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1. Introduction 

Forests provide a broad range of ecosystem services that are 
important to human society (Millennium Ecosystem Assessment, 
2005). Wood production represents a key provisioning service 
and global wood production amounted to 3.4 billion m3 in the year 
2005 (FAO, 2010). Because wood production affects the provision­
ing of other services and biodiversity (Schwenk et al., 2012; 
Verkerk et al., 2014a; Zanchi et al., 2014), spatially explicit infor-
mation on wood production is important for the design and imple-
mentation of policies targeted at sustainable forest use (cf. Cowling 
et al., 2008; Maes et al., 2012). 

Statistical information on wood production can be combined 
with land-cover maps (i.e., forest cover maps) to develop wood 
production maps (Maes et al., 2012). Yet, the use of forest cover 
as the only proxy to map wood production is a coarse and simplis-
tic approach that may result in substantial errors (Eigenbrod et al., 

2010), because production patterns may not be equally distributed 
across forested landscapes (Wendland et al., 2011; Masek et al., 
2011). This suggests that determinants other than forest cover 
should be considered when mapping wood production patterns. 

A few studies have recently attempted to map wood produc­
tion, or forest management in general. For example, Hurtt et al. 
(2006) mapped wood production at a global level, assuming that 
forest cover and proximity to transportation infrastructure deter-
mined the spatial patterns of production. Within Europe, 
Hengeveld et al. (2012) mapped different forest management alter-
natives and identified áreas with intensive forest management 
focusing on wood production, as well as áreas with management 
objectives other than wood production. Furthermore, Levers et al. 
(2014) mapped harvesting intensity across European forests (i.e., 
wood production in relation to the net annual increment) and 
assessed the drivers of harvesting intensity at the level of adminis-
trative units. They found that harvesting intensity is driven by a 
combination of forest-resource related factors (i.e., the share of 
plantation species, growing stock, forest cover), site conditions (i. 
e., topography, accessibility), and country-specific characteristics. 



However, their analysis focussed primarily on understanding dri-
vers of harvesting intensity and was restricted to exploring spatial 
patterns for larger administrative units (national to provincial level 
or forestry districts) thereby not addressing wood production at 
the grid level. 

Existing studies suggest that knowledge of the factors driving 
patterns in wood production can improve the disaggregation of 
wood production statistics substantially. In such an approach first 
a statistical relationship between a target variable (e.g., wood pro­
duction) and its location factors (e.g., soil quality, topography, 
accessibility) is established at the level of the aggregated target 
data (e.g., for administrative units). Second, this relationship is 
then used to predict the suitability of every location for the target 
variable at the target grid level for which information on the loca­
tion factors are available. Such a downscaling approach in which 
statistical relationships are transferred across scales is called dasy-
metric mapping (Eicher and Brewer, 2001) and has been used 
extensively to disaggregate national- or regional-level land-use 
extent (Dendoncker et al., 2007), farming systems (van de Steeg 
et al., 2010), livestock (FAO, 2007; Neumann et al., 2009), or nitro-
gen input (Temme and Verburg, 2011). In a forestry context, dasy-
metric mapping was used to derive gridded maps of tree species 
presence for Europe (Brus et al., 2012) and at the global scale to 
map growing stock, forest biomass (Kindermann et al., 2008) and 
wood production (Hurtt et al., 2006). The latter maps have been 
generated at a resolution of Io x Io grid cells, using coarse, 
national-scale data on wood production, mainly targeted as an 
input for global climate and vegetation models. These applications 
strongly highlight the potential for dasymetric mapping to provide 
insights into wood production patterns, but a fine-scale application 
of this kind is missing for Europe, and as a result the spatial pat­
terns of wood production remain weakly understood. 

Here, we present an approach to fill this knowledge gap by 
developing high-resolution wood production maps for European 
forests (in this study limited to 27 European Union member states, 
plus Norway and Switzerland) for the period 2000-2010 at a reso­
lution of 1 x 1 km2 grid cells. Our objectives were (1) to analyse 
the location factors determining wood production patterns in 
Europe, (2) to assess whether information about the relationship 
between wood production and location factors improves the 
disaggregation of wood production statistics, and (3) to derive time 
series of wood production maps for Europe. 

