ⋅ P
2LOC = (

𝐿𝑠𝜃 (𝑠60
∘
𝑠𝜑
𝑥
+ 𝑐60
∘
𝑐𝜑
𝑥
)

𝐿 (𝑠60
∘
𝑐𝜑
𝑥
− 𝑐60
∘
𝑠𝜑
𝑥
)

𝐿𝑐𝜃 (𝑠60
∘
𝑠𝜑
𝑥
+ 𝑐60
∘
𝑐𝜑
𝑥
)

) ,

P3 = R ⋅ P
3LOC = (

−𝐿𝑠𝜃𝑐𝜑
𝑥

𝐿𝑠𝜑
𝑥

−𝐿𝑐𝜃𝑐𝜑
𝑥

).

(9)

Moreover, the application of each of the forces caused by
actuators (see forces 𝑓

1
, 𝑓
2
, and 𝑓

3
in Figure 4) to their

respective centers of gravity on each torpedo leads to a torque
vector (with regard to S

𝐺
), which is defined and obtained as

follows:

Γ = (

Γ
𝑥

Γ
𝑦

Γ
𝑧

) = P
1
(

0

0

𝑓
1

)+ P
2
(

0

0

𝑓
2

)+ P
3
(

0

0

𝑓
3

). (10)

And, by substituting (9) in (10), one obtains

Γ

= (

𝐿 [𝑠60
∘
𝑐𝜑
𝑥
(−𝑓
1
+ 𝑓
2
) − 𝑐60

∘
𝑠𝜑
𝑥
(𝑓
1
+ 𝑓
2
) + 𝑠𝜑

𝑥
𝑓
3
]

𝐿𝑠𝜃
𝑦
[𝑠60
∘
𝑐𝜑
𝑥
(𝑓
1
− 𝑓
2
) − 𝑐60

∘
𝑐𝜑
𝑥
(𝑓
1
+ 𝑓
2
) + 𝑐𝜑

𝑥
𝑓
3
]

0

) .

(11)

As expected, from (11), it is proven that it is impossible to
cause changes in the horizontal direction (rotations about 𝑧

𝐺
-

axis or 𝑧-axis) with only vertical forces.

3.2. Force Conversion. In this subsection, a matrix relation
between the forces applied to the generator and a new
generalized force vector is proposed. This relation makes it
possible to decouple themotions of the generator in the sense
that different sets of forces can be appliedwhich then produce
independentmotions for each of the three degrees of freedom
of the generator.

By rearranging (4) and (11), the following relation is easily
obtained:

(

𝐿[𝑠60
∘
𝑐𝜑
𝑥
(−𝑓
1
+ 𝑓
2
) − 𝑐60

∘
𝑠𝜑
𝑥
(𝑓
1
+ 𝑓
2
) + 𝑠𝜑

𝑥
𝑓
3
]

𝐿𝑠𝜃
𝑦
[𝑠60
∘
𝑐𝜑
𝑥
(𝑓
1
− 𝑓
2
) − 𝑐60

∘
𝑐𝜑
𝑥
(𝑓
1
+ 𝑓
2
) + 𝑐𝜑

𝑥
𝑓
3
]

𝑓
1
+ 𝑓
2
+ 𝑓
3

)

= (

Γ
𝑥

Γ
𝑦

𝐹
𝑧

).

(12)

By substituting 𝑐60∘and 𝑠60∘ for their respective values and
rearranging (12), the following is attained:

(

−

𝐿

2

(√3𝑐𝜑
𝑥
+ 𝑠𝜑
𝑥
)

𝐿

2

(√3𝑐𝜑
𝑥
− 𝑠𝜑
𝑥
) 𝐿𝑠𝜑

𝑥

𝐿

2

𝑠𝜃
𝑦
(√3𝑠𝜑

𝑥
− 𝑐𝜑
𝑥
) −

𝐿

2

𝑠𝜃
𝑦
(√3𝑠𝜑

𝑥
+ 𝑐𝜑
𝑥
) 𝐿𝑠𝜃

𝑦
𝑐𝜑
𝑥

1 1 1

)

⋅(

𝑓
1

𝑓
2

𝑓
3

) = (

Γ
𝑥

Γ
𝑦

𝐹
𝑧

).

