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Abstract. Using the 3-D equations of linear elasticity and the asymptotic expansion methods
in terms of powers of the beam cross-section area as small parameter different beam theories
can be obtained [9], according to the last termn kept in the expansion. If it is used only the first
two terms of the asymptotic expansion the classical beam theories can be recovered without
resort to any "a priori” additional hypotheses. Moreover, some small corrections and exten-
sions of the classical beam theories can be found and also there exists the possibility to use the
asymptotic general beam theory as a basis procedure for a straightforward derivation of the
stiffness matrix and the equivalent nodal forces of the beam. In order to obtain the above results
a set of functions and constants only dependent on the cross-section of the beam it has to be
computed them as solutions of different 2-D laplacian boundary value problems over the beam
cross section domain. In this paper two main numerical procedures to solve these boundary
value problems have been discussed, namely the Boundary Element Method (BEM) and the Fi-
nite Element Method (FEM). Results for some regular and geometrically simple cross-sections
are presented and compared with ones computed analytically. Extensions to other arbitrary
cross-sections are illustrated.
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1 Introduction

Elastic beams correspond to solids for which two of their characteristic dimensions of its cross
section are much smaller than the third one, its length. In this paper only cylindrical straight
beams will be considered.

Beam behaviour can be studied by direct application of the general 3-D theory of elasticity.
However two main difficulties appear in this approach. First, 3-D elastic analytical solutions are
hard to find. Second, the 3-D beam problems are ill conditioned from a numerical point of view
due to the characteristics of the beam geometry. In order to avoid these difficulties 1-D models
arc normally used for beam analysis.

Several well known beam models exist: Navier-Bernoulli, Timoshenko, Saint Venant, Vlasov
etc. All of them are based on a set of simplifying "a priori” hypotheses and in this way thc beam
response under different actions can be obtained.

A more recent approach for obtaining and justifying different elastic beam models corresponds
to the application of asymptotic expansion methods. In these methods the solution of the 3-D
clasticity cquations are approximate trough the successive terms of a power series of a small
parameter, namcly the diameter of the cross-section. An excellent review of this approach is
given in [9].

These asymptotic expansion methods are very general because they have already been applied
to different types of structures: shells [5], plates [3] and beams [1]. Besides the mathematical
rigor inherent to these methods, they do no use te classical a priori hypotheses. On the contrary
they justify the validity of these hypotheses and some introduce small corrections on the results
found in classical theories. Finally, the successive terms of the asymptotic expansion can be
interpreted and have a physical meaning, because they can be associated separately with various
structural effects: stretching, torsion, bending, Poisson’s effects and cross-section deformation
within its own plane.

Although a summary of the asymptotic expansion method considered in this paper will be given
in the following sections, it should be pointed out that in broad terms, one of its main features
is the possibility to obtain the elastic beam solution as an union of solutions of 2-D elasticity
problems and 1-D solutions along the beam length.

The first group of solutions corresponds to the constants and functions of the beam cross-
section. Some of them,like the constants area, second order inertia moments, torsional moment
and Timoshenko’s constant and the functions of Saint Venant and Prandtl among others, are
very well known in the beam literature. However, other constants and functions obtained in the
asymptotic expansion mcthod arc new or generalization of the classical ones and they will be
dclincd later.

Then this paper is organized as follows. First, a short description of the asymptotic expansion
method and its main results are presented. Second, the different constants and functions of the
beam cross-section, shown-up in a natural way in the application of the method, are defined. It
will be observed that the constants are integrals of the functions over the cross-section domain
and the functions are solutions of different 2-D laplacian boundary value problems on thc beam
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cross section.. Third, due to the speciality of the differential operator involved in these prob-
lems the Boundary Element Method (BEM) will be proved to be very efficient and the obtained
solutions for a given benchmark of cross-sections will be compared to the ones found by the
standard Finite Element Method (FEM). Finally, some remarks and conclusions on the compar-
ative advantages and disadvantages of the application of the BEM in comparison to the FEM
will be drawn.

2 General beam elastic equations

A straight clastic beam 1is defined as a 3-D cylindrical solid occupying the following reference
configuration:

V=Qx/[0,L] (1)
where €2 is the beam cross-section and L is its span. The beam geometry is characterized by the
condition:

diameter(f)) << L (2)

The following definitions and notation are introduced:

The end cross-sections of the beam are

Q=0x{0}; Q=Qx{L} (3)

and an intermediary cross-section is simply denoted by 2.

