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Abstract 
Emotion regulation is the process that adjusts the type or 
amount of emotion when we experience an emotional situ­
ation. The aim of this study was to reveal quantitative chang­
es in brain activity during emotional information processing 
related to psychosomatic states and to determine electro­
physiological features of neuroticism. Twenty-two healthy 
subjects (mean age 25 years, 14 males and 8 females) were 
registered. Electroencephalography (EEG) was measured 
during an emotional audiovisual memory task under three 
conditions (neutral, pleasant and unpleasant sessions). We 

divided the subjects into two groups using the Cornell Med­
ical Index (CMI): (CMI-I: control group, n = 10: CMI-II, III or IV: 
neuroticism group, n = 12). We analyzed the digital EEG data 
using exact low-resolution brain electromagnetic tomogra­
phy (eLORETA) current source density (CSD) and functional 
connectivity analysis in several frequency bands (6,9, a, p, y 
and whole band). In all subjects, bilateral frontal a CSD in the 
unpleasant session increased compared to the pleasant ses­
sion, especially in the control group (p < 0.05). CSD of the 
neuroticism group was significantly higher than that of the 
control group in the full band at the amygdala and inferior 
temporal gyrus, and in the a band at the right temporal lobe 
(p < 0.05). Additionally, we found an increase in functional 
connectivity between the left insular cortex and right supe­
rior temporal gyrus in all subjects during the unpleasant ses­
sion compared to the pleasant session (p < 0.05). In this 
study, using EEG analysis, we could find a novel cortical net-



work related to brain mechanisms underlying emotion reg­
ulation. Overall findings indicate that it is possible to charac­
terize neuroticism electrophysiologically, which may serve 
asa neurophysiological marker of this personality trait. 

Introduction 

Emotional regulation refers to the neuronal process­
es in the brain that adjust the type or amount of emo­
tion when we experience a particular emotional situa­
tion [1, 2]. Since the deficits of this ability often cause 
maladjustment and psychopathology, emotion regula­
tion is of paramount importance, especially in the con­
text of a stressful environment. A working model of 
emotion regulation revealed different cortical regions 
implicated in the complex cognitive control of emotion. 
Regions involved in bottom-up emotion generation in­
cluded mainly the amygdala, whereas top-down pro­
cessing was associated mainly with prefrontal cortex ac­
tivity [3-7]. 

Other neuroimaging studies have also reported that 
several brain regions are related to emotion regulation. 
However, the results of these studies are inconsistent. It 
is well established that the amygdala plays an important 
role in evoking the emotional response to send incoming 
sensory information to other brain regions and react ap­
propriately [8, 9]. In previous studies, limbic regions, in­
cluding the amygdala, were shown to be deactivated by 
psychosocial stress [10]. On the other hand, amygdala 
activity towards negative stimuli has been found to in­
crease after psychosocial stress [ 11 ]. It is also said that the 
prefrontal cortex plays an important role in constructing 
a complicated cognitive behavior plan, in the expression 
of personality and in the adjustment of appropriate social 
actions. In addition, previous studies suggested that in­
duced frontal a activity is a marker of prefrontal cortex 
activation during an emotional task [12]. 

Neuroticism is the tendency to be in a negative state 
and constitutes a fundamental personality trait in psy­
chology. Persons high in neuroticism are those who wor­
ry too much, demonstrate high emotional reaction to 
stress and manifest depression, panic disorder or anxiety 
neurosis [13]. The extent of neuroticism is generally mea­
sured using self-report questionnaires such as the Cornell 
Medical Index (CMI) and International English Mini-
Markers. The CMI is one of the most traditional measures 
and commonly used in clinical practice. The CMI accu­
rately predicts health status including neuroticism [14]. 