(13)

Or in a compact form,

Λ (𝜑
𝑥
, 𝜃
𝑦
) ⋅ F
𝐺
= 𝜏, (14)

where F
𝐺
= (𝑓

1
𝑓
2
𝑓
3
)
𝑇 denotes the buoyancy forces

provided by all the actuators, 𝜏 = (Γ
𝑥
Γ
𝑦
𝐹
𝑧
)
𝑇 denotes the

proposed vector of generalized forces, and Λ denotes the
matrix that relates 𝜏 to F

𝐺
, which depends on 𝜑

𝑥
and 𝜃

𝑦

according to (13) and (14).
In (14), vector 𝜏 is conceived as the uncoupled generalized

forces vector applied to the center of the generator, so the first
component will produce a torque that is aligned to the 𝑥

𝐺
-

axis and the second component will produce a torque that is
aligned to the𝑦

𝐺
-axiswhile the third componentwill produce

a force that is aligned to the 𝑧-axis.

3.3. Dynamic Submodel for Only Vertical Movement. The
dynamics of an underwater body that is considered to be a
rigid body when it performs vertical motions is well known
(see [35–37], a.e.). As was seen in the previous section, depth
𝑧 is the only variable of position that can be controlled. Using
the same notation given in the previous subsection and under
hypothesis shown above, the next dynamicmodel is proposed
for only vertical motions (the effects resulting from free-
surface interaction are not computed):

𝐹
𝑧
= (𝑚
𝐺
+ 𝑚ADD) ⋅ 𝑧̈ + |𝑧̇| ⋅ 𝜐𝑧 ⋅ 𝑧̇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐹
𝑧V(𝑧̇)

, (15)

where 𝑚
𝐺
= 𝑚CG + 𝑚1𝐺 + 𝑚2𝐺 + 𝑚3𝐺 denotes the total

mass of the generator and is decomposed into the mass of the
central cylinder 𝑚CG and the three masses of each torpedo.
For the sake of simplicity, the term 𝑚ADD denotes the total
added mass resulting from the motion in a viscous fluid (see
[38]) which is considered to be constant and well known. A
quadratic and speed opposite friction term is computed as
𝐹
𝑧V(𝑧̇) = |𝑧̇| ⋅ 𝜐𝑧 ⋅ 𝑧̇, where 𝜐𝑧 is also considered to be constant.

3.4. Dynamic Submodel for Only RotationMovements. In this
subsection, the Lagrange formulation allows us to obtain
the equations of motion for the generator provided with
only rotation movements. The two rotation angles 𝜑

𝑥
and

𝜃
𝑦
around their respective 𝑥

𝐺
-axis and 𝑦

𝐺
-axis are taken

as generalized rotation coordinates qR = (𝜑
𝑥
𝜃
𝑦
)
𝑇 for

rotation purposes solely. For the compotation of the Lagrange
function, the kinetic and potential energies are computed
beforehand.
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3.4.1. Local Inertia Matrix. The inertia matrix in local
coordinates is obtained from the lumped mass distribution
employed. Because the general rotation motion is of dimen-
sion 3, the inertia matrix results are of dimensions 3 × 3:

JLOC = (

𝐼
𝑥𝑥
𝑃
𝑥𝑦
𝑃
𝑥𝑧

𝑃
𝑦𝑥
𝐼
𝑦𝑦
𝑃
𝑦𝑧

𝑃
𝑧𝑥
𝑃
𝑧𝑦
𝐼
𝑧𝑧

) (16)

which satisfies that it is a symmetrical and positive definite
matrix. This implies that eig(JLOC) > 0, 𝑃𝑥𝑦 = 𝑃𝑦𝑥, 𝑃𝑥𝑧 = 𝑃𝑧𝑥,
and 𝑃

𝑦𝑧
= 𝑃
𝑧𝑦
. In our case, the inertia matrix incorporates

the effects of the added masses and takes the form (details of
how the coefficients in this inertia matrix were obtained can
be found in Appendix A):

JLOC

=
(
(

(

𝑚
1
+ 𝑚
2
+ 𝑚
3

0 0

0

𝑚
1
+ 𝑚
2

4

+ 𝑚
3

√3 (𝑚
2
− 𝑚
1
)

4

0

√3 (𝑚
2
− 𝑚
1
)

4

3 (𝑚
1
+ 𝑚
2
)

4

)
)

)

⋅ 𝐿
2
.

