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A B S T R A C T 

Multi-label classification problems require each instance to be assigned a subset of a defined set of labels. This problem is equivalent to 
finding a multi-valued decisión function that predicts a vector of binary classes. In this paper we study the decisión boundaries of two 
widely used approaches for building multi-label classifiers, when Bayesian network-augmented naive Bayes classifiers are used as base 
models: Binary relevance method and chain classifiers. In particular extending previous single-label results to multi-label chain classifiers, 
we find polynomial expressions for the multi-valued decisión functions associated with these methods. We prove upper boundings on 
the expressive power of both methods and we prove that chain classifiers provide a more expressive model than the binary relevance 
method. 

1. Introduction 

We consider a multi-label classification problem [24,20] over categorical predictors, that is, mapping every instance 
x = ( x i , . . . , xn) to a subset of h labels: 

= x • • • x íln Y Q y = { y i , . . . , yti], 

where Í2¡ e l , |Í2¡| = m¡ < oo. As usual the problem could be transformed into a multi-dimensional binary classification 
problem, that is, finding an h-valued decisión function f that maps every instance of n predictor variables x to a vector of h 
binary valúes c = ( c i , . . . , cj,) e {—1, + \}h : 

f : ñ = í2i x ••• x Í2n í - 1 , + 1 } ' 1 

( x i , . . . , x n ) h» ( c i , . . . , c h ) , 

where c¡ = + 1 ( — 1) means that the ith label is present (absent) in the predicted label subset Y. We consider the predictor 
variables X^,...,Xn and the binary classes C¡ e {—1,-1-1} as categorical random variables. Real examples include classifi-
cation of texts into different categories [8], diagnosis of múltiple diseases from common symptoms and identification of 
múltiple biological gene functions [3,23], 

The easiest way to approach a multi-label classification problem is to divide it into a set of single-label classification 
problems (equivalent to binary classification problems). Each binary problem is then solved independently and thus h binary 
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Fig. 1. Naive Bayes classifler s t ructure in Example 1. 

classifiers, one for each class variable C¡, are built. Each binary classifler is learned from predictor variables and C¡ data 
only. At the end the results are combined to form multi-label prediction. Known as binary relevance, this method is easily 
implementable, has low computational complexity and is fully parallelizable. Therefore it is scalable to a large number of 
classes. However, it completely ignores dependencies among labels and generally does not represent the most likely set of 
labels. 

Chain classifiers [18,6] relax the independence assumption by iteratively adding class dependencies in the binary rel-
evance scheme. The fcth classifler in the chain predicts class Q from X i , . . . , X„, C j , . . . , Sucar et al. [19] employed 
naive Bayes within chain classifiers. 

In this paper, we study differences in the expressive power of these two methods when Bayesian network (BN) classi-
fiers [1] are used. Expressive power of a classifler over categorical variables could be seen simply as the number of distinct 
decisión functions that a given type of classifler induces. 

In Varando et al. [22] the expressive power of one-dimensional binary, or one-label classifiers has been studied. In 
particular, the results of Minsky [11] and Peot [14] about the decisión boundary of naive Bayes have been extended to a 
broader class of Bayesian network classifiers. A polynomial representation of the decisión functions induced by Bayesian 
network-augmented naive Bayes classifler is described, and in absence of V-structures a stronger characterization is shown 
to hold. In this paper, we extend these results to multi-label classifiers. Moreover, we suggest some theoretical reasons 
why the simple binary relevance method can perform poorly when relationships among labels exist, and we prove that 
chain classifiers provide more expressive models. A broader chain classifiers class than in Varando et al. [21] is considered 
and studied extensively and a bounding on the expressive power of those models is proved. Moreover we present novel 
illustrative examples both about the one-dimensional results and about multi-label ones. 

In Section 2 we review previous work on one-dimensional binary classifiers. We describe the binary relevance method 
and compute its expressive power in Section 3. We analyse chain classifiers in Section 4. In Section 5 we compare the two 
methods, proving that actually chain classifiers are more expressive than binary relevance and in Section 6 we present our 
conclusions and some ideas for future research. 

2. Expressive power of one-dimensional BN classifiers 

We report here previous results on the decisión boundary and expressive power of one-label, or equivalently one-
dimensional binary, BN classifiers [22], We restrict to binary classifler and we can assume that the class variables takes 
its valúes on {—1, +1}. Classifiers where the class variable takes more than two valúes are more complex to study, the as-
sociated decisión functions could be seen as combinations of binary decisión functions and thus some of the results of this 
section could probably be extended. In the present work we prefer to remain in the binary case. Moreover binary classes 
are the variables needed to define multi-label classification problems. 

In particular, we look at Bayesian network-augmented naive Bayes (BAN) classifiers [7], 
BAN classifiers are Bayesian network classifiers where the class variable C is assumed to be a parent of every predictor 

and the predictor sub-graph Q can be a general BN. We observe that every BAN classifler is determined by the predictor 
sub-graph Q, because the class variable C is superposed as parent of every variable of Q. As we focus only on Bayesian 
network, we will use the word graph to refer only to a directed acyclic graph, the structure of a Bayesian network (For 
general notations see Table 2). 

For every BAN classifler, the induced decisión function is 

f%AN(xu...,xn) = a r g m a x P(C = c, X j = X l , . . . , X „ =xn), ( 1 ) 
c e { - l , + l } 

and P(C = c, X\ = x\,..., X„ = xn) is factorized according to BN theory [13] as 

n 

P (C = C) [ ~ [ P ( X ¡ = XI |C = C, Xpa( i ) = X p a f f l ) , 

i=1 

where Xpa(¡) are the parents of X¡ in the predictor sub-graph Q. Moreover, pa(¡) denotes the set of indexes defining the 
parents of X¡ that are not C and M¡ = xsepa(¡){l> • • • > rns}, the set of possible configurations of Xpa(¡). 