The boundary of a k-th multi-connected cross section is:

Y=YUY. % (4)
where 7y 1s the exterior part of the boundary and 7y, ¥, . . ., 7 are the interior boundaries of the
domain (holes) of sections wy,wy . .., Wg.

It is assumed without lost of generality a system of coordinates Oz 2,23 such that that Oz;
pass through the gravity center of all cross sections and the origin O is the gravity center of onc
end scction so the axes Oz, and Oz, are the principal inertia axes of the section €. (figure 1).

The lateral boundary of the beam is

['=vx(0,L) (5)

As usual in clasticity theory, Latin indexces takes their values in the set (1,2, 3) and Greek
indexes in the set (1,2). The Einstein sum convention will also be used unless it is stated the
contrary.

The unit outer normal vector to the beam boundary will be denoted by n = (n;, ny, n3). In
particular, in I', n = (ny, ny, 0); in 2y, n = (0,0, —1) and in O, n = (0,0,1) .
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Figure 1: Cylindrical elastic beam.

Partial derivatives of a function @ respect to the variable z; will be written ® ;. Then derivatives
respect to the normal n are ®,,. For functions depending only on the variable z3 their successive
derivatives will be @', ", ®"' .. ..

The 3-D linear elasticity problem of a cantilever beam can be expressed as follows:
Find the displacement components u; such that satisfy the boundary value problem
Oij5 = f,‘ in V
0i3 = Pi on ), (6)
oigTg = i onTl

u; =0 on {2

where f = (f;) are the volume forces, g = (g;) and p = (p;) are the surface pressures act on
' and €2 beam boundaries respectively. In case of other boundary conditions to the cantilever
ones it may be interesting to emphasized the beam end surface where the forces p = p; are
acting. Then they will be denoted by hg = (hi) and h; = (h;;) for the pressures on €2y and
on £, respectively. Similarly, in case of imposed displacements at €y and €2, they will written
uy = (ug;) and u; = (hy;).

The Hooke’s constitutive law for the beam matenial is

Ev
(1+v)(1-2v

0y = (wig + ujq) + )ukkéij (7)

2(1+v)

where d;; is the Kronecker symbol. The components of the linearized elasticity strain tensor
e = (e;;) are expressed in terms of the displacements as follows:

1
eij = 5 (Ui + ;) (8)

An alternative formulation to the boundary value problem (6) is given by the following varia-
tional problem (Hellinger-Reissner type of mixed formulation):
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Find the independent fields u = (u;) and & = (0y;) such that satisfy for all u* = (u}) and

[ J—

o* = (0;;) subjected to the conditions u; = 0 on  the [ollowing equations:

(14 v v - . . o
/\' < E 797 Eokkoij> odV = /‘ €ij05; AV 9)

/Uije:jdv = /fiu;dV-*-/giu;‘dF—é—/ purd)  (10)
v : v r ¢

i

where €}, = %(ujj + u;-’i) and dV = dz,dzydzs, dU' = dzidy and d) = dx,dx, are the
differential bcam volume, lateral surfacc and end surf(ace respectively.

3 Asymptotic expansion method

The solution of the boundary value problem defined by (6) or alternatively by (9) and (10) is
ill conditioned duc to the gecometry {caturc expressed by the condition (2). In order to avoid the
inhcrent numerical dilficulties to this fact, the asymptotic expansion method will be applied to
find an approximate solution of the previous boundary value problem.

The idcas introduced by Ciarlet and Destuynder | 3] for plates have been applied to beams by
Bermide~ and Viafio | 1]. These authors have found the asymptotic expansion method was very
clficient when it is used in the framework of a variational formulation. A complete study of this
mcthodology is given in [6]. In the present paper it will be follow very close the main steps of
the analysis there described that will be summarized below.

(1) The beam is considered as a 3-D elastic body and the variational formulac (9) and (10)
describe “cxactly” its structural behaviour.

(2) The actual beam is imbedded into a family of beams whose cross-sections arec homothetic,
with ratio €, to a given reference section. The ratio € is of the same order as the diameter of §2
and it will be chosen as the small parameter of the problem.

For cach becam of the lamily the applied forces and the material properties arc explicitly delined.

(3) By appropriatc variables changes the original problem can be transformed into an equivalent
onc in a fixed relerence domain, i.c. independent on €. Then it is possible to apply the asymptotic
cxpansion theory developed by Lions [6] and Goldenweizer [5].