(17)

As in the case shown above, each of the masses considered
is computed as the sum of its real mass fraction and its
added mass, as seen in (1). It will be observed that if 𝑚

1
=

𝑚
2
, the generator becomes fully statically and dynamically

equilibrated with all of its null value inertia products (𝑃
𝑥𝑦
=

𝑃
𝑥𝑧
= 𝑃
𝑦𝑧
= 0).

3.4.2. Computation of the Rotation Kinetic Energy. The
kinetic energy of the generator when only rotations over first
the 𝑥
𝐺
-axis and then the 𝑦

𝐺
-axis are considered is given by

K = 1
2

(Ω𝑥 Ω𝑦 Ω𝑧 = 0) ⋅ R𝑇 (𝜑𝑥, 𝜃𝑦)

⋅ (

𝐼
𝑥𝑥

0 0

0 𝐼
𝑦𝑦
𝑃
𝑦𝑧

0 𝑃
𝑦𝑧
𝐼
𝑧𝑧

) ⋅ R (𝜑
𝑥
, 𝜃
𝑦
) ⋅ (

Ω
𝑥

Ω
𝑦

Ω
𝑧
= 0

)

(18)

with Ω
𝑥
, Ω
𝑦
, and Ω

𝑧
being the absolute rotational velocities

of the generator with respect to S
𝐺
.

By substituting (8) and (17), one obtains

K = 1
2

[Ω
2

𝑥
(𝐼
𝑥𝑥
𝑐
2
𝜃
𝑦
+ 𝐼
𝑧𝑧
𝑠
2
𝜃
𝑦
)

+ 2Ω
𝑥
Ω
𝑦
[(𝐼
𝑥𝑥
− 𝐼
𝑧𝑧
) 𝑠𝜃
𝑦
𝑐𝜃
𝑦
𝑠𝜑
𝑥
− 𝑃
𝑦𝑧
𝑠𝜃
𝑦
𝑐𝜑
𝑥
]

+ Ω
2

𝑦
[(𝐼
𝑥𝑥
𝑠
2
𝜃
𝑦
+ 𝐼
𝑧𝑧
𝑐
2
𝜃
𝑦
) 𝑠
2
𝜑
𝑥
+ 𝐼
𝑦𝑦
𝑐
2
𝜑
𝑥

+ 2𝑃
𝑦𝑧
𝑐𝜃
𝑦
𝑠𝜑
𝑥
𝑐𝜑
𝑥
]] .

(19)

3.4.3. Computation of the Rotation Potential Energy. In order
to control the generator, it is necessary to obtain operation
conditions that force the generator to be at an equilibrium
point. Neutral buoyancy is therefore required (𝑚

𝐺
= 𝜌
𝑤
𝑉),

and the total potential energy thus has a zero value under this
condition

U = 0. (20)

3.4.4. Lagrange Formulation. The kinetic and the potential
energy computed previously are used, and the Lagrange
function of the generator with only rotation motions with
regard to the 𝑥

𝐺
-axis and 𝑦

𝐺
-axis is

L = K − U = K. (21)

Lagrange’s equations are then expressed by

𝑑

𝑑𝑡

(

𝜕L
𝜕q̇R

) −

𝜕L
𝜕qR

= 𝜏, (22)

where 𝜏 is the sum of external torques, which are the control
torques (Γ

𝑥
Γ
𝑦
)
𝑇 and the friction terms that have been

modeled as a function Fk(q̇R) with 𝜐R = (𝜐
𝜑𝑥
𝜐
𝜃𝑦
)
𝑇. The

following expression is obtained (see the coefficients of MR
and CR in Appendix B):

MR (qR) ⋅ q̈R + CR (qR, q̇R) = (
Γ
𝑥

Γ
𝑦

) −

󵄨
󵄨
󵄨
󵄨
󵄨
q̇𝑇R
󵄨
󵄨
󵄨
󵄨
󵄨
⋅ 𝜐R ⋅ q̇R⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Fv(q̇R)
(23)

in which qR denotes the generalized rotation coordinates,
qR = (𝜑

𝑥
𝜃
𝑦
)
𝑇 with regard to SG frame, MR are the

inertia terms which are qR dependent, positive definite,
and symmetrical, and CR includes both the centrifugal and
Coriolis effects. A term 𝜐R = (𝜐𝜑𝑥 𝜐𝜃𝑦)

𝑇 allows the friction
terms to bemodeled in a similar way to that occurring in (15).