Example 1. Consider a naive Bayes classifler (structure in Fig. 1), that is, the simplest BAN, over predictor variables X\ e 
{0, 1, 2}, X2 e {0,1}. In this case the joint probability over (C, Xi, X2) is factorized as 



Table 1 
Conditional probability tables for X] and X2 in Example 1. 

P(X, |C) X, P(X 2 |C) x 2 X, 

0 1 2 

0.3 0.3 0.4 
0.1 0.7 0.2 

- 1 0.3 0.3 0.4 - 1 0.5 0.5 
+ 1 0.1 0.7 0.2 + 1 0.1 0.9 

0 1 

P (C = C, X! = X! , X2 = X 2 ) = P (C = c) P (X! = X! IC = c) P (X2 = x21C = c). 

We consider a uniform prior probability over the class P(C = +1) = 0.5, P(C = —1) = 0.5, and conditional probabilities 
tables as in Table 1. 

The induced decisión function fNB(xi,X2), defined in Equation (1), could be computed easily and it is exactly: 

NB í - 1 i f ( x i , x 2 ) G { ( 0 , 0 ) , ( 0 , l ) , ( 2 , 0 ) , ( 2 , l ) } / ' ™ ( x i , x 2 ) = , 
' + 1 i f ( x 1 , x 2 ) G { ( l , 0 ) , ( l , l ) } 

We describe decisión functions through polynomial representations, in particular we use the following concept [12]: 

Deflnition 1. Given a decisión function / : fi {—1, +1}, where fi c R", |S2| < oo and r : R" i-> R is a polynomial, we say 
that r sign-represents / if 

/ (x) = sgn(r(x)) for every x e ñ . 

Moreover, given a set of polynomials V, we denote by sgn(V) the set of decisión functions that are sign-representable by 
polynomials in V and by { - l , + l } ñ , the set of all 2 ' ñ ' decisión functions over fi. 

Where the sign function sgn(t) is defined as, 

+ 1 if t > 0 
sgn(t) = „ 

' - 1 i f t < 0 . 

Example 2. We consider ñ = {—1, 2} x {0, 4} and the decisión function over fi 

+ 1 i f ( x ! , x 2 ) = ( - l , 0 ) , ( 2 , 0 ) , ( 2 , 4 ) 
/ ( X l , x 2 ) = , 

l - l i f ( X ! , X 2 ) = ( - l , 4 ) . 

We have that the polynomial r(x\, x2) = 2x^ — x2 + 1 sign-represents / over fi, that is, 

r(—1, 0) = 2 > 0, r(2, 0) = 9 > 0, r(2, 4) = 5 > 0 and r ( - l , 4) = - 1 < 0. 

For every predictor variable X¡ e = j ^ 1 , . . . , }, we define the Lagrange basis polynomials over 

(x — tjk') 
1 (x) = J~J —-. '— for every j = 1 , . . . , m¡ and x e R. (2) 

k-Lj ~ ) 

Example 3. The Lagrange basis polynomials over ñ = {0,1, 2, 3} are 

Q = (x — l ) (x — 2)(x — 3) = (x — l ) ( x — 2)(x — 3) 
1 (0 — 1)(0 — 2)(0 — 3) - 6 

x(x-2)(x-3) x ( x - 2 ) ( x - 3 ) 

£ f ( x ) = 

£%(x) = 

1 ( 1 - 2)(1 - 3 ) 2 

x(x — l ) (x - 3 ) x(x — l ) (x- 3) 

2 ( 2 - 1)(2 - 3 ) - 2 

x(x — l ) (x - 2 ) x(x — l ) (x- 2) 

3 (3 — 1) (3 — 2) 

We have the following result, that describes in polynomial form the decisión function induced by a BAN classifier [22]: 



O 1 2 

X1 

Fig. 2. Decisión boundary of NB classifler in Example 1. 

Lemma 1. / / f is the decisión function induced by a BAN classifler for a binary classification problem with n categórical predictor 
variables {X¡ e c 1 , |Í2¡| = m¡}"=1, then there exists a polynomial oftheform 

n m¡ 

i=1 j=1 k e M ¡ sepa(¡) 

that sign-represents f , where we wrife /S¡ ( j | k) risepa© ^fcs (xs) = Pi (J) when a variable X¡ does not have parents different 

from C, that is, pa(¡) = 0. 

In particular when the prior probability over the class is uniform, the coefficients /S¡(j|k) could be chosen as 

, ,'P(Xj = $/¡Xs = Vs e pa(¿), C = + 1 ) \ 
A ( j | k ) = ln T , (3) 

P(X¡ = £/)xs = Vs e pa(í), C = - 1 ) / ' 

where k = {ks) (i), ks e{í,... ,ms}. 

Example 4. We show now how to compute the polynomial that sign-represents the decisión function of NB in Example 1, 
more examples could be found in Varando et al. [22], For NB classifiers Equation (3) reduces to the more simpler form 

AG') = ln 
P(Xi = |C = + 1 ) 

(4) 
>P(X i = ^ / |C = - l ) / 

since the NB predictors sub-graph has no connections among the nodes. Thus 

p(x1,x2) = (XI) + fíx(2)l^ (xx) + 

where í " 1 , 1 , í " 1 are the Lagrange basis polynomials over = {0,1, 2} and ¿ f 2 , l j 2 are those over Q.2 = {0,1}. Using 
the definition of /3¡(j) given in (4) and the valúes of Table 1 we obtain, 

p(x1,x2) = ln ( H j ( X l ) + ^ j ( X l ) + ^ j ( x j ) 

0.1 

= i n ( x i ~ l ) ( x i ~ 2 ) l n xi ( x i - 2 ) / 0 2 \ x i ( x i ~ l ) 

\ 0 . 3 / 2 n \ 0 . 3 y - 1 n \ 0 . 4 y 2 

\ 0.5 / - 1 \ 0.5 / 1 

0.9 

In Fig. 2 the decisión boundary correspondent to p(x\,x2) is shown. 