2. Material and methods 

2.1. Data 

2.1.1. Wood production data 
We collected data on wood production from national forestry 

reports, statistical yearbooks and databases, and by contacting 
national experts known to the authors (Table SI in the Supplemen-
tary Material) for the years 2000 to 2010 for 460 administrative 
units within the 29 countries in our study. The number of admin­
istrative units per country varied from 1 (national level) to 107 
(provincial or forestry district level). The statistics that were col­
lected followed national definitions and differed in e.g. whether 
wood production volumes were reported as over or under bark, 
or included harvest losses. To account for these differences, we 
harmonised the wood production data by calculating the share of 
harvested wood volume for each administrative unit relatively to 
the national total wood production. These shares were calculated 
as averages for all years for which regional data was available in 
our dataset. Shares were then multiplied with national-level har­
vest data. For the latter, we used annual roundwood production 
(m3 under bark) statistics from FAOSTAT (2012), because these 

data are reported following harmonised definitions and data were 
available for each year in our study period. To use the data for sta­
tistical analyses, we divided harvest volume by forest área in each 
región (Table S2 in the Supplementary Material). To mitígate prob-
lems due to differences in national definitions, we calculated the 
área share of each unit in the total forest in a particular country 
and multiplied it with the forest área in 2000 according to Forest 
Europe et al. (2011). The outcome was a set of maps of harmonised 
wood production statistics [WOOD; m3 ha - 1 yr -1] at the level of 
administrative units. 

2.1.2. Location factors 
We reviewed literature to identify potential location factors 

that could affect the likelihood of harvesting at a given location. 
The literature review focussed on understanding the harvesting 
behaviour of forest owners (Beach et al., 2005; Bolkesjo et al., 
2007; Butler, 2006; Favada et al., 2009; Stordal et al., 2008; 
Vokoun et al., 2006; Adams et al., 1991; Araño and Munn, 2006), 
as well as on wood supply in more general terms (Sterba et al., 
2000; Verkerk et al., 2011). Based on our review and data availabil-
ity for the entire study área, 16 potential location factors influenc-
ing the likelihood of harvest were identified, as well as a priori 
assumptions with regards to the direction of influence of each loca­
tion factor on harvesting likelihood (Table 1). This set of potential 
location factors is similar to the set used by Levers et al. (2014). A 
key difference is that we used net annual increment as an addi-
tional predictor, as it may strongly influence the location of wood 
production, whereas Levers et al. (2014) used net annual incre­
ment to normalise harvest in order to obtain a more direct indica-
tor of harvesting intensity at the level of administrative units. 

Most data on location factors were available as ráster maps with 
a resolution of 1 x 1 km2 grid cells. Where data were available at a 
finer resolution, we aggregated them using bilinear interpolation 
based on the weighted distance of the four nearest input cell cen­
tres. Data layers that were available for administrative units were 
rasterized to the l x l km2 grid assuming homogeneity across 
administrative units. Maps of the location factors are shown in 
Fig. SI in the Supplementary Material. Details on the data pre-
processing of the predictor variables are provided in the Supple­
mentary Material of Levers et al. (2014). 

To match the spatial resolution of our location factors to that of 
the wood production statistics, we calculated average valúes of our 
location factors for each of the administrative units for which we 
had collected wood production statistics. In case location factors 
were not limited to forests (e.g., P00RS0IL in Table 1), we weighted 
location factor valúes according to forest cover for each adminis­
trative unit. To do so, we multiplied relevant location factor maps 
with a fractional forest cover map. We used the forest map by 
Pekkarinen et al. (2009), which was calibrated following an 
approach by Páivinen et al. (2001) to match regional-and 
national-level forest área statistics (Section 2.1.1; Table S2 in the 
Supplementary Material). As a result, the valúes of location factors 
at locations with higher forest cover had a larger share in the aver­
age predictor valué at the administrative unit level, compared to 
pixels with little forest cover. 

We also investigated possible collinearity between location fac­
tors, but did not find correlation coefficients exceeded 0.7 (Fig. S2 
in the Supplementary Material) and therefore considered all loca­
tion factors for subsequent regression analyses. 

2.2. Regression analyses 

To analyse how our set of location factors influences the spatial 
patterns of wood production, we employed two regression tech-
niques: (1) a model selection using traditional, linear regression 
modelling combined with Bayesian Model Averaging (BMA) and 



Table 1 
Description of location factors used in the regression analyses (cf. Levers et al., 2014). 