3.5. Proposed Dynamic Model. The complete proposed
dynamic model can be obtained by joining (13), (15), and (23)
and expressed in a compact form as

M (q) ⋅ q̈ + C (q, q̇) = Λ (q) ⋅ F𝐺 −
󵄨
󵄨
󵄨
󵄨
󵄨
q̇𝑇󵄨󵄨󵄨󵄨
󵄨
⋅ 𝜐 ⋅ q̇, (24)

where the complete vector of generalized coordinates q is

q = (
qR
𝑧

) (25)

and matricesM, C, and 𝜐 are

M (q) = (
MR (qR) 02×1

01×2 𝑚
𝐺
+ 𝑚ADD

) , (26)

C (q, q̇) = (
CR (qR, q̇R)

0

) , (27)

𝜐 = (
𝜐R = (

𝜐
𝜑𝑥

𝜐
𝜃𝑦

)

𝜐
𝑧

). (28)
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Figure 5: Proposed dynamic model.

Figure 5 depicts the proposed dynamic model, along with
the two submodels presented above. The set of input sig-
nals are the buoyancy forces produced by actuators F

𝐺
=

(𝑓
1
𝑓
2
𝑓
3
)
𝑇while the outputmeasurable signals are the two-

degree-of-freedom orientation angles together with the gen-
erator depth denoted previously as a vector of the generalized
coordinates q = (𝜑

𝑥
𝜃
𝑦
𝑧)
𝑇.

4. Uncoupled Multivariable PD Control

The three-degree-of-freedom model proposed clearly exhib-
its a nonlinear, time variant, and multivariable uncoupled
behavior. A new and simple control scheme based on the
following three stages is proposed: (i) an uncoupled term
that allows the generalized control torques to be converted
into forces applied to each of the torpedoes (by means of
actuators), (ii) a nonlinear uncouplingmodel-based term that
ideally cancels out the nonlinearities of the system caused
by centrifugal and Coriolis torques, and (iii) a multivariable
diagonal proportional-derivative (PD) controller.

4.1. Uncoupling Matrix. The determinant of the matrix Λ(q)
defined in (13) and (14) is

|Λ (q)| = 3
√3

2

𝐿
2
𝑠𝜃
𝑦
. (29)

This determinant makes matrix Λ(q) nonsingular, with the
exception of 𝜃

𝑦
= 0 which corresponds to the normal

operation orientation. In other words, if the generator is
placed in a fully vertically position, it is not possible to turn
around the 𝑦

𝐺
-axis using vertical forces alone. In order to

avoid this singularity, the position of the third actuator can
be displaced a small distance 𝛿

𝑥
along the local 𝑢-axis, thus

resulting in its new local position at (see Figure 6)

P
3LOC = (

𝛿
𝑥
> 0

0

−𝐿

) . (30)

For relatively small values of 𝛿
𝑥
the angle of the new plane

that conforms to the three points of application of forces with
regard to the plane of the generator is (see Figure 6)

Δ𝜃
𝑦
= tan−1 (

2𝛿
𝑥

3𝐿

) ≈

2𝛿
𝑥

3𝐿

(31)

and the range of the angle 𝜃
𝑦
is −(𝜋/2 + 2𝛿

𝑥
/3𝐿) ≤ 𝜃

𝑦
≤

−2𝛿
𝑥
/3𝐿 rather than −𝜋/2 ≤ 𝜃

𝑦
≤ 0, thus avoiding

the singularity of matrix Λ(q) in (29). For the angle 𝜑
𝑥
is

considered range −𝜋/2 ≤ 𝜑
𝑥
≤ 𝜋/2.
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Figure 6: Singularity avoidance.