(4) Once the convergence of the power scrics of € is justified, it is possible to evaluate any terms
in the asymptotic development no matter how high their order is.

(4) Finally the inversc change of variable is carried out and the results are written with respect
to the original domain. In this way the successive approximations of the solution for the 3-
D original elasticity problem are obtained. According to the expansion terms considered the
different classical beam theories are recovered and, sometimes, refined or complemented.
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4 Application of the asymptotic expansion method to the elastic beam

Applying the mcthodology of the asymptotic ecxpansion to the 3-D solid beam the following
main cquations and results are presented.

The variational equations of an imbedded beam according the displacement-stress approach are

1+ Ve .
L(Ef%_ﬁm%%ﬁw

.L@qwazhﬁwwwﬁﬁwﬁwk@wmwm

Jyeegot5dve (11)

The solid beam V¢ is associated to one of reference V' obtained according to the following zoom
transformation or scaling I1¢ : V' — V¢ defined as

‘. x = (I17I2)$3) - X = (1‘1,1'2,1'3) = (61‘1,6$2,$3) (13)

and then Ve = TI°(V), I'* = I¢(I'), n = n".

Similarly, the actual and virtual displacements u® and u*€ are associated to the displacements of
the reference problem by the expresions:

Uy = EUS, U3 = UG, Uy, = €Uy, Uy = U3
The following hypothesis on data are considered:
Ec=F, v =v (14)
f(; = ffa’ f36 = f31 gcex = 62907 (]f; = €4gs, pg = €Pa, p§ =P3 (15)

i.c. the material properties remain unchanged through the transformation and the virtual work
of the system of the applied forces is homogencous in €, that is

/ ffu;‘fdl/"—#/ gfu;“dl“-k/ piuredQ) = € [/ fiu;‘dV—k/giu;dI“—i-/ piu{dﬁl]
Ve € Qe \% r Q

The stress tensors o = (035) and o*¢ = (0}) arc associated to the corresponding ones of the
reference beam as

2 € x __—2 €
OaB = € 0Oup; Oug =€ 0Oag
-1 __¢ * —1 _=xe
Oa3 =€ Op3, Op3 =€ Oa3 (16)
_— € * - *E
033 = O3, 033 = 033
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The cquations (11) and (12) are reformulated in the following equivalent problem posed now in
a fixed domain V i.e. in the domain of the solid beam of reference, by introducing the trans{or-
mation II€ given by the expressions (13) to (16):

S U , [ (20+v) ., v . . ,
/V EO'33(733 + € /v {T03(¥055(1 - E [0330#11 + 0#H033] dV +

R nu . ' . s
e /v [—'E—O'a[; - fawdag] O,edV = /v e;;0;;dV (17)
/ aije;-'jdV = / fiu;dV + / giurdl’ + / piu;dS) (18)
1% 14 r Qy,
Thec asymptotic expansion
u=u’+eu’+e'u + hot. (19)
oc=c'+co’+€ea! + hot. (20)

arc valid provided that the section 2y is weakly clamped (See Ref. 6). Then substitute thesc
formal expressions in (17) and (18) and sct the factors of the successive powers of € 1o zcro, the
terms u? and 0%, (p = 0,1,2,...) can be identified.

Associated with the ditferent powers ol € the following successive approximations may be dis-
tinguished:
Order 0: (u’, oY)
y Order 2: (u’,0) + ¢*(u?, 0?) (21)

Order 4: (u°,0%) + €2(u?, 0?) + ¢'(u*, o)

Finally, by applying the inverse transformation or “descaling” given by the formulac (13) to
(16) the successive approximations of the true displacements u€ and stresses boldmath o€ ficlds
can be obtained i.e.

Order 0: (u%, o%)
Order 2. (u%, a%) + € (u?*, 0%) (22)

Order 4 : (u%,0%) + €(u*, %) + ' (u*, o)

The stress resultants are found (rom the equilibrium cquations on the section§2 (p=0,1,2,...)
and given by the expressions:

QZPE :/oggfdﬂ, J\/.I';”6 :/x%a;’;edﬂ (23)
Q Q

In this way it can be shown that Navier-Bernoulli beam theory can be rcached without any "a
priori” assumptions (or the first term of the expansion, i.c. p = 0. The second order expansion
lcads to a general stretching-bending-torsion elastic beam theory, justifying and generalizing the
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basic equations ol classical beam theories, namely, Saint Venant uniform torsion theory with
Poisson clfccts, Timoshenko’s bending theory and Vlasov’s beam theory. In the next section
the final results expressed in differential equations form instead of variational cquations will be
given. For sake of notation simplicity the superscript € will not be omitted there, although these
results refer to the actual clastic beam.