Predictor 

Forest resources 
Extent of forest 
Growing stock 
Productivity 

Tree species 
composition 

Protected áreas 

Abbreviation 

FCOV2000 
TOTVOL 
NAI 

BEECHOAK 
PINESPRUCE 

PLANTATION 

TOTPROT 

Environmental conditions 
Soil 

productivity 
Precipitation 
Temperature 
Water shortage 

Accessibility 
Accessibility 
Slope 

Soil bearing 
capacity 

Socio-economy 
Prívate forests 
Population 

density 

POORSOIL 

PRCP5M 
TEMP 
WATSHORT 

ACC50 
RUCC 

SBC 

PRIVFOR 
POPDENS 

Description 

Forest cover in 2000 
Total growing stock 
Net annual increment (average over 2000-2010) 

Share of beech (Fagus spp.) and oak (Queráis spp.) in total species 
Share of Scots pine (Pinus sylvestris) and spruce (ñcea spp.) in 
total species 
Share of plantation species (Robinia spp., Populus spp., Eucalyptus 
spp., Pinus pinaster) in total species 
Share of protected forest in total forest 

Share of low productive soil limiting growth 

Precipitation sums of growing season 
Long term mean temperature 
Difference between precipitation and potential evapotranspiration 

Travel time to cities > 50,000 inhabitants 
Terrain ruggedness expressing relief energy 

Share of soil types with no bearing capacity 

Share of forest that is privately owned 
Population density (number of people per square kilometre) 

Expected 
impact 

+ 
+ 
+ 

+ 
+ 

+ 

" 

-
+ 
+ 

-

+ 

— 

-

+ 

-

Unit 

% 
m3 ha - 1 

m3 ha - 1 yr_1 

% 
% 

% 

% 

% 

mm 
°C 
mm 

min 
m 

% 

% 
pers/km2 

Source 

Pekkarinen et al. (2009) 
Gallaun et al. (2010) 
See Table S3 in the 
Supplementary Material 
Brus et al. (2012) 
Brus et al. (2012) 

Brus et al. (2012) 

IUCN and UNEP-WCMC (2012) 
and EEA (2011) 

Verkerketal. (2011) 

Hijmans et al. (2005) 
Hijmans et al. (2005) 
Hijmans et al. (2005) 

Nelson (2008) 
Riley et al. (1999), Christoph 
Plutzar (pers. comm.) 
EC (2006) and Verkerk et al. 
(2011) 

Pulla et al. (2013) 
Oak Ridge National Laboratory 
(2004) 

(2) Boosted Regression Trees (BRTs). Algorithmic regression mod-
els such as BRTs often outperform traditional, linear regressions 
in terms of predictive accuracy while being able to model non-
linear, complex relationship and being less affected by small sam-
ple size and collinearity in input data. However, such non-linear, 
complex models might be disadvantageous in dasymetric map-
ping, because they may result in over- or underestimation when 
transferring models from the level of administrative units to the 
grid level. Traditional linear regressions, while potentially less 
powerful in terms of predictive power, yield regression coefficients 
that are more robust to scaling between the level of model fitting 
and prediction (Easterling, 1997; Jelinski and Wu, 1996). Henee, 
we decided to compare both approaches. For all analyses we used 
WOOD averaged over our entire study period as the dependent 
variable, and the location factors as independent variables. We 
used R (R Development Core Team, 2013) for all statistical analy­
ses, including the packages 'dismo' (Hijmans et al., 2013; Boosted 
regression trees), 'BMA' (Raftery et al., 2013; Bayesian model aver-
aging), and 'ráster' (Hijmans, 2014). 

2.2.1. Bayesian model averaging 
Our first model (hereafter referred to as linear model) was 

obtained using BMA. We applied BMA to account for uncertainty 
in the process of model selection, which may lead to over-
confident inferences (Hoeting et al., 1999). A single-best model is 
usually selected among alternative models based on hypothesis 
tests and goodness-of-fit measures (Raftery et al., 1997). Alterna­
tive models that may perform equally well as the "best" model 
are thus neglected (Hoeting et al., 1999). BMA provides a solution 
to this by averaging over all possible models to derive a model that 
accounts for uncertainty in the model selection process and usually 
yields a better predictive performance compared to a single-best 
model (Raftery et al., 1997; Madigan and Raftery, 1994). 