Definición 2. Given a directed acyclic graph Q, a V-structure [5] in Q is a triplet of nodes Xi, X2, X3 in Q such that both 
Xi and X2 are parents of X3 and Xi, X2 are not directly connected in Q. 

When the predictor sub-graph Q does not contain V-structures, the inverse implication of Lemma 1 is shown to be true 
and the following theorem [22] holds. 

Theorem 2. Let Q be a directed acyclic graph with nodes X¡, i e {1, 2 , . . . , n} and f a decisión function over categorical predictor vari-

ables X¡ g = {t¡¡,..., £¡m'}. Assume that Q does not contain V -structures, then we have that f is sign-represented by a polynomial 

oftheform 

n m¡ 

= E E e f E & ( j n f t s ^ 
i=1 j = 1 k e M ¡ s e p a ( ¡ ) 

ifand only 1f f is induced by a BAN classifier whose predictor sub-graph is Q. 

Theorem 2 applies in a lot of practical cases as naive Bayes (NB) classifier [11], tree augmented naive Bayes (TAN) classi-
fier [7] and super-parent one-dependence-estimator (SPODE) classifier [9], because the corresponding predictor sub-graphs 
do not contain V-structures. 

Theorem 2 is useful because it completely characterizes the set of decisión functions induced by BAN with a given 
structures Q with no V-structures. In particular, the theorem implies that when Q does not contain V-structures the family 
of polynomials Vg, defined as 

In m¡ 1 

= EE £ f ( X i ) E ftülk) n e k s
s ^

 sx- Aülk) G R (5) 
i=1 j=1 k e M ¡ s e p a ( ¡ ) J 

sign-represents the set of decisión functions induced by BAN classifiers, that is, sgn(Vg) is exactly the set of decisión 

functions induced by BAN classifiers whose predictor sub-graph is Q. 

Remark 1. In the simplest NB classifier case, that is, when the predictor sub-graph Q is a graph without any are, we have 

that 

I n m¡ 1 

r(x) = E E h (*i) s.t. ft ( j ) e R | 

is exactly the set of polynomials used to sign-represent decisión functions induced by NB classifiers as in Theorem 2. 

The set Vg, when Q does not contain V-structure, is a vectorial space of dimensión 

n 

e ( m ¡ - ! ) n + 1 

¡ = 1 \ s e p a ( i ) / 

As in Varando et al. [22], it is useful to consider spaces Vg as subspaces of the vector space of polynomials that can 
interpólate every function over fi. That is, the space 

VFBN = E S"L G R ' 

IfceM J 
where FBN stands for full Bayesian classifier, M = x " = 1 { l , . . . ,m¡} and ák(x) = ÜíLi a r e ^ e polynomials that inter-

pólate the Dirac's delta over fi, that is, 

V k e M , ák(x) = n ^ ' ( x i ) = , 

Observe that in this case VFBN =Vg, where Q is a full Bayesian network (FBN) over the predictors, it is a Bayesian network 
with the máximum possible number of ares. The polynomials {ák(x)íkeM form a basis of VFBN (we show an example of the 
basis construction in Example 5). Therefore the dimensión of VFBN is equal to ]~~["= u m¡, where m¡ is the number of valúes 
the ith predictor assumes. 

Obviously we have that for every Bayesian network structure Q over predictor variables X\,..., X„, 

VNB c Vg c VFBN, 



and 

sgn(VNB) c sgn(Vg) c sgn(VFBN) = { - 1 , + 1 . 

We can now define the interpolating polynomial of every function over fi as follows, 

Definición 3. Given a function / over fi = x • • • x Qn, with = {t¡¡ , . . . , t-™'}, we define the interpolating polynomial 

k e M 

where M = x " = 1 { l , . . . , m¡}. And we have Jtf(x) = f(x) for every x e í í . 

Polynomial it¡ is just a way to see function / as an element of the vectorial space VFBN-

Example 5. We show here an example of interpolating polynomial, we consider / the following decisión function over 
ñ = {0, l } x { 4 , 6}, 

f ( x I " 1 i f ( x i , x 2 ) G { ( 0 , 4 ) , ( l , 6 ) } 

J(x1,x2) | + i ¡f x2) G {(0, 6), (1, 4)}. 

The Lagrange basis over {0,1} is composed by, 

4° ' 1 )(X 1) = 1 - X ! 4 0 ' 1 } ( X 1 ) = X 1 , 

and the Lagrange basis over {4, 6} is composed by, 

Thus the basis of VFBN, {ák(x)}keM i n this case is formed by the following four polynomials in (xi,X2). 

s ,{0,1}, ,,{4.6}, , ( 1 - X i ) ( 6 - X 2 ) (1 — Xi) (x2 — 4) 
5(i,i) = í\ '(XÍ)¿\ '(x2) = 5(i,2) = , 

x i (6 — x2) x\(x2 — 4) 
"(2,1) = 2 "(2,2) = 2 • 

We now compute the interpolating polynomial directly with Definition 5, 

7 r / (x i , x 2 ) = / ( 0 , 4 ) 5 ! , ! + / (O, 6)5i,2 + / ( l , 4)52,i + / O , 6)á2,2 

_ (2xi - 1 ) ( 1 0 - 2 x 2 ) 

2 

As we can see from substitution, itf = f over fi. 