5 Asymptotic second order general linear elastic beam theory

The following results obtained (or the second order asymptotic expansion are divided in two
groups. The {irst one corresponds to the (unctions and constants dependent on the cross-section
domain €2. They arc solutions of dilferent 2-D laplacian boundary values problem in €. The
sccond group of results are solutions of 1-D boundary values problems defined by second or
fourth order ordinary differential equations in the length variable x3, x3 € [0, L] and specificd
boundary conditions.

5.1 Functions and constants of the beam cross-section

The functions and constants of the cross-scction domain of the beam used in the results of the
sccond order asymptotic expansion arc:

Arca:

Az/ dQl = / Qdx,dz, (24)
¢

;

Sccond order moment I, respect to principal axis Ozg with (@ # B):

Iy = / 2 dS) (25)
Q
Bimoments of arca:
1 f . . 1 [ . oyt
H, = —/ To(xt +13)dQ), Hy = —/ (z? + 22)%dQ (26)
2 Q 4 9]

Functions related to the Poisson’s effects in the Saint Venant torsion theory:

s(x? — 13) 122 ] 27)

1
&= (D,5) = | 2 Aty
(®as) [ zizz (e —ai)

Functions y(z,, x,) derived by the application of the non symmetric tensor €45 defined as £ = 0
[or @ = 3, = +1 for even permutation of a8 and € = —1 for odd permutation of a3, i.c

Y1 = yY(T1,T2) = —Ty, Yo = y(a)1,L2) = Ty (28)
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The warping (unction w(zy, ) is the unique solution of the elliptic boundary valuc problem:

—W,qa =0 in 2

W,n = —Yallg on

/ wdf? =0
Q

The last equation (29) corresponds to an uniquencss condition.

Scctorial moments of arca:

15w = 2/ .’L"@wdQ
4

2

Warping constant:

Jy = / w?dS)
1)

Prandtl function ¥(z, x4 is the unique solution of the elliptic boundary value problem:

Ve =2 in €2
v =0 on Yo
1IJ:TL = Palla on (lf = 1,2,,...,p)

where Pa = Wya TYa-
Torsional constants associated to the Prandtl function

IV = —/ 2o¥,ydQY, IY =/xf\1/,1d9
Q 0

.] = —/ fL'a\:[laa dSZ = Il + -[2 - / (w;f -{-w,%)dﬂ
0 Q

(29)

(30)

1)

(32)

(33)

(34)

The (ollowing shear (unctions 74(z;, Z2) and s4(z1, Z2) do not appear explicitly in classical

litcrature:
—Tgraa = "‘2.’[)3 in
T8yn = 0 on Y
/T’ng = 0
Q
—SBaa = 21'[3 mn £
Sy = —(I)(,BTLQ on vy

/Sng = 0
N

(35)

(36)
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The genceralized Timoshenko’s constants T, 3 arc associated with the shear functions and they
arc delined as combination of the following constants:

B =/ LarsdSd, Lig =/ ZaspdSd
0 Q

0= [ oursndfl Kig = [ Bausads 37
0 )
The matrix of Timoshenko’s constants is T = (T,5) where:

1 )
ﬂxﬂ - _I_{(1+V)L;ﬂ+l/LaBb+
B

1
2(1+v)

v T s
2—(1-+—I/)[(1+V)Kaﬂ +VK(,B +VH3603]

[(L+)IZ + L)) [(1+ )1} +vig®] } (38)

Thesc constants only depend on the geometry ol the cross-section and the Poisson ratio v and
constitute a gencralization of the classical Timoshenko constants [8].

5.2 Analysis of the longitudinal beam response

In the following 1-D boundary value problems it will be considered the general case of loading
fiv 9; and p;. The boundary conditions on the bcam arc assumed to be a combination of given
forces and specified displacements an the cross scctions at 3 = 0 and z3 = L. In order to
simplily the notation of the expressions of these 1-D boundary value problems the following
functions of the applied loads, representing their resultant values at cross-section level, will be
introduced.