Then, after avoiding the singular values of the angle 𝜃
𝑦
,

the inverse of matrix Λ(q) can be obtained symbolically,
yielding

Λ
−1
(q)

=

(
(
(
(

(

−

(√3𝑐𝜑
𝑥
+ 𝑠𝜑
𝑥
)

3𝐿

−

(𝑐𝜑
𝑥
− √3𝑠𝜑

𝑥
)

3𝐿𝑠𝜃
𝑦

1

3

(√3𝑐𝜑
𝑥
− 𝑠𝜑
𝑥
)

3𝐿

−

(𝑐𝜑
𝑥
+ √3𝑠𝜑

𝑥
)

3𝐿𝑠𝜃
𝑦

1

3

2𝑠𝜑
𝑥

3𝐿

2𝑐𝜑
𝑥

3𝐿𝑠𝜃
𝑦

1

3

)
)
)
)

)

.

(32)

4.2. Proposed Control System. The existence of the inverse of
matrix Λ(q) into (29), (32) makes it possible to handle the
generator in an uncoupled mode and even in open loop, by
simply obtaining the forces to be applied by actuatorsF

𝐺
from

a set of desired and uncoupled generalized forces 𝜏 for non-
singular values of 𝜃

𝑦
. The existence of external disturbances

andmodel uncertainties between the realmatrixΛ(q) and the
computed matrix Λ̂(q) requires the addition of closed loop
controllers.

Equations (24) and (32) provide the following control
system, which is proposed for a given desired reference q

𝑑
=

(𝜑
𝑥𝑑
𝜃
𝑦𝑑
𝑧
𝑑
)
𝑇 and which can be time dependent:

F
𝐺
= Λ̂ (q)−1 ⋅ [Ĉ (q, q̇) − KDq̇ + KP (q𝑑 − q)] , (33)

where Λ̂(q) and Ĉ(q, q̇) denote their respective computed
matrices as a function of the measured output signals q.
The complete dynamics of the system controller, under the
assumption of perfect cancellation, that is, Ĉ(q, q̇) = C(q, q̇)
and Λ̂(q) = Λ(q), results in

M (q) ⋅ q̈ + KD ⋅ q̇ + KP ⋅ q = KP ⋅ q𝑑. (34)

Since the inertia matrix M(q) is defined according to (26)
and the coefficients shown in Appendix A, it is a bounded
symmetric and positive definite matrix which satisfies that
𝜆minI3×3 ≤ M(q) ≤ 𝜆MAXI3×3 for all q. Upon considering
a mean inertia matrix as

M =

M (q)|MAX + M (q)|min
2

(35)

the closed loop controlled system with mean matrix
M exhibits fully decoupled multivariable linear dynamics
defined by

q̈ +M−1 ⋅ KD ⋅ q̇ +M
−1
⋅ KP ⋅ q = M−1 ⋅ KP ⋅ q𝑑 (36)

and three independent single input/single output (SISO)
PD controllers with derivative in the feedback loops can
be tuned by choosing diagonal matrices of gains KD =

diag(𝑘
𝐷𝜑𝑥

𝑘
𝐷𝜃𝑦

𝑘
𝐷𝑧
) and KP = diag(𝑘

𝑃𝜑𝑥
𝑘
𝑃𝜃𝑦

𝑘
𝑃𝑧
) that

allow closed loop poles to be placed where desired. Equation
(36) can then be analyzed as three SISO independent closed
loop systems for any of the three degrees of freedom of the
generator.

Figure 7 depicts the proposed control scheme. The
uncoupling matrix and the linearization term that compen-
sates the centrifugal and Coriolis torques are clearly shown,
together with an uncoupled three-dimensional diagonal PD
controller with derivative component from only the output
signal as proposed in (33).

5. Numerical Simulations Results

The proposed dynamic model (24) and the controller (33),
presented above, were used to carry out numerical sim-
ulations in order to demonstrate the goodness of both
the dynamic model and the proposed control in terms
of generator controllability and ability to perform emer-
sion and immersion maneuvers with only passive buoyancy
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Figure 7: Proposed control system.