Remark 2. We observe that if / : fí {—1, +1} is a decisión function, obviously the interpolating polynomial jtf sign-
represents / . But there exist a lot of polynomials that sign-represent / without interpolating it over fi. A polynomial 
sign-represents a decisión function if it agrees on the sign of / over fi, while interpolating refers to actually having the 
same valúes over the points of fi. For example consider p e Vm and / = sgn(p), thus / is induced by a naive Bayes classi-
fler. Consider now j t f . Could it be interesting to know if 7Tf e Vm7 This question is important when studying the expressive 
power of chain classifiers, and in Lemma 6 we will answer it completely. 

Thanks to Theorem 2 it is possible to place an upper bound (Corollary 3) on the number of decisión functions repre-
sentaba by BAN classifiers without V-structures [22], 

Corollary 3. Consider a BAN classifler over predictor variables X¡ e ñ ¡ , | | = m¡ for every i = 1 , . . . , n. Moreover suppose that the 
predictor sub-graph Q does not contain V -structures. Then we have 

\sgn(Vg)\<C(M, d) = 2 j 2 
k=0 

4,-1 /M — 1 

where d = ((m¡ - 1) üsepaO) ms) + 1 and M = n"=i m¡. 



Naive Bayes 3-dependencies BAN 
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Fig.3. Total number of decisión functions over n binary predictors (solid grey) and the bounding C(M,d) of Corollary 3 (dashed black) for NB classifiers (a) 

and for 3-dependence BAN classifiers (b). 

Table 2 
Table of notations. 

X¡ categorical predictor variable 

C,Ci binary class variable 

Qi i - th predictor valúes space 

m¡ cardinality of íl¡ 

j - th e lement of £2¡ 

SI x j L j Q j predictors space 
M x " _ ] { l , . . . , m¡) indexes of predictors space SI 
Xpa(¡) vector of parents of X¡ 

pa(i) subset of ( 1 , . . . , n) relative to the parents of X¡ 

M¡ XsEpaffifl, • • •, m s} conf iguraron of Xp,© 
G,GÍ,HÍ predictor sub-graph 

Vm space of polynomials sign-representing NB classifiers 

Vg space of polynomials sign-representing BAN with sub-graph Q 

'VFBN space of polynomials sign-representing all classifiers over SI 

if j - th Lagrange polynomial over ÍL¡ 

Sk k - th polynomial interpolating the Dirac's delta over SI 
7TF polynomial interpolating / over SI 

Remark 3. If SI = ñ i x • • • x ü„, we observe that |{—1, + l } ñ | = 2 | ñ = 2M . Thus Corollary 3 implies that in the case of the 
NB classifier the quotient of the number of decisión functions representable by NB classifiers over 2M becomes vanishingly 
small as the number n of predictors increase. Fig. 3a shows the total number of decisión functions, 2 ' ñ (solid grey) and 
the bounding of Corollary 3 for NB classifiers with n binary predictors, C(M,d) (dashed black). Note that in this case 
d = Yu=i(mi — 1) + 1 = n + 1. Observing that the scale of the graph is logarithmic, the graph shows that the number of 
decisión functions induced by NB classifiers is small compared with all possible decisión functions over fi. 

Remark 3 could be extended to every type of BAN classifier, such that for every variable X¡, the number of parents is 
bounded (Corollary 19 in Varando et al. [22]), that is, |pa(i)| < I(. Fig. 3b shows the total number of decisión functions (solid 
grey) and the bounding of Corollary 3 (dashed black) for a BAN structure such that |pa(i)| < 3. 

Remark 4. When the predictor sub-graph Q of a BAN classifier contains V-structures, Lemma 1 is still valid and there exists 
a polynomial sign-representing the induced decisión function. The problem is that the associated family of polynomials is 
not a linear space as in (5), thus is not possible to employ the same techniques as in Varando et al. [22] and thus prove the 
bounding in Corollary 3. 

3. BAN binary relevance classifiers 

We consider the binary relevance method built upon BAN classifiers as base models, that is, for every class variable C¡ 
we learn a BAN classifier with predictor sub-graph G¡. Thus we actually transform our multi-label problem into a number 
of single binary-class problems. The results of last section are then straightforwardly applied. 



Fig. 4. Two NB classifiers in Example 6. 

Table 3 
Conditional probability tables in Example 6 for the NB of Cj. 

P(X,|C,) X, P ( X 2 | C , ) 

Ci 
- 1 
+1 

0.25 

0.5 

0.75 

0.5 
Ci 

- 1 
+ 1 

X2 

2 3 4 

0.1 0.7 0.2 

0.3 0.5 0.2 

0 

From Lemma 1 it follows that if f = (f-¡(x), f2(x),..., fh(x)) is the h-valued decisión function induced by the h BAN 
classifiers, then there exist 

such that /fc(x) =sgn(p¡c(x)) for every fe e {1 , . . . , hj. We have then that the multi-valued decisión function has a polynomial 
representation as, 

f(x) = (sgn(p\ ( x ) ) , . . . , sgn(p¡j(x))). 

When we also assume that the predictor sub-graphs Gi,--.,Gh contain no V-structures, we have that, for every sin-
gle binary-class problem, Theorem 2 apply. Thus, in Lemma 4, we bound the number of multi-valued decisión functions 
representable by the BAN binary relevance method, when the predictor sub-graphs {ft;}j!=1 do not contain V-structures. 