-External forces and moments resultants per unit of span length:

o = JQ fadQ2 + jw gady, g3 = f,'sdQ + / gsd~
Q

v

My = Jn To f3dS) + 17 Tagsdy, my = j/ (z2fi — 21 f2)dQ2 +/(1'291 — z192)dv (39)
Q Y
The forces ¢, and m, can be combined into a single resultant force g, given by the expression:
0o = da + M, (40)
The orces and moments stress resultants at the beam ends 2 and Q, are (I = 0, 1):

Qo= [ b, V= | huds, = | o, T = [ (zahu=aiha)a, @)
9] Q ( [$]

2

10
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-Non standard functions resultants ol the external loads

. . 1 [, . . 1 [ . .
o= Jy Pas S+ [ Pasgatr, an = [ (ot + a0+ 3 [ @+ Dy
Q ¥

o= w2 fwpdy, mo= [ cofodt+ [ zagudy @2)
0 ¥y

o= Jorasd [ ragndr, q= [ safud+ [ sady
{ Y

}

It is convenient to combine these {orces to obtain the [ollowing ones:

I + I H, .
vih + 1) 2)q’ —v=2g, +vm,  (43)

— ! = l _
My = My + gz, M3 = M3+ @z, N3 = — 2 3 I
o4

Now the displacements u; (1, 4, £3) may be written in the [ollowing way:

ui(2), Ty, L3) = U?(1L'1>1L'2,1L‘:5) + uf(l'hl"zyl's) (44)
where
up = U, (45)
ug = U3 —z,UY (46)
ui = U('f — Yo 0% — v [;L-aU},” — <I)(,5U§”] 47)
9 2 2[ 2! ]. .2 2 1 OII
Uy = U3_$aUa —'LU(')3 “+ v §(ll+x2)—2—A-(Il+]2) U3
2(1

+ (L + v)ra + vsa Ug'" + %Zwo (48)

The functions U = U?(x3),U? = U?(x3) and @} = O3(x3) only depend on z3 and they arc
the solutions ol the different boundary values problems in [0, L]. In general in these problems
it will be considered the possibility of existence ol imposed displacements and rotations at the
beam cross scctions as boundary conditions, i.c. the [ollowing values may be are data (I = 0, 1):
U and ©;;. These boundary values problems describe the different beam behaviours according
to the asymptotic expansion order considered, and they arc listed below:

Stretching
-Order 0
—EAUY = ¢35 in (0,L) (49)
Displacement boundary conditions
U3 (0) = Usy, US(L) = Us (50)
Force boundary conditions
EAUY(0) = =Nay,  EAUY(L) = Ny (51)
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-Order 2
~FEAUY =7 in (0,L)

Displacement boundary conditions (a = 0, L)

Us(a) =0

Force boundary conditions (a = 0, L) and the respective values (e = 1, —1)

I I H,
5V (@) = Y ) 4 o5, (0) - umo(a) = —mafa)
Torsion
-Order 2 .
" _ w vl — .
~GJOY =my ) (1 + )Y +vi] g, in  (0,L)
where G = l+1/)

Displacement boundary conditions (a = 0, L) and the respective values | = 0,1

v

L+ 1

0%(a) = [HQU{)"((L) ~H, U,g’”(a)] + Oy

Force boundary conditions (a = 0, L) and the respective values (€ = 1, —1)
eGJOY (0) = G [(1+v)(I¥ + vI]| U (a) + qus(a) — My

Bending

-Order 0 (no sum on )
ELU" =3, in (0,L)

Displacement boundary conditions (a = 0, L) and the respective values | = 0, 1

Ug(a) = Ualy Urol(a) = Qal

[63
Force boundary conditions (a = 0, L) and the respective values (€ = 1, —1)

eEIUY (a) = My, €EILUY"(a) = =Q, — mala)

-Order 2 (N0 sum on )

vH
.
+[(1+ v)gre + v5e] +vg0a"  in (0,L)

1
EL, erml _ Taﬁqg ] [(1 + I/)Iw + 1/[‘1’] 'rrLJ

12

(53)

(54)

(55)

(56)

(57

(58)

(59)

(60)

(61)
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Displacement boundary conditions (a = 0, L)

® v iy p
Usle) = —g3Ua=Is)UQ" (a#8) (62)
o1 ]. ]. ) 1 I} VH
2 _ 2o w2 _ v,
U (a) = I {G /Q zow” (a)dQ QI" 03 (a) A g3(a)
+ [(1+ V)L + L) U (@)} (63)

Force boundary conditions (a = 0, L) and the respective values (e = 1, —1)

SELUZ(6) = ~Tusas(@) = % [(1+ )2 +vI¥] y(a)