Table 2:Main parameters for simulation (per each of the cylindrical
torpedoes).

Nominal value Units
Number of torpedoes 3
Torpedo angle distribution 0, 2𝜋/3, 4𝜋/3 rad
Length 0.608 m
Diameter 0.200 m
Volume 0.191 m3

Real mass 19.1 kg
Added mass 15.3 kg
Friction term 79.4 N⋅s2⋅m−2

𝐺 9.81 m⋅s−2

𝜌
𝑤

1,000 Kg⋅m−3

𝐿 0.400 m

forces. Simulations were performed in the Mathworks©
Simulink/Matlab environment and developed for a set of
parameters that corresponds to a lab prototype that is being
built for further experimental validation. Its main values are
shown in Table 2.

The main reason for using a laboratory prototype is
the high economic cost of a real scale device. The research
group has successfully tested a 1 : 10 scale prototype [39] in
a real protected sea environment. From these trials, the high
acceleration values observed in open loop in some of the time
intervals during the execution of the emersion maneuvers
performed (see Figure 22 in [39]) could damage the rotor
blades making necessary the study of the proposed closed
loop control.

The first set of numerical simulations was performed on
step reference signals with nominal parameters of the added
mass and the friction term in order to validate both the
desired transient and steady state responses and there were
no coupled dynamics among the independent movements
(𝜑
𝑥
, 𝜃
𝑦
, and 𝑧) that the generator can perform. Figures 8 to 10

illustrate the time responses of each of the independent closed
loop systems of each of the degrees of freedom of the gen-
erator when the following step reference signals were used
(units in rad for angles, m for depth, resp.):

𝜑
𝑥𝑑

f rom 0 to 𝜋
3

at 𝑡 = 10 s,

𝜃
𝑦𝑑

f rom − 0.05 to − 𝜋
2

at 𝑡 = 20 s,

𝑧
𝑑
f rom − 20 to − 1 at 𝑡 = 20 s.

(37)

ThePDcontroller gains for each of the loopswere tuned using
the nominal value of matrixM in order to obtain closed loop
double poles placed at 𝑝

1,2
= −0.3 rad/s and a unit gain that

will guarantee critically damped second-order dynamics. For
a given fully uncoupled open loop dynamic (second-order
and type one system) of the form 𝐺

𝑖
(𝑠) = 𝐴

𝑖
/(𝑠 ⋅ (𝑠 + 𝐵

𝑖
)) and

a desired closed loop dynamic of the form𝑀
𝑖
(𝑠) = 𝑝

2

1,2
/(𝑠
2
+

2𝑝
1,2
𝑠 + 𝑝
2

1,2
), for 𝑖 = 𝜑

𝑥
, 𝜃
𝑦
, 𝑧, the gains of the PD controllers

are easily obtained as 𝑘
𝑃𝑖
= 𝑝
2

1,2
/𝐴
𝑖
and 𝑘
𝐷𝑖
= (2𝑝

1,2
−𝐵
𝑖
)/𝐴
𝑖
.

Actuator saturation is not considered here. Gaussian noises
from a normal distribution𝑁(0, 3𝑒−3) were added to each of
the output signals, and first-order filters were used to obtain
the time derivative of the output signals as L(𝑑/𝑑𝑡) = 𝑠 ≈
𝑠/(0.001𝑠 + 1), whereL denotes the Laplace transform.

Figures 8–10 depict that the system performs extremely
well with uncoupled dynamics, unit gain, and the desired
setting time response with no overshoot (the effect of the 𝜃

𝑦𝑑

transition at 𝑡 = 20 s and the real 𝜃
𝑦
response at 𝑡 ≥ 20 s is not

perceived in the time evolution of the response of 𝜑
𝑥
).

The second set of simulations were carried out assuming
nonnominal terms (increments of ±20% of the nominal
added mass term and null Coriolis and centripetal com-
pensation term). Additionally, the actuators were saturated
to ±5N, thus simulating a more realistic scenario. Due
to the feedback robustness provided by the PD controller
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Figure 10: Step response of 𝑧(𝑡) from −20 to −1m with transition
time at 𝑡 = 20 s.