Lemma 4. Consider h BAN classifiers to predict h binary classes. Suppose that the predictor sub-graphs are Gi, • • •, Gh respectively and 
they contain no V-structures. We have that N (Gi, • • •, Gh), the number ofh-valued decisión functions representable by the BAN binary 
relevance method, satisfies 

h 

k=1 

where C(M, d) = 2 YÍ=0 '). dk = E"=i ((m¡ " 1) n s e p a t ( ¡ ) + 1. Pafc(0 is the set ° f x i Parents in Gk and M = JJti m¡-

Proof. The proof is a straightforward application of Corollary 3. • 

Remark 5. We consider now, for visualization purposes, a simpler versión of the above models. In particular when the 
predictors sub-graphs are all the same, that is, Gj = G• The total number of h-valued decisión functions over n categorical 
predictors is 2 h n m ¡ = 2 h M . Then the fraction of h-valued decisión functions representable by the BAN binary relevance 
method is bounded by 

N (Gi, •••, Gh) (C(M,d)\h 

2hM - l 2 m ) 

Thus, as in Remark 3, we have that if we fix the structure of the predictor sub-graph, and it does not contain V-structures, 
the number of representable multi-valued decisión functions becomes vanishingly small as the number of predictors in-
crease. Moreover, using the binary relevance method, the speed at which the ratio between representable multi-valued 
decisión functions and the total number of multi-valued decisión functions drops to zero, is exponential in h, the number 
of classes. 

Example 6. We consider two binary classes Ci, C2 and two predictor variables Xi e {0, 1} and X2 e {2,3,4}. Using the 
binary relevance method we build two independent NB classifiers, see Fig. 4. Next, we list the conditional probability tables 
for both classifiers (Tables 3 and 4). Moreover, we consider uniform prior probabilities for both classes C\ and C2. 

From the representation of Theorem 2 we have that there exist two polynomials p\, p2 that sign-represent the decisión 
functions induced by the two NB classifiers 



Table 4 
Conditional probability tables in Example 6 for the NB of C2 . 

P ( X , | C 2 ) 
X, 

P(X2\c2) 
X2 

P ( X , | C 2 ) 
0 1 

P(X2\c2) 
2 3 4 

;¡ 0.4 

0.7 

0.6 

0.3 ;¡ 0.6 

0.1 

0.2 

0.1 

0.2 

0.8 

(+1 +1) ( - Í . D (+1 

-1) ^ ^ ^ H -1) 

(+1 -1) (+1 - D 

X1 

Fig. 5. Decisión boundar ies for the two NB classifiers in Example 6, black for Ci and grey for C2 . The valué of the predicted classes is reported. 

/ 0.5 \ Xj — 1 / 0.5 \ X\ 
P i ( x i , x 2 ) = n - + n — 
y ; \ 0 . 2 5 / - 1 \ 0 . 7 5 / 1 

+ ^ / 0 3 \ (x2 - 3) (x 2 - 4) + ^ (x2 - 2)(x2 - 4) 

0.7 - 1 

and 

/ 0 . 2 \ ( X 2 - 2 ) ( X 2 - 3 ) 

0 . 2 / 2 

, , / 0 . 7 \ x i - l , / 0 . 3 \ x\ 
p2(xi,x2)= n — — h n — — y ; V 0 - 4 / - 1 V o - 6 / 1 

, , ( 0 - 1 \ ( x 2 - 3 ) ( X 2 - 4 ) 
+ l n ( 0 6 ) 2 + h l 

/ 0 . 8 \ (x2 — 2)(x 2 — 3) 
+ l n 0 2 2 ' 

0.1 \ (x2 - 2)(x2 - 4) 

0.2 / - 1 

We have that 

f ( x ) = ^sgn (p i (x)), sgn (p 2 (x)) 

is the bi-valued decisión function that predicts Ci, C2 from Xi, X2 . Fig. 5 shows the decisión boundaries of the two classi-
fiers (black for C\ and grey for C2). We observe that the predictor space fi = {0,1} x {2, 3, 4} is partitioned into four subsets 
corresponding to the four different predictions of the two binary classes. The valué of the respective predicted class changes 
when one of the decisión boundaries is crossed. 

4. BAN chain classifiers 

The easiest way to relax the strong independence assumption of the binary relevance method is to gradually add the 
predicted classes to the predictors. Specifically, suppose that we have to predict h binary classes C\,..., C¡¡ from n predictor 
variables X\,..., Xn. We consider h BAN classifiers such that the fcth BAN classifier predicts Q from the variables 

X j , . . . , Xn, C i , . . . , Cj¡_i. 

In the predicting phase we will then use the predictor valúes and the previous predicted classes valúes £ i , . . . , c ¡ c - i to 
predict class Q . From Lemma 1 we have that there exist h polynomials p i , . . •, Ph 



Fig. 6. Example of naive BAN chain classifler with three classes and three predictor variables. 

pk(X, C i , . . . , C f c _ ! ) : ] 

Pk G Vgk, 

such that, if f = ( / i , . . . , fh) is the multi-valued decisión function associated with a chain classifler we have that, 

fk(x) = sgn(pk(x, / i ( x ) , . . . , fk_i (x))) = sgn(pk(x, nh ( x ) , . . . , 7tfk J (x)) (6) 

where Qk is the predictor sub-graph related to the fcth BAN classifler over Xi,..., Xn,Ci,..., Ck-i. 
From now on we will focus on a particular and simpler form of BAN chain classifler, where the previous predicted 

classes are present in a naive way in the predictor sub-graph. That is, C i , . . . , Ck~\ are not connected among them neither 
with other predictors in the sub-graph Qk. We refer to this kind of chain classifler as naive BAN chain classifler, we show an 
example in Fig. 6. As we will see those naive models have a more simpler representation of multi-valued decisión functions 
and permit a deeper analysis. We observe that more complex chain models could be addressed in a similar way, using 
the interpolating polynomials to represent the decisión functions of the already predicted classes. In more complex model 
however the analysis of the decisión function is more difficult and not all the following results can be extended directly. 