Quantitative electroencephalography (qEEG) pro­
vides computerized imaging and statistical procedures to 
detect abnormal patterns in specific pathological condi­
tions, and normative features in cognitive and affective 
disorders [15]. Exact low-resolution brain electromag­
netic tomography (eLORETA) is one of the EEC analysis 
methods that visualizes the origin of brain wave activity 
obtained from scalp recordings [16]. This method is a dis­
crete, 3D distributed, linear, weighted minimum-norm 
inverse solution devised by Pascual-Mar qui et al. [16]. It 
illustrates the spread of neural activity with a 7-mm spa­
tial resolution, and, additionally, we can calculate func­
tional connectivity as an index of physiological similarity 
between brain regions. The particular weights used in 
eLORETA endow the tomography with the property of 
exact localization to test point sources, yielding images of 
current source density (CSD) with exact localization al­
beit with low spatial resolution. Many studies have dem­
onstrated the validity and reliability of the eLORETA 
method [17-19]. 

Measures of linear and nonlinear functional connec­
tivity are implemented in the eLORETA statistical pack­
age. eLORETA lagged phase synchronization', a nonlin­
ear functional connectivity method, is resistant to some 
nonphysiological artifacts such as volume conduction 
and low spatial resolution compared to classic phase 
synchronization, phase coherence and the imaginary 
component of coherence [20-22]. The phase lag index 
suggested by Stam et al. [23] is an improvement in the 
imaginary part of the coherence as it is less influenced by 
phase delay. Thus, like eLORETA, this method, which is 
often used in magnetoencephalography, also helps to 
control for nonphysiological artifacts. 

The aim of this study is to assess quantitative changes 
during emotional information processing related to psy­
chosomatic states and to determine electrophysiological 
characteristics of neuroticism. 

Subjects and Methods 

Subjects 
We recruited 22 healthy adult volunteers (14 males and 8 fe­

males; 22-45 years old). All subjects gave written informed con­
sent after receiving a detailed explanation of the experimental pur­
poses and research protocol [24, 25], 

Psychological Tests 
Cornell Medical Index 
The CMI is a personality test consisting of several question­

naires developed by K. Brodmann at Cornell University in 1949 
[26]. The 195 questions that make up the CMI health question-



Fig. 1. Schematic representation of the 
emotional audiovisual memory paradigm. 
EEG was measured under three emotional, 
audiovisual memory conditions: neutral, 
pleasant and unpleasant sessions. 
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naire are part of a detailed and comprehensive medical interview 
including the psychological aspects of medical disorders. The 
CMI is one of the most traditional measures and commonly 
used in clinical practice. The CMI accurately predicts the health 
status, including neuroticism [14]. The degree of neuroticism 
and physical instabilities were assessed in all subjects using the 
CMI. They were categorized into score I (psychosomatically 
healthy), II (psychosomatically slightly ill), III (psychosomati­
cally ill) and IV (psychosomatically severely ill, neurotic). We 
divided the subjects into two groups; the first group included 10 
subjects with CMI-I (control group) and the second group con­
sisted of 12 subjects with CMI-II, -III or -IV (neuroticism 
group). 

EEG Recording and Data Acquisition 
EEG recording was performed using a 19-channel Nihon-Ko-

hden Inc. (Tokyo, Japan) system with the electrodes positioned 
according to the international 10/20 system (i.e. Fpl, Fp2, F3, F4, 
C3, C4, P3, P4, Ol , 02 , F7, F8, T7, T8, P7, P8, Fz, Cz and Pz). The 
EEG was digitized at sampling intervals of 500 Hz, and filtered of­
fline between 1 and 60 Hz. 

EEG was measured during an emotional audiovisual memory 
task using three different conditions: neutral, pleasant and un­
pleasant sessions. The emotional audiovisual memory task re­
quired the subjects to watch some video footages for 40 s and recall 
the contents of the videos with their eyes closed. Session 1 used 
neutral stimuli such as a landscape video. Session 2 used pleasant 
stimulation such as a comedy video, while session 3 used unpleas­
ant stimuli such as a horror movie (fig. 1). 

For each subject, 150 s of artifact-free EEG data were manually 
selected. Rejected artifacts included muscle and cardiac contami­
nations or slow waves related to drowsiness. Further analyses were 
conducted by the eLORETA-KEY software package. 