(see [40], a.e.), the time responses were very similar to the
nominal responses shown in Figures 8–10. Figures 11–13
depict the evolution of the errors between the nonnominal
and the nominal responses. In these figures is clearly observed
the coupling effect at instants 𝑡 = 10 s and 𝑡 = 20 s when
transitions occur due to step signals.

The third set of simulations was carried out using
synchronous smooth time trigonometric sixth-order S-
trajectories (see [41, 42]) with starting and ending times of
𝑡
0
= 20 to 𝑡

𝑓
= 120 s, respectively, for the orientation
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and null Coriolis and centripetal compensation terms.
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Figure 13: Error between 𝑧 time responses with nonnominal𝑚ADD
and null Coriolis and centripetal compensation terms.

references, and 𝑡
0
= 20 to 𝑡

𝑓
= 220 s for the depth reference

with the maximum velocities shown below

𝜑
𝑥𝑑

f rom 0 to𝜋
3

rad 󵄨
󵄨
󵄨
󵄨
𝜑̇
𝑥𝑑

󵄨
󵄨
󵄨
󵄨MAX = 0.0125 rad/s,

𝜃
𝑦𝑑

f rom − 0.05 to − 𝜋
2

rad
󵄨
󵄨
󵄨
󵄨
󵄨

̇
𝜃
𝑦𝑑

󵄨
󵄨
󵄨
󵄨
󵄨MAX = 0.0175 rad/s,

𝑧
𝑑
f rom − 20 to − 1m 󵄨

󵄨
󵄨
󵄨
𝑧̇
𝑑

󵄨
󵄨
󵄨
󵄨MAX = 0.125m/s.

(38)
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Figure 16: Reference S-trajectory 𝑧
𝑑
(𝑡) and time response 𝑧(𝑡).

Figures 13–16 illustrate that the generator exhibits a good
correspondence with both the desired responses and the
simulated responses obtained.

Finally, the fourth set of simulations corresponds to a
complete sequence of sixth-order S-trajectories to achieve
an emersion maneuver. Figures 17 to 19 depict both the ref-
erences and the time responses obtained for each of the inde-
pendentmovements of the generator.The desired sequence is
defined below (units in rad for angles, m for depth):
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Figure 17: Emersion maneuver reference 𝜑
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(𝑡) and time response
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𝑧(𝑡).

f rom q
𝑑1
= (

0

−0.05

−20

) to q
𝑑2
= (

𝜋

3

−0.05

−5

)

𝑡
1
= 25 to 𝑡

2
= 75 s,

f rom q
𝑑2
= (

𝜋

3
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−5

) to q
𝑑3
= (

𝜋

3

−0.05

−5

)

𝑡
2
= 75 to 𝑡

3
= 175 s,
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t = 25 s t = 50 s t = 75 s t = 190 s t = 210 s t = 225 s

Figure 20: Graphical view of the closed loop simulation with Matlab-OrcaFlex.

f rom q
𝑑3
= (

𝜋

3

−0.05

−5

) to q
𝑑4
= (

𝜋

3

−0.05 −

𝜋

2

−0.1

)

𝑡
3
= 175 to 𝑡

4
= 225 s,

f rom q
𝑑4
= (

𝜋

3

−0.05 −

𝜋

2

−0.1

) to

q
𝑑𝑓
= (

𝜋

3

−0.05 −

𝜋

2

−0.1

)

𝑡
4
= 225 to 𝑡

𝑓
= 275 s.

(39)

Figures 17–19 illustrate the excellent response of the system
during a complete emersion sequence. It will be observed
that the initial posture q

𝑑0
is equivalent to that shown in

Figure 2, while the final posture q
𝑑𝑓

is equivalent to that
shown in Figure 3 (right), corresponding with the normal
submerged operation posture for energy harnessing and the
normal floating posture for maintenance tasks. Very similar
results were obtained by integrating the dynamics of the
laboratory prototype into the simulation environmentOrcina
OrcaFlex [43]. OrcaFlex is one of the world’s leading software
packages for the design and analysis of a wide range of
marine systems (riser systems, mooring systems, installation
planning, towed systems, marine renewables, etc.) and is
considered validated and certified software for anchormarine
systems. The control signals given in (33) were computed
in the runtime of Matlab which is connected to OrcaFlex
through an external DLL function which is responsible for
obtaining the magnitudes from the simulated responses and

providing the control signals from and to OrcaFlex with a
time sampling of 10ms. Figure 20 displays a visual sequence
of the response of the 3-DoF prototype when following the
references given in (39).