To carry out the BMA, we used the bicreg function of the BMA 
package that uses the Bayesian Information Criterion (BIC; Hastie 

et al., 2011) to identify the 25 best models of all possible models. 
We then used the five best candidate models to select the final 
suite of location factors for the linear model following Raftery 
et al. (2005). We included only location factors which were consis-
tently selected throughout all 25 best models. We furthermore cal-
culated the cumulative posterior probability of the five best 
candidate models to estímate the probability that the "true" model 
consists of their suite of location factors. 

2.2.2. Boosted regression trees 
Boosted regression trees are a machine learning technique that 

combines high predictive accuracy with a good interpretability of 
results (Friedman, 2001). BRTs are robust against overfitting 
(Dormann et al., 2013), missing data, and collinearity of location 
factors, while being able to handle non-linear relationships and 
variable interactions well (Elith et al., 2008). We fitted two models 
using BRTs; one with the location factors identified by BMA for the 
linear model (hereafter referred to as BRTÍ model) and another 
using the full suite of location factors (hereafter referred to as 
BRT2 model). We developed these two models to improve the com-
parability of results since BRTs selected different variables as most 
influential in comparison to BMA due to differences in model 
characteristics. 

To parameterise BRTs, four main parameters have to be speci-
fied: (i) regression tree complexity, (ii) learning rate, (iii) number 
of regression trees, and (iv) bag fraction. Tree complexity defines 
the allowed number of interactions in the model and learning rate 
defines the contribution of each single decisión tree to the entire 
model. The number of trees defines how many single decisión trees 
are used in the model. Finally, the bag fraction defines the amount 
of data (i.e., observations) that is withheld while fitting individual 
tree models. We performed an optimisation routine to determine 
the optimal settings for tree complexity and learning rate. We 
tested interaction levéis from 1 to 9 and learning rates from 0.1 
to 0.001 and identified the optimal parameter combination using 



10-fold cross-validated correlation coefficients. Finally, we set tree 
complexity to 8 for the BRT1 model (same location factors as in the 
BMA) and 6 for BRT2 model (all location factors) as well as learning 
rate to 0.005 and bag fraction to 0.5 for both BRT models. 

We employed the gbmstep routine provided by the dismo pack-
age to determine the optimal number of trees. To evalúate model 
performance, we used a 10-fold cross-validation to calcúlate Pear-
son's correlation coefficient and the percentage of deviance 
explained (Elith et al., 2008). For interpreting results of both BRT 
models, we regarded only those variables as influential which rel-
ative importance exceeded that expected by chance (100%/number 
of variables; i.e. 100%/16 = 6.25%) (Müller et al., 2013). The relative 
importance thus depends on how often a variable is selected in the 
models' regression trees and the weighted improvement to the 
model (Friedman and Meulman, 2003). The sum of all variables' 
relative importances adds up to 100%, with higher valúes indicat-
ing a stronger influence of this particular variable on the target 
variable (i.e., wood production in our case). To investígate the rela-
tionship between each predictor and the target variable, we used 
partial dependency plots (PDPs) that depict response curves for 
each location factor along its data range in relation to the wood 
production while holding all other location factors at their mean 
(Friedman, 2001). 

2.3. Disaggregation and accuracy assessment 

To produce wood production maps, we followed the procedure 
illustrated in Fig. 1. We first applied the above regression models to 
produce harvest likelihood maps, and we then used these likeli-
hood maps as a basis to disaggregate wood production statistics 
to the grid level. We developed one likelihood map for each of 
the three final regression models (linear, BRTÍ, and BRT2, i.e. three 
harvest likelihood maps in total) by predicting wood production at 
the l x l km2 grid level and normalising the predictions to valúes 
between 0 (low likelihood) and 1 (high likelihood) using the mín­
imum and máximum valúes. 