EEG Source Localization Analysis, 
LORETA allows us to compute the source localization of the 

electric brain activity from scalp EEG data [27-29]. In the current 
eLORETA package, the solution space is limited to the cortical 
gray matter, corresponding to 6,239 voxels at 5 x 5 x 5 mm spatial 
resolution. Electrode coordinates were registered to the Montreal 
Neurologic Institute average MRI brain (MNI152) [30]. We per­
formed a CSD analysis in several frequency bands (6: 2-4 Hz, 
6: 4.5-7.5 Hz, a: 8-13 Hz, (3: 13.5-30 Hz, y: 30.5-60 Hz and full 
band: 2-60 Hz). 

Functional Connectivity Analysis 
For functional connectivity analysis, we created regions of 

interest, selecting all 42 Brodmann areas in each hemisphere 
provided in the eLORETA software. Linear and nonlinear 

lagged phase synchronization between pairs of Brodmann areas 
was used as a measure of functional connectivity [23, 29, 31, 
32]. Lagged phase synchronization measures the similarity of 
these signals in the frequency domain based on normalized 
(unit module) Fourier transforms. It is thought to contain only 
physiological connectivity information because it represents the 
connectivity between two signals after the instantaneous zero-
lag contribution has been excluded. In fact, zero-lag connectiv­
ity is sensitive to nonphysiological artifacts such as volume con­
duction [33, 34]. The lagged phase synchronization value was 
calculated between all pairs of regions of interest (861 connec­
tions). 

Statistical Analyses 
We compared the value of CSD and functional connectivity 

provided by eLORETA between the neuroticism group and the 
control group for each frequency band. For statistical neuroimag-
ing analysis, eLORETA applies a statistical nonparametric map­
ping method [34], and statistical differences between groups are 
assessed using Student's t test (based on Fisher's permutation 
method; threshold at the 5% probability level). In addition, to cor­
rect for multiple comparisons, a permutation test using 5,000 data 
randomizations was carried out. 

Results 

Source Localization 
We found an increase in a CSD in the frontal cortex 

bilaterally during the unpleasant session compared with 
the pleasant session. This difference was statistically sig­
nificant in the control group (p < 0.05). CSDs in the full 
band at the amygdala and inferior temporal gyrus were 
significantly higher in the neuroticism group compared 
with the control group. In addition, the neuroticism 
group also exhibited an increase in a CSD at the right 
temporal lobe (p < 0.05). No other CSD was statistically 
significant (fig. 2, 3). 

Functional Connectivity 
We found a functional connectivity increase between 

the left insular cortex and right superior temporal gyrus 
in the unpleasant session compared with the pleasant ses­
sion, specifically in the a band (p < 0.05; fig. 4). Linear and 



Fig. 2. Results of CSD analysis (unpleasant 
vs. pleasant sessions) in the a band. In all 
subjects, bilateral frontal a CSD in unpleas­
ant sessions increased compared with 
pleasant sessions, especially in the control 
group (p < 0.05). 
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nonlinear lagged phase synchronization showed exactly 
the same connectivity (fig. 4). There were no significant 
differences between other groups. 

Discussion 

In the present study, we used CSD and physiological 
linear and nonlinear connectivity analyses to identify 
quantitative changes in cortical activity during emotional 

information processing related to psychosomatic states 
and to clarify electrophysiological characteristics of neu­
roticism. We found increased bilateral frontal a CSD in 
the unpleasant session compared to the pleasant session 
in the control group. In the neuroticism group, we found 
increased CSD in the full band at the amygdala and infe­
rior temporal gyrus, as well as in the right temporal lobe 
for the a band. 