P20 (a) = [0+ (@) + v @) + vasala) (69
ELUZ"(@) = ~Tupgsla) = = [(1 4 V)¢ + vI¥] (o)

—V% 3(a) = [(1 +v)gre(a) + vgia(a)] + vgp,(a) (65)

The additional warping depend on the cross-section €2 and the acting forces, and it is found
(rom the following 2-D boundary valuc problem:

_wo,aa = %(IB — f3 in

w,?L = 93 on vy (66)

/ wldQ) = 0
0

The above ordinary cquations with any combination ol displacement and force boundary con-
ditions corresponding to stable beams leads to an unique solution of the displacements. Then it
is possible using the technique presented in | 7] to obtain the stiffness matrix and the cquivalent
consistent forees in the framework of this general beam theory

In a similar way the following expressions lor the stresses and stress resultants can be {ound
from the displacements w;(z1, T2, T3) given by (44):

Stresses
0 OII
oty = B (U8 -zal?") (67)
a:?, = G{ v, ()Z’ + [(L +v)rg,; +v(ss + D)5)] Ugm} + w,? (68)
0§2 = G { v, ()2 + (1 +v)rgs +v(sgr + ®,3)] UO'"} 3 (69)
0 vE 2 72!
= : U, L 7
;] (1 + l/)(l _ I/) (“33 +x ) af — ( ())
. 1 . 1 ; 1
= —we +v [—2-(£? +22) — ﬂ(ll + 12)] US" +[(1 4 v)re + vsa) UY" + au,g

13
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U§3 = Eu§3 + 1/0'2“ =
. . 1, . . 1
= EQUy — .Ul - w6} —v|>(al +af) — — (I + B) | US"
2 2A
[+ V)ra +vsa UL} + 201+ v)w s v, 7
Then
O33 = Oyy+ 0y (72)
03(! = Oga (73)
O-(lﬂ = 025 (74)

Stress resultants

The stress resultants arc according 1o (23) (no sum on « ):

M = —ELUY (75)
?, = —EI(,US'" + My, (76)

M? = —EI(,u'f!,33 +m? =
= —-FI, UZ” - ya(-)gll — l/(:EQUQ’" — @agUgm)] +m2 (77)

where
. 1
m2 = —Tusq5 — 7 [(1 + ), + 1/]:] ™3
vH,

- 8~ L+ V)G + va] + vane (78)

6 Beam cross-section functions and constants determination

It have been shown in the previous section that the constants and functions ol the beam cross-
scction given by the formulae (24) to (37) define completely the structural responsc ol the beam
subjected to general loading. This general loading is composed by the loads f;, g; and p;, and
imposed displacements u; on a part of the boundary ol the beam solid. Therefore, prior to carry
out a beam structural analysis the knowledge of these functions and constants of the beam
1s nccessary. In order to compute them in case of an arbitrary beam cross section numerical
procedures have to be applied. Among these procedures Finite Element Methods (FEM) and
Boundary Element Mcthod (BEM) will be considered. Respective good introductions arc the
relerences [ 10] and [2]. In this respect it should be pointed out that in 4] the shear [unctions 74
and s,, functions have been computed in order to compare the shear stresses distributions with
the valucs obtained by the standard Strength ol Materials formulae.

Duc to the simplicity ol the boundary value problems involved in the computation ol the bcam
[unctions and constants the FEM application is straightforward. In [act, a typical casc may be
described as follows:

14
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Find the function F = F(x),Zy), uniquc solution of the following elliptic boundary value
problem

—F.. = Gy in S
F = G, on e (79)
Fo

I
S

on

where the functions Gy = Gy(z1,Z2). G, = G4(7,) and Gy, = G,(,) arc data, and v, € 7, €
~ such that v, U v, = v and v, Ny, = @ arc the length of the cross-section boundary.

As an cxample, the determination of the warping [unction w, equation (29), corresponds 1o a
Ncumann problem, i.e. G, = 0,G, = —y, and v, = 0,7y, = 7. The uniqueness ol the solution
is achiceved by introducing the additional condition:

/ FdQ) =0 (80)
¢

)

Similar trcatment should be applied to the computation ol the shear functions r, and s,. How-
cver, the Prandtl function has to be found in case of a simply connected domain €2 as a Dirichlet
problem, i.c. Gy = 2,G, = 0 and v, = v, = 0. Il the domain € is multiple connected then
the boundary value problem (32) is of mixed type.