We then validated the three likelihood maps using plot data 
from the 3rd Spanish National Forest Inventory (MAGRAMA, 
2013). We used data from a total of 84,264 plots that were located 
on the Spanish mainland and had a forest cover >20%, of which 224 
plots (0.27%) were classified as being recently harvested. We deter-
mined the harvest likelihood valué for each of the inventory plots 
of the linear and the two BRT models. We hypothesised that the 
recently harvested plots had a larger likelihood score than the 
unharvested plots and we tested for significance with one-tailed 

Mann-Whitney U tests, as data were not normally distributed in 
all cases. 

After generating and validating the harvest likelihood maps, we 
developed a disaggregation procedure to map wood production at 
the grid level. To test whether the disaggregation of wood produc­
tion statistics is improved by adding information on location fac­
tors of wood production patterns, we first disaggregated wood 
production volumes based on forest cover only. The wood produc­
tion volume that was allocated to an individual pixel was based on 
the forest cover of that pixel proportional to the total forest área of 
all pixels in this administrative unit. Subsequently, we relied on 
the same disaggregation procedure, but included information from 
the likelihood maps. We did this by multiplying each harvest like­
lihood map with the forest cover map. As a result, the wood pro­
duction volume that was allocated to an individual pixel was 
larger for pixels with higher harvest likelihood and higher forest 
cover valúes, compared to pixels with e.g. higher harvest likeli­
hood, but lower forest cover valúes. 

We verified our disaggregation results following Neumann et al. 
(2009) and re-aggregated grid-level wood production to the level of 
finer administrative units than those used for building the regres­
sion models and for which independent data was available. We ver­
ified our disaggregation results for 44 districts in Baden-
Württemberg (Germany) and for 410 municipalities in Norway. 
We used Spearman correlation tests to test how well our predictions 
matched with observed wood production levéis. To avoid inflating 
correlation coefficients we excluded countries for which we had 
only data at the national level. Furthermore, we calculated differ-
ence maps between predicted wood production (based on the disag­
gregation of national level statistics) and observed wood production 
at the level of administrative units. Based on this accuracy assess­
ment, we selected the likelihood map that resembled observed 
wood production statistics best and produced a final European-
wide wood production map. We used R (R Development Core 
Team, 2013) for all statistical analyses, including the 'rgdal' 
(Bivand et al., 2013) and 'ráster' (Hijmans, 2014) packages. 

3. Results 

3.1. Regression results 

The cumulative posterior probability of the top five BMA mod­
els was 0.79, indicating a high probability that the "true" model 
consists of location factors selected by these models. Six location 
factors were selected based on their posterior probabilities of 
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Fig. 1. Flowchart describing the steps to develop wood production maps for European forests at a resolution of 1 x 1 km2 grid cells. 



Table 2 
Results of the linear model. The abbreviations of the location factors are explained in 
Table 1. 

Coefficient 

a 
b 
c 
d 
e 

f 
g 

Intercept 
POORSOIL 
PRCP5M 
RUGG 
PLANTATION 
PINESPRUCE 
NAI 

Estímate 

-1.181* 
- 0 . 0 2 1 " 

0.006" 
- 0 . 0 1 3 " 

0.056" 
0.021" 
0.331" 

SE 

0.369 
0.006 
0.001 
0.002 
0.010 
0.004 
0.047 

Significance levéis: "p < 0.01; "p < 0.001. 

inclusión: POORSOIL, PRCP5M, RUGG, PLANTATION, PINESPRUCE and 
NAL These variables were consistently selected in each of the top 
five models. We used these six location factors in the final linear 
model with wood production averaged over the entire 11 -year per-
iod as the dependent variable (WOOD). The final linear model was 
expressed as follows: 

WOOD = a + bPOORSOIL + CPRCP5M + dRUGG + ePLANTATION 

+fPINESPRUCE + gNAI 

in which coefficients a-g are the regression parameters. The results 
of the regression analysis for the linear model are presented in 
Table 2. The linear model was highly significant (p < 0.005) and 
explained (adjusted R2) about 45% of the variance in wood produc­
tion patterns. All location factors confirmed our a priori assump-
tions with regards to the direction of their influence (positive or 
negative; see also Table 1) on wood production. NAI revealed the 
strongest absolute effect on wood production. 