For a naive BAN chain classifler for C\,..., C/,, over X\,..., Xn we denote by Hk the sub-graph of the fc-th BAN restricted 
to the original predictors X\,..., Xn. 

Since classes C¡ are binary, expanding Equation (6) we obtain the following sign-representation of the fc-th decisión 
function in a naive BAN chain classifler: 

fk(x) = sgn(pk(x, 7th ( x ) , . . . , 7tfk ] (x)) 

( n m¡ 

J2J2lf ̂  J2 O t i l i o n e k s s ^ i=1 j=1 keM¡ s e p a © 

k-1 \ 

V l f l . - r - i u í - 1 - ^ 

= sgn ^ ( x ) + £ [ f t ( - l ) ¿ l 1 , + 1 } ( C j ) + P j ( + V £ í + 1
l + 1 > ( c j ) ] J , 

where qk e Vuk, ¿j = f j ( x ) = itf¡(x) is the predicted valué of the previous classifler expressed by the interpolating poly-

nomial as a function of x, f¿^'+Ví(c) = and ¿ ^ ' ^ ( c ) = ^ are the Lagrange basis polynomials over {—1,-1-1} and 

fij(c) = ln (p (c j Ic ¡Q=- i ) ) - R e a r r a n g i n g the terms in the sum we obtain that the following polynomial sign-represents f k , 

k-l 

qk(x) = qk(x) + J2 ( a i 7 r / j W + b ) ) ' (7) 

J=i 

where f¡ are the decisión functions of the previous predicted class in the chain, qk is the polynomial related to the sub-
graph H k as in Theorem 2 and 

1 / P(Cj = + 1 \Ck = + l ) P ( C j = —1 \Ck = —1) 
a¡ = - ln ' 

b ¡ = - ln 1 2 

2 \P( Cj = +11 Ck = - l ) P ( C j = - 1 1 Ck = + 1 ) 

1 / P(Cj = + 1 \Ck = + l ) P ( C j = —1 \Ck = + 1 ) \ 

p(Cj = + i I ck = —i)P(Cj = - i I ck = - 1 ) 7 

(8) 

O) 



Observe that we can omit constants b¡ in Equation (7) if analysing the expressive power. In fact constants could be 
included in the polynomial q¡¿ using elementary properties of Lagrange basis polynomials, see Varando et al. [22], The 
following lemma describes the set of decisión functions induced by the fcth step of the naive BAN chain classifier. 

Lemma 5. Consider a multi-label classification problem over predictors Xi, ..., Xn and a naive BAN chain classifier with predictor 
sub-graphs H\,... ,Ht¡ for classes ordered as C j , . . . , Cj,. Assume that the predictor sub graphs do not contains V-structures. For 
every k e {2 , . . . , h} we have that, if f i , . . . , fk-\ are the decisión functions for C\,..., \ respective/y, then the following set of 
polynomials sign-represent every decisión function for class Q, 

where j t / , ,..., i t a r e the interpolating polynomials, < ... > denotes the span of the included vectors and the sum is intended as 
the sum oftwo vectorial space, that is, the vectorial space which includes all the possible sum of elements ofthe two spaces, Vuk and 
< j t h , . . . , 7 t f k ^ > . 

Proof. The proof of the result is just an application of Theorem 2 and Equation (7). • 

We have furthermore, that the set sgn (Vuk+ < x f-¡ > • • • > 7 1 / n > ) ¡ s equal to the set of decisión functions representable 
by the fc-th BAN classifier of the naive BAN chain classifier if the graphs V.k do not contain V-structures. Intuitively, from 
an expressive-power point of view, we have the addition of the previous predicted classes in the fcth step of a naive BAN 
chain classifier being the equivalent to the enrichment of the space of polynomials Vuk, related to the original predictors, 
by a subspace generated by the interpolating polynomial of the previous induced decisión functions. To analyse if and how 
the enlarged space is indeed a bigger space, in other words, that it has a grater dimensión, we have to understand when 
an interpolating polynomial jtf does not belong to a polynomial space of the type Vg for some graph Q. Thus, in this case, 
adding < i t ¡ > to Vg will actually increase the dimensión. 

First of all we define the set of relevant variables for a given decisión function. 

Definition 4. Given a decisión function 

f ( x i , . . . , xn): ñ = Í2i x • • • x Qn { - 1 , + 1 } 

we say that a variable X¡ is irrelevant for / if 

/ (Xi , . . . , X n ) = g(X_i) = g(Xi, . . . , ? ( ;_! , X i + 1 , ...,X„) V(x1,...,xn) G ñ , 

where we denote with x_¡ the (n — 1) dimensional vector obtained from x by eliminating the í-th component (in general 
x_/ will denote the vector obtained eliminating the components indexed by /). A variable is said to be relevant for / if it is 
not irrelevant, and we indícate with X ( f ) the set of relevant variables for / . 

As we will see relevant variables are important in order to determine if the interpolating polynomial of a given decisión 
function belongs or not to some polynomial space. In real applications the task of finding relevant variables of a decisión 
function is computationally expensive and moreover in reality we usually know just an estimation of a decisión function or 
its valué on a set of random points. The presented analysis is thus intended as a theoretical analysis. 

Example 7. We show some example of decisión functions and their respective set of relevant variables. 

1. If f\ is a decisión function over {0, 1, 2} x {—3, —2}, such that 

Then obviously / i (x i ,x2) = g ( x i ) , where g(x\) = —1 if x\ = 0 and + 1 otherwise. Thus is irrelevant for / and 
X ( f í ) = { X í } . 

2. If f2 is the xor-function over {0, 1} x {0,1}, defined as follows 

/ i ( x i , x 2 ) 
- 1 if ( x j , x 2 ) = (0, —3) or (0, —2) 

+ 1 otherwise. 