6. Conclusions

This paper proposes a new dynamics model that can be used
to control a family of submarine electrical generators that
was conceived to harness energy from marine currents. The
submarine generator is provided with three degrees of free-
dom by which it is possible to perform closed loop emersion
and immersion maneuvers. The dynamic model proposed is
based solely on the definition of four lumped masses placed
on a plane and a matrix that permits the forces from the
three buoyancy actuators to be converted into two torques
and a vertical force that are responsible for the rotations and
the vertical displacement of the whole system. The model
developed exhibits a nonlinear, strongly coupled, and time-
varying behavior between buoyancy forces produced by the
three actuators and the posture magnitudes measured using
a depth sensor and a three-dimensional inclinometer on
which the angle rotation around the 𝑧-axis is ignored. As
a first conclusion, we should note that the dynamic model
developed in this research is sufficiently precise to describe
the underwater 3-DoF tidal energy converter motions and
sufficiently simple to be used in the control law design.

The proposed control scheme with which to control the
generator using only depth and orientation measurements
is, meanwhile, based on three stages: (a) the definition of an
uncoupling matrix is used to decouple the generator motions
for nonsingular values of orientation; thismatrix can be easily
computed in real-time and allows the generator to be handled
in an uncoupled manner, even in open loop; (b) it is a non-
linear uncoupling-based model for the compensation of the
centrifugal and Coriolis torques; and (c) it is a proportional-
derivative (PD) control action. The closed loop dynamics
was chosen by simply designing proportional and derivative
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matrix gains. The proposed control allows the generator to
perform fully automatic closed loop emersion/immersion
maneuvers from a submerged position with vertical orien-
tation to a floating posture with a horizontal orientation
by using time-varying smooth reference trajectories. A last
obtained conclusion is that the control law implemented in
this work demonstrates that it is a simple control strategy,
which is computationally efficient and easily implementable
in a microprocessor-/microcontroller-based system.

Finally, based on more than satisfactory numerical sim-
ulations achieved in this research, various experimental
branches are now the focus of our attention and are detailed
as follows. Our intention is (a) to finalize the construction
of a real small-sized laboratory prototype; (b) to use real-
time experiments to validate the proposed research; and
(c) to study different control strategies and new trajectory
generations in order to improve the quality of the closed
loop emersion/immersionmaneuvers.These will be themain
topics of our future research.

Appendices

A. Coefficients of the Inertia Matrix JLOC

The local positions of each of the threemasses located at their
respective center of gravity on each torpedo and which are
taken from (6) are used to obtain the equivalent inertiamatrix
JLOC with regard to the local reference system. It will be noted
that the central mass𝑚CG does not produce any inertia value
in accordance with its local position given by (5)
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=
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(A.1)

Matrix JLOC in (17) is then obtained from (16) using the
coefficients obtained above from (A.1).

B. Obtaining Matrices M(qR) and C(q, q̇R)
Equation (23) was obtained from (19)–(22). This appendix
shows how the coefficients of matricesM(qR) and C(qR, q̇R)
were obtained. Firstly, partial derivatives with regard to

angular velocities were obtained. Note that the Ω
𝑥
and Ω

𝑦

notations are maintained as angular velocities in these first
equations
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(B.1)

Partial derivatives with regard to generalized coordinated
rotation are then obtained:
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From here on, in order to obtain time derivatives of 𝜕L/𝜕𝜑̇
𝑥

and 𝜕L/𝜕 ̇𝜃
𝑦
, angular velocities Ω

𝑥
and Ω
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their respective angular rotation time derivatives
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Finally, after rearranging (B.2) to (B.3), one obtains the
coefficients of the left hand of (23) which is now reproduced
again:

MR (qR) ⋅ q̈R + CR (qR, q̇R) , with qR = (
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