Then. the application of the FEM | 1.c. the introduction the expression F' = NF o the cquation
(79) lcads to the tollowing discrete counterpart

KF =G (81)

where

K:/ N, TN, dQ, G:/ NTGdO (82)
Q Q

The row vector N = (Ny, Ny, ... Ny,) contains m shape or interpolation functions and the
column vector F = (F, Fy, ... Fy) the unknown values of F at nodes ol the Finite Element
mcsh.

The matrix K and the vector G of the system of lincar equation (81) should be modified in
order to introduce the boundary conditions ol (79). In casc of Neumann typc boundary valuc
problems the singularity of the system of lincar cquations (81) is eliminated by assuming a
given vialue 1o one ol the components of F, [or cxample, Fy = 1. Then, in order to obtain the
actual value Fy the condition (80) is used in the following way. The actual solution vector F
is found as the sum of the previous onc, F plus a translation given by F|1, with 1 is the m-th
column vector with all their elements equal to the unit. The condition (80 ) can now be written:

/ NFdQ= [ N(F+ F,1)dQ=0 (83)
0 0

15
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[ NFdQ

Fi=-=
' [N1dQ

(84)

and then finally F=F+F1.

Oncec the vector F containing the nodal values ol the bcam cross-section function is known the
bcam constants arc obtained by an integration over the domain €2. This can be accomplished
dircctly by Gauss numerical integration [ormulac over each clement.

The finitc clements used in the computation ol the beam cross-section propertics have been
C'-triangles with six nodes.

Alternately the BEM has been used for computation of the functions and constants ol the
becam cross-section. In the BEM the chosen fundamental function for the node n ol coordinates

(:EI‘IH "L.'Zn) s

f*(.’L'l,.’L'Q) = 51— In (l> (85)

T T

where 7 is the norm of the vector joining the node n with the point (zy, 5. The normal derivative
along the boundary v will be written as ¢* = f,.

The boundary v = ~gU~v U. ..U~ isdivided into m = my +my +. . . + my straight elements.
(The number of clements dividing the boundary «; is m;). The following system of cquations
can be derived at cach boundary node n (no sum on n):

m m

chrd [ sea=Y [ aray (86)
i=1 “ =1 i

where L; is the length of the i-th element, f = F(z,,z,) and ¢ = ¢(x),z2) = f,, are the
unknown [unctions to be found dependent on the point (zy,z3) € v, z1 = 1(8), 22 = T2(s)
situated along the boundary. They can be lincarly interpolated in each element n as follows:

£) = 50—+ 50+ = N (1) @7
q(s) = é(l -nq + %(1 +1)g2 = (N, N2) ( ZL )

in which s is the arc length coordinate ol the beam boundary, n = LL/z and f1, fa, q1, qo arc
the unknown values of f and ¢ at nodes 1 and 2 of the clement (local numbering) respectively
(Figurc 2).

Introducing (87) into (86), the equation (86) corresponding to the node n and considering global
nodc numbering becomes (no sum on n):

Cnfn + Hnifi = GniQi (7' = 172: <o Ty (n = 1:27' e 7m) (88)

16
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Figure 2: Boundary element

where

Hniz/ qu*dﬂ/+/ Nog*dy, G :/ le*d7+/ Ny f*dry (89)
LT Ly Lt L;

and L7 and L} are the lengths of the elements prior and posterior to the node 7. The values of
the fundamental function and its normal derivative at point n on the boundary v arc denoted by
fn and g,, respectively.

The value of ¢ can be computed using the condition:

m

"+ Hy=0 (90)

i=1
The equation (89) may be written in matrix form as

HU = GQ 1)

In the mixed problem (79) part ol the elements ol the vector U are known (the ones belonging to
the boundary 7,) and part ol the elements of the vector Q are also known (the oncs situated along
the boundary ;). Then the remaining parts of elements ol U and Q are unknowns and they can
be obtained [rom the system ol lincar equations (91) modified by algebraic manipulation, i.c.
by changing terms from one hand ol the equation to the other. This resultant system ol lincar
cquations is in general non symmetric and non positive definite, and therefore the standard
Gauss elimination procedure can not be applied.