- 1 if ( x j , x 2 ) = (0, 0) or (1 ,1) 

+ 1 i f ( x i , x 2 ) = ( 0 , l ) o r ( l , 0 ) . 

Then X ( / 2 ) = {Xi, X2} and / 2 do not have irrelevant variables. 
3. If f3 is the function over {0,1} x {0,1} such that, 

Then also in this case X( f3 ) = {Xi, X2}. 



We can now state the following result about the interpolating polynomial of decisión functions. 

Lemma 6. Consider, for a graph Q without V -structures, and categorical predictors X\,..., Xn, the space of polynomials Vg defined 
in (5). For every decisión function f we have that, 

Jtf eVg Variables X ( f ) are completely connected in Q, 

where a set of variables is said to be completely connected in graph Q iffor every couple of variables in the set, they are in a parent-child 
relationship in the graph Q. In otherwords, itis notpossible to add any ares among this set of variables respecting the acyclic property 
of the graph. 

Proof. If the relevant variables for / are completely connected in the graph Q, then we have that the polynomials in Vg 
could interpólate, over fi any function of variables in X ( f ) only. In particular, there exists a polynomial p(x) e Vg such 
that / ( x ) = p(x), V x e í í and thus it¡ e Vg. 

To prove the other implication we observe that if two variable X¡ and X¡ are not directly connected in the graph Q, each 
polynomial p(x) e Vg could be split into 

P(X) = p i (X_{ U } , X¡) + P2 (X_{;,j), XJ). (10) 

To prove the above equality we just observe that each polynomial p in Vg has the following expression 

n m¡ 

? « = £ £ £ ^ (j n eks
s ̂  • 

i=1 j = 1 k e M ¡ s e p a © 

Thus two variables appear in the same product of different Lagrange polynomial basis if and only if they are directly con-
nected, that is, if and only if one variable belongs to the parents of the other. It is clear now that the sum in Equation (10) 
is therefore valid. 

So we have only to prove that a decisión function / with two relevant variables X\ e S 2 i , X 2 e could not be equal, 
over ñ i x to the sum of two functions p i (x i ) and p2(x2). Since X\ and X2 are relevant variable, there exist s,s' e ñ i 
and t, t' e Q2 such that, 

f ( s , t ) = -f(s,t<) and f ( s , t ) = - f ( s ' , t ) 

Suppose f(xi, x2) = p i (x i ) + p2(x2), then we have, 

f (s< ,t<) = pi(s<) + p2(t<) 

= Pl (S') + p 2 (t) + Pl (S) + p 2 (t ') - Pl (S) - p 2 (t) 

= f(s',t) + f ( s , t ' ) - f ( s , t ) = - 3 f ( s , t ) . 

And we get | / ( s ' , t') | ^ 1 which is absurd given that / is a decisión function. • 

We return to points 2 and 3 of Example 7. In both cases the functions f2 and /3 do not have irrelevant variables, thus 
from Lemma 6 we have that it¡2, Jtf3 £ Vm- But f2 £ sgn{Vm) (see the results of [10]) while f3 e sgn{Vm) (see proof of 
Theorem 8). As observed in Remark 2, there is a clear difference between sign-representing and interpolating. 

Thanks to Lemma 6, we have the following result. 

Lemma 7. Consider a multi-label classification problem over categorical predictors X\,..., Xn, for binary classes orderedas C\,..., Cj,. 
Given a sequence of predictor sub-graphs T-Li,..., Hi, without V-structures, let us consider f = ( / i , . . . , //O the h-valued decisión 
functions of the corresponding naive BAN chain classifler. Then, for every 1 <k<h,we have that 

|sgn (VUk+ <7th,..., itfk_, >)| < C(M, dk+s)< C(M, dk+k- 1), 

where M = = ÜíLi mi> dk = dim (Vuk), and s is equal to the number of functions among fi,..., fk-\ such that their relevant 
variables are not completely connected in 1-Lk. 

Proof. Suppose, / ) , , . . . , / ¡ s are the decisión functions among fi,..., fk-i such that their relevant variables are not com-
pletely connected in H k . From Lemma 6 we have that, 

7 T f h , . . . , 7 T f ¡ s Í V U k , 

and that 



cu 

Fig. 7. Decisión b o u n d a r i e s for t h e chain NB classif ier in Example 8. The va lué of t h e p red ic t ed c lasses is r epor ted . 

nfi eVHk for every ¿ e { 1 , . . . , fe — 1} \ { ¿ i , . . . , is}. 

Thus we have 

V H K + <7th,..., 71 f ^ >= V H K + <7tfh,..., 7tfis >, 

and so 

dim (VUK+ <Jth,..., tT f k _, >)<dk + s<dk + k - í . 

Analogously to Corollary 3 we have the corresponding bounding. • 

Remark 6. We observe that changing the order of classes in which the chain classifier is built implies a change in the 
expressive power of the resulting multi-label classifier. If the chain classifier is built with the class ordering C\,..., C/,, we 
have that the fcth classifier for Ck is more expressive than all the previous classifiers in the chain. In fact, from Equation (7), 
we have that if / is a decisión function representable by the j t h step of the chain classifier, then / is representable by 
every successive steps of the chain classifier. 