Several studies have reported that a power in the 
frontal lobe increased following unpleasant stimula-



Fig. 3. Results of CSD analysis (unpleasant 
vs. neutral sessions). CSD of the neuroti-
cism group was significantly higher than 
that of the control group in the full band at 
the amygdala and the inferior temporal gy­
rus, and in the a band at the right temporal 
lobe (p < 0.05). 
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Fig. 4. Results of connectivity analysis, 
a Left lateral view, b Coronal view from the 
front, c Axial view from the top. The sig­
nificant connection (between the left insu­
la and the right superior temporal lobe) is 
projected onto a transparent fiducial corti­
cal surface. The points to which the lines 
are connected represent the center of the 
Brodmann area mass. The red color (colors 
refer to the online version only) of the line 
indicates increased connectivity in the neu-
roticism group relative to the control 
group. 

tion. Based on those studies, frontal a oscillation may 
be related to cortical inhibition. In line with this view, 
reduced a power has been associated with increased 
prefrontal cortex activity during working memory 
performance [35-39]. Viviani et al. [40] suggested that 
unpleasant emotional stimuli reduce the activity in 
frontal executive attention areas, including the dorso­
lateral prefrontal cortex. Thus, our results suggest that 
control subjects used spontaneous emotion regulation 
in the prefrontal cortex during unpleasant stimuli. 

The functional roles of the amygdala and prefrontal 
brain regions in emotional processing have already been 
reported in several studies. The amygdala receives input 
during negative events from cortical brain regions, par­
ticularly the medial prefrontal cortex [8]. This region is 
thought to be related to emotional conflicts and regula­
tion of autonomic and affective responses during fear 
conditioning. The left amygdala has been linked to social 
anxiety, obsessive compulsive disorder and posttraumat­
ic stress [41]. Other studies have reported that hyperac­
tivity in the amygdala was observed when patients saw 
unpleasant stimuli such as threatening faces [42]. They 
noted that the more severe the general anxiety disorder 
the greater the response in the amygdala observed in the 
patients. 

Further, we found a functional connectivity increase 
between the left insular cortex and the right superior 
temporal gyrus during unpleasant stimuli compared to 
pleasant stimuli in the a band. The insular cortex is an 
important multisensory integration area and mediates 

interpretation of sensory information from the body. 
This area is also involved in emotion regulation, visceral 
sensory perception, self-awareness, cognitive function­
ing and shared feeling. Particularly, the anterior insular 
cortex is reported to be associated with emotional feel­
ings such as anger, fear, sadness and happiness [43]. On 
the other hand, the posterior insula is thought to be as­
sociated with auditory visual function [44]. The insula 
sends information to other limbic brain regions such as 
the amygdala, the ventral striatum and the orbitofrontal 
cortex [45]. The superior temporal gyrus is home to the 
primary auditory cortex for sound perception as well as 
the region for language comprehension and processing 
[46]. In the present study, we found that functional con­
nectivity analysis suggests there is a link in information 
processing between the superior temporal gyrus and the 
insular cortex. 

Some limitations of this study are acknowledged. First, 
unfortunately, the sample size was small. A larger study 
cohort might provide more significant results. However, 
based on the properties of lagged phase synchronization 
and because correction for multiple comparisons was per­
formed, the findings obtained are thought to reflect true 
physiological connectivity and CSD. Secondly, the two 
groups included in our study (individuals with neuroti-
cism and controls) are both healthy subjects. Investigation 
in neurosis patients might be able to clarify whether these 
connectivity changes represent state or trait markers of 
neurosis. Third, LORETA has low spatial resolution. Al­
though this might make it difficult to visualize the activity 



of really small and deep structures, such as the amygdala, 
Moont et al. [47] reported activation of the amygdala in 
their EEG study about the conditioned pain modulation 
effect using LORETA analysis. We suggest that LORETA 
also could depict CSD in the amygdala in our study. 

In summary, through the use of eLORETA analysis, 
we found a novel cortical network likely related to brain 
mechanisms underlying emotion regulation. This find­
ing suggests that it is possible to characterize neuroticism 

electrophysiologically, which may serve as a neurophys-
iological marker of this personality trait. Future studies 
are needed to shed more light on this important matter. 
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