Once the unknown parts of the vectors U and Q have been computed, the constants are obtained
by means ol integral over the domain 2. Neumann boundary values problems are treated in
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similar way as in the FEM, however contrary to the FEM in this case it is necessary to compute
the values ol the functions f (1, z3) and g(x, z3) at internal points of the domain, i.e. (z), x,) €
Q. Also, the determination of the beam constants demands integration over the cross-section
domain. In order to carry out this integration a set cquidistant internal points, i.e. a regular grid
ol points is sclected. In this way the integrals over the domain 2 arc casily computed. In the
generil case ol multiple connected domains (k-th connected domains) the internal grid points
should be checked il they belong to €L In this respect the [ollowing test has been used: A point
(x¥, x9) belongs to 2 il a ray with origin at the point intersect an odd number of times the
boundary v = v N, N ... N of . The ray may be delined by the equation:

T =a:?—+—pcosa, Ty =294 psina, p>0 (92)

7 Illustrative results

In order to validate the application of the two procedures, FEM and BEM, just discussed some
simplc cross-scctions for which theoretical values arc known in closed form will be considered,
namely a circle of unit radius R = 1, the square of sidc a = 1 and a half circle of radius R = 1.
The theoretical values for these sections are collected in Table 1.

| Beam constants |

Constant Squarc Circle Half circle L-shaped
Theor. | Num. | Theor. | Num. | Theor. | Num. Num.
A 1.000 | 1.000 | 3.142 | 3.142 | 1.570 | 1.561 6.000
I, 0.083 | 0.083 | 0.785 | 0.785 | 0.392 | 0.388 2.500
I, 0.083 | 0.083 | 0.785 | 0.785 | 0.108 | 0.108 | 10.000
H, 0. 0. 0. 0. 0. 0. 1.789
H, 0. 0. 0. 0. |-0.013[-0014| -1.342
H; 0.010 | 0.010 | 0.262 | 0.259 | 0.064 | 0.064 | 10.319
Iy 0. 0. 0. 0. 0.066 | 0.065 2493
Iy 0. 0. 0. 0. 0. 0. 15.713
v 0. 0. 0. 0. 0.007 | 0.007 0.084
I.g’ 0. 0. 0. 0. 0. 0. 0.170
J 0.140 [ 0.141 | 1.570 | 1.571 | 0.296 | 0.291 1.864
J. 0. 0. 0. 0. 0. 0.009 8.107
T, 0.232 | 0.227 | 0.664 | 0.659 | 0.746 | 0.729 2.542
Ty 0. 0. 0. 0. 0. -0.060 | 1.475
Ty, 0. 0. 0. 0. 0. -0.002 | 5.738
T,, 0.232 | 0.227 | 0.664 | 0.659 | 0.161 | 0.164 | 15444

Some illustrative beam functions arc also represented in figures 3, 4 and 5.

Thesc results arc compared in Table 1 with the ones found by application of the FEM and BEM.

18
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Figure 4: Half circular section. Shear functions 7y, 79

In the FEM models the total number of degrees of freedom (dof) used was 1,000 approximately.
In the BEM models this number was 100 and the total number of the grid points needed for the
integrals evaluation was 400 approximately. A good agreement between the results from both
methods has been reached and they also agree reasonably well with the theoretical values, as it
can be observed in Table 1. In fact, absolute differences less than 10~2 for the beam constants
and for the maximum differences between ordinates of the beam functions even smaller differ-
ences have been found. In order to reach a good agreement between theoretical and numerical
results it was observed the importance of an accurate modelling of the section geometry.

Finally, a non symmetric cross-section has been studied, namely, the section "L which dimen-
sions are shown in figure 6. The values of the constants obtained for this section are also given
in table 2.

8 Conclusions

A general beam theory has been developed in [9] using an asymptotic expansion technique.
The most well known classical beam theories, such as, Navier-Bernoulli, Timoshenko, Vlasov
and the Saint Venant torsion are included as special cases, in this general beam theory, without
using any additional hypothesis to the ones of the linear elasticity. In this way, it is possible to
obtain in the framework of this general beam theory the corresponding stiffness matrices and
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Figure 6: L-shaped scction

equivalent nodal forces of the beam and also the stress distribution over the section due to the
application of the stress resultants.

The obtained results are given in terms of a set of constants and functions to be found as so-
lutions of laplacian boundary value problems over the beam cross section and standard 1-D
boundary value problems on the coordinate z3 i.e. the beam axis along the beam length.

From the examples presented it can be concluded that any of the well known numerical methods
FEM and BEM are suitable to determine the functions and constants of the beam. Both meth-
ods are computationally efficient and accurate enough for practical structural analysis. These
methods can be applied in a systematic way to obtain the characteristics of different beam sec-
tions, either massive ones normally used in concrete beams or thin-walled sections typical in
the design of the standard rolled steel beams.
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