Example 8. We use a NB chain classifier over the prediction problems of Example 6. The NB classifier for predicting class 
Ci is the same as in Example 6 (see Fig. 4 left and Table 3). The predictors of the NB classifier for predicting C2 now 
include We consider the same conditional probability tables as in Example 6 (Tables 3 and 4). Moreover we have to 
specify the conditional probabilities of C\ given C2 in the NB that predicts C2. We set 

P(Ci = +11C2 = + 1 ) = 0.3 and P(Ci = - 1 |C2 = + 1 ) = 0.7 

P(Ci = +11C2 = - 1 ) = 0.9 and P(Ci = - 1 |C2 = - 1 ) = 0.1 

And, thus, coefficients a\ and b\ as defined in (8) and (9) are given by 

a 1 = I l n f ^ H ) and = 
2 \ 0 . 9 x 0 . 7 / 2 \ 0 . 9 x 0.1 / 

We have that the decisión function to predict C2 is sign-represented by 

q2 {x\, x2) = p2 {x\, x2) + a\TZh (x t , x2) + 

where f\{x\,x2) =sgn(p\{x\,x2)) and p 2 are defined in Example 6. The decisión boundaries of the two classes are shown 
in Fig. 7. We observe that the two boundaries are no longer independent; the decisión boundary for the second class C2 

(dashed grey line) depends on the decisión boundary of the first class 

4.Í. Extensions to classifier trellises 

Classifier trellises (CT) are a novel paradigm to multi-label classification problems, recently introduced by Read et al. 
[17], Basically CT work as chain classifiers, but instead of adding as predictors all the previous predicted classes, just some 
of them are considered in the new step of the classifier, thus reducing the complexity of the algorithm. We just observe 
here that our results about naive BAN chain classifier could easily be extended to CT (when BAN classifiers are used as base 
models), especially when, as in naive BAN chain classifier, the classes already predicted are added in a naive way. 

(+1 '+1) , ^ H 
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Y 
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5. Binary relevance vs. chain classifier 

In this section, we compare the expressive power of BR and chain classifiers when BAN classifiers are used as based 
models. We recall that a full Bayesian network is a Bayesian network where all pairs of nodes are linked. 

Thanks to Lemma 6, we can prove the following result that generalizes Lemma 3 in Varando et al. [21], 

Theorem 8. Consider a multi-label classification problem over categorical predictors X\ e ..., Xn e Qn, for binary classes ordered 
as Ci,..., C/,. Given a sequence of predictor sub-graphs H\,..., "H¡¡ without V-structures and such that they are not full Bayesian 
networks, consider T to be the set ofh-valued decisión functions induced by the naive BAN chain classifier and V the set ofh-valued 
decisión functions induced by the corresponding binary relevance method. We have that, 

\J\>\V\. 

In otherwords, naive BAN chain classifiers are more expressive than the corresponding BAN binary relevance method. 

Proof. From the results of the previous sections we have that, 

V = { ( / i , • • •, fh) s.t. fk=sgn(pk), pk e VHk} 

[ ( " ' \ ) 
| (f\,---,fh)s.t.fk=sgn I p k ^ J 2 a i 7 t f j I ' Pk&Vuk,a\,...,ak_i g R | 

Among the decisión functions for the first class C\ we can always choose for every k = (k\,..., kn) e M = {1 , . . . , mi} x 
• • • x {1 , . . . , m„}, /k(x) such that 

í + 1 i f x = £*») 

To prove the above fact is sufficient to observe that for every k e M, fa belongs to sgn{Vm) £ sgn(Vu-¡). In fact we have 
that fk = sgn(p(x)) where 

n n 

Vrn (Xi) - J 2 J 2 n l f 
i = 1 i = 1 jytkj 

as it is possible to check by substitution. 
Since ^ ( / k ) = { X i , . . . , Xn} and Hk is not complete, we have, from Lemma 6, Jtfk £ Vuk. Thus the space Vuk+ < 7t/k > 

has one dimensión more than Tq-ik, and so sgn(V^[k+ < it¡k > ) contains at least two more decisión functions than 
sgn(Vuk). So we have that there exist some h-valued decisión functions that belong to J7 but not to V. • 

We can also have a roughly estimation of the gain in expressibility from BAN binary relevance to naive BAN chain 
classifier. 

Lemma 9. If T and V are defined as in Theorem 8 we have that 

\F\V\>\N\(3H-1 Y 

Proof. As in the proof of Theorem 8 we can choose, among the decisión functions for the first class C\, 

í + 1 i f x = (£{",...,£„*») 

Thus we have |S2| = |M| possibility to choose the decisión function for C\. For every /k we have two more decisión functions 
representable for every other classes . . . , Q , thus counting all the combinations we get 

h - i 

" n - ' V = i l ^ \ ü | > i a i ¿ ( ( h 1))2'
í = |ñ|(3h-1-i) • 

k=\ ^ < ' 

As we see from the proof, the estimation given by Lemma 9 is far from being sharp. However, it helps us to understand 
that chain classifiers are not just more expressive than binary relevance, the difference goes to +oo as the number of labels 
grows. 



6. Conclusions and future work 

In this paper we have extended previous results on the decisión boundaries and expressive power of one-label BN 
classifiers to two types of BN multi-label classifiers: BAN classifiers built with binary relevance method and BAN chain 
classifiers. We have given theoretical grounds for why the binary relevance method provides models with poor expressive 
power and why this gets worst for larger number of classes. In both models, we have expressed the multi-label decisión 
boundaries in polynomial forms and we have also proved that chain classifiers provide more expressive models than the 
binary relevance method when the same type of BAN classifler is used as base classifler. 

Extending our results to general multi-dimensional BN classifiers [4,15,2,16], that permit BN structures between classes 
and predictors, is however, a much more complicated task. In multi-dimensional BN classifiers, the multi-valued decisión 
functions have to be found by a global máximum search over the possible classes valúes. This fact does not permit the 
employment of the same arguments used in this work. It would be interesting to extend the geometric study of BAN 
classifiers, such as the study of the space of polynomials associated with every particular BAN. A deeper comprehension of 
the structure of Vg could help to precisely compute or estímate the effective gain in expressive power of chain classifler 
with respect to binary relevance when the same BAN classifiers are used as base model. 
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