The same set of six location factors was used in the BRTl model 
(Fig. 2) and explained about 67% of the variance in wood produc­
tion patterns. Similar to the linear model, NAI was the most impor-
tant variable for explaining the spatial patterns in wood production 
with a relative importance of about 30%, whereas PLANTATION was 
the second-most important predictor with a relative importance of 
about 26%. All location factors had the same, expected sign as for 
the linear model. However, the boosted regression trees revealed 
that not all location factors were linearly related to wood produc­
tion at the administrative level. In case of PLANTATION, for exam-
ple, wood production was found to decrease below a threshold of 
20% plantation species in total forest cover, after which it increased 
and saturated at a threshold of 40% plantation species. 

The BRT2 model (Fig. 3) performed slightly better than the BRTl 
model, explaining about 71% of the variance in wood production 
patterns. The location factors NAI, PLANTATION, RUGG, ACC50, and 
TOTVOL were most influential. Similar to the other models, NAI 
was the most important variable (24%) for explaining the spatial 
patterns in wood production and PLANTATION (18%) was the 
second-most important predictor. Compared to the other models, 
POORSOIL, PRCP5M were less important in the BRT2 model. Instead, 
ACC50, RUGG and TOTVOL were found to be influential. Similar to 
the BRTl model, the BRT2 model revealed that not all location fac­
tors were linearly related to wood production at the level of 
administrative units. 

3.2. Accuracy assessment 

We applied the regression models to produce three harvest like-
lihood maps, one for each regression model (Fig. S3 in the Supple-
mentary Material). Utilising the Spanish forest inventory plot data, 
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Fig. 2. Partial dependency plots for the BRTl model using six location factors selected by Bayesian model averaging. The y-axis [unit: m3 ha - 1 y r 1 ] of each plot shows the 
fitted valúes for each observation along the variable's data range displayed on the x-axis. The ticks on the x-axis visualise the distribution of the data in deciles. The unit of 
each predictor is described in Table 1. 
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Fig. 3. Partial dependency plots for the BRT2 model. The y-axis [unit: m3 ha ' yr ' ] of each plot shows the fitted valúes for each observation along the variable's data range 
displayed on the x-axis. The ticks on the x-axis visualise the distribution of the data in deciles. The unit of each predictor is described in Table 1. 

we tested whether recently harvested plots had a larger harvest 
likelihood score compared to unharvested plots. The results of 
three one-tailed Mann-Whitney U tests showed that recently har­
vested plots had significantly (p < 0.005) higher likelihood seo res 
as compared to unharvested plots for all three likelihood maps 
(Table 3). 

Using the forest cover map, as well as the three harvest likeli­
hood map, we disaggregated wood production statistics to the grid 
level. To verify the resulting wood production maps we re-
aggregated from the grid-level to the level of finer administrative 
units and compared the predicted wood production with observed 
data at the level of administrative units using fine-scale harvesting 
statistics for Europe, Baden-Wuerttemberg and Norway. Results of 
Spearman correlation tests (Figs. 4 and 5) between predicted and 
observed wood production revealed that disaggregating based on 
forest cover solely yielded the poorest results. When considering 
additional information (compared to forest cover only), the corre­
lation between predicted and observed wood production improved 
substantially. Between the three regression-based likelihood maps, 
we observed only minor differences. The disaggregation based on 
the linear model showed slightly higher correlations compared to 
the disaggregations based on the two BRT models. 

Fig. 6 provides information on the spatial patterns in the differ-
ence between predicted and observed levéis of wood production in 
Europe. When considering forest cover only, wood production was 
overestimated in North Finland and Sweden, North-West Germany 
and South-East France, whereas wood production was underesti-
mated in South Finland and Sweden, South-West of France, 
North-West of Spain and Southern parts of Germany. When com-
bining forest cover with information derived from the linear and 
both BRT models, the absolute differences between predicted and 

observed data became smaller, but the spatial patterns in the dif­
ferences between predicted and observed wood production 
remained similar. 

3.3. Maps of wood production in European forests 

Based on the verification described above, we used forest cover 
combined with information derived from the linear model to dis-
aggregate statistics from administrative units to 1 x 1 km2 grid 
maps. Considering location factors to disaggregate wood produc­
tion statistics resulted in a greater variance in wood production 
at the grid-level, as compared to considering forest cover only 
(one-tailed F-test, p< 0.005). At the European level, our maps 
(Figs. 7 and S4) reveal regions with very low levéis of wood pro­
duction (<0.1 m3 ha^yr" 1 ) , notably the coastal área of Norway, 
large parts of England, Spain, and Greece as well as northern and 
eastern Italy and the western parts of Netherlands and Belgium. 
Regions with high average levéis of wood production (>5 m3 ha"1 

yr"1) can be found in southern Sweden, southeast Belgium, 
northeast France, southern Germany and large parts of the Czech 
Republic, Austria and Switzerland and northwestern Spain. 
Average harvest levéis exceeded >10 m3 ha"1 yr"1 in southwestern 
France. 

When looking at wood production in individual years (Figs. S4 
and S5 in the Supplementary Material), we found that the level 
of wood production was relatively stable between years with small 
(<1 m3 ha"1 yr"1) negative or positive deviations from the average 
level of wood production. Large deviations were visible for south­
ern Germany, northeast France and Switzerland in 2000, south 
Sweden in 2005, central Germany in 2007, and southwest France 
in 2009 and 2010. 



Table 3 
Median likelihood score of three likelihood maps for harvested (n = 224) and 
unharvested (n = 84,040) Spanish forest inventory plots and the signiflcance levéis 
according to one-tailed Mann-Whitney U tests. 

Coverage 

Linear model 
BRT1 model 
BRT2 model 

4. Discussion 

Harvested 

0.38 
0.23 
0.21 

Unharvested 

0.20 
0.09 
0.09 

p-Value 

<0.001 
<0.001 
<0.001 

4.1. Locatíon factors determining spatíal patterns ofwood production 

Wood production is an important forest use and understanding 
the spatial patterns of harvesting is key for assessing how it might 
affect ecosystem services and biodiversity. Yet, wood production 
statistics are often only available for larger administrative units, 
requiring downscaling to assess the spatial patterns of harvesting. 
In this study we developed high-resolution wood production maps 
of European forests. We analysed the location factors of spatial pat­
terns in wood production across a forest área of more than 163 
million ha in Europe and found that increment, tree species com-
position, and terrain ruggedness were key location factors explain-
ing patterns in wood production in Europe between 2000 and 
2010. Other important location factors that we identified were 
growing stock volume, accessibility, precipitation amounts, as well 
as soil productivity. As such, our analysis of location factors 
that influence spatial patterns in wood production is in broad 

agreement with those reported by Levers et al. (2014), despite their 
focus on harvesting intensity (i.e., wood production in relation to 
the net annual increment) rather than wood production. 

The identified location factors all relate to the costs and prof-
itability of wood production, as harvest likelihood is higher under 
more productive growing conditions and in locations that can be 
more easily harvested. Our findings thus provide important infor-
mation to further improve existing estimates of the costs of wood 
supply (cf. de Wit and Faaij, 2010; Lauri et al., 2014). While there is 
a potential to increase wood or biomass production in Europe to 
meet future material and energy demands (Verkerk et al., 2011), 
it is not clear where such unutilised potentials are located. Based 
on our set of location factors that determine current wood produc­
tion patterns, unutilised potentials are likely located in áreas that 
have lower increment rates (resulting in lower harvest volumes 
or longer production cycles) and are more remote or rugged. This 
implies that the costs to mobilise these unutilised potentials could 
be higher compared to the costs for current wood production. 

4.2. Spatial patterns of wood production 

We disaggregated wood production statistics from the level of 
administrative units to ráster maps with a resolution of 
l x l km2. We show that forest cover alone is a poor proxy to 
map wood production, as wood production is not equally dis-
tributed across European forest landscapes. When considering for­
est cover only, we would underestimate wood production in 
productive, accessible regions and overestimate production in less 
productive and less accessible regions. When we included our 
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Fig. 4. Results of Spearman correlation tests between observed and predicted total wood production [unit: 1000m3yr_ 1] based on disaggregating statistics using four 
different likelihood maps for Europe (from 19 countries to 451 administrative units; top row), Baden-Württemberg (from 1 state to 44 districts; middle row) and Norway 
(from 19 provinces to 410 municipalities, bottom row). 
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national-level statistical data. 

harvest likelihood maps, the differences between predicted and 
observed wood production became smaller. For example, incre-
ment and soil productivity differences between regions (Fig. SI 
in the Supplementary Material) explained the differences between 
predicted and observed wood production in Finland, Germany and 
Sweden, with northern regions in these countries generally having 
lower increment rates as compared to southern regions. In Finland, 
northern regions also had larger áreas with less productive soils. In 

France and Spain plantation species (Fig. SI in the Supplementary 
Material) explain why wood production was larger than average in 
southwest France and northwest Spain as compared to other 
regions in these countries. 

Besides elucidating these broad differences in wood production 
patterns in Europe, our maps also provide insight into how wood 
production is distributed across forest landscapes at finer scale, 
within single administrative units, which is not possible based on 



0'0"W 

T 
20°0'0"W 10°0'0"W 0°0'0" 10°0'0"E 20°0'0"E 30°0'0"E 40°0'0"E 

Fig. 7. Map showing predicted wood production [unit: m3 ha ' land yr 
units to 1 x 1 km2 ráster maps with the linear model. 

| in Europe averaged over the period 2000-2010 by disaggregating statistics from administrative 

statistical data only. We found that incorporating location factors 
in our disaggregation resulted in a greater variance in wood pro­
duction at the grid-level, as compared to considering forest cover 
only. Because the provisioning of various ecosystem services is 
affected by wood production (Schwenk et al., 2012; Verkerk 
et al., 2014a; Zanchi et al., 2014), our maps therefore provide 
improved information on how other ecosystem services are 
affected by local differences in wood production. 

Our time-series of wood production maps revealed few, but rel-
atively large changes in wood production volumes locally (Figs. S4 
and S5 in the Supplementary Material). For most of the cases, these 
large changes are likely the result of salvage harvest following big 
storm events. Locally, storm Lothar (December 1999; effect visible 
in 2000) affected southern Germany, northeast France and 
Switzerland, storm Gudrun (January 2005) affected southern 
Sweden, storm Kyrill (January 2007) affected especially central 
Germany, and storm Klaus (January 2009) affected southwest 
France (Gardiner et al., 2010). Our maps indícate the approximate 
location impacted by these storms (as well as other, less damaging 
storms) and thus allow to estímate changes in wood harvesting 
(and ecosystem service portfolios) associated with such storm 
events. Including data on storm tracks when generating harvest 
likelihood maps could be an interesting avenue for future research 
to better account fo the effects of salvage harvests. 

4.3. Comparison of regression models 

We mapped wood production using likelihood maps derived 
from two regression techniques. Similar to Levers et al. (2014), 
the results of our BRT models indicated that some of the location 
factors were not linearly related to wood production (Figs. 2 and 
3). However, accounting for non-linear relationships did not 
improve the disaggregation of wood production statistics in spite 
of a better model fit. An explanation for this could be the scale 
extrapolation that is inherent to dasymetric mapping. Our models 
were fitted on data at the level of administrative units, yet applied 
for the purpose of predictions to data at the pixel level. This 
assumes that the relationship between wood production and loca­
tion factors remains the same across scales - from the level of 
administrative units to the grid level. This may be a bold assump-
tion in the case of a flexible, non-linear model such as BRTs, which 
is able to model complex relationships that, however, may be less 
transferable across scales. Linear models instead use mean valúes 
that are likely more comparable over scales and that are less sen-
sitive to scaling than non-linear relationships (Easterling, 1997; 
Jelinski and Wu, 1996). Thus, while our results suggest that BRTs 
represent a powerful technique to detect and investígate factors 
determing spatial patterns in wood production, including 
non-linear responses to location factors, simpler linear regression 



techniques may be more appropriate for dasymetric mapping, 
when statistical relationships are used to disaggregate statistics 
at finer resolutions. 

4.4. Uncertainties in wood production maps 

We mapped wood production based on official statistics. It is 
important to note that such statistics do not necessarily include 
all wood that is removed from forests. Trees may be harvested to 
produce firewood for own consumption and such wood remováis 
may not be recorded in official statistics (Steierer, 2010). This 
means that the mapped wood may be an underestimation. 

Based on a literature review we identified a number of location 
factors that are associated with the spatial patterns in wood pro­
duction. Only few of these location factors significantly explained 
wood production patterns. The share of protected forests was not 
found to affect wood production patterns, although it has been 
linked to a potential reduction in wood supply (Verkerk et al., 
2014b). We explain such apparent discrepancies by gaps in avail-
able data. In the case of protected forests, we used spatially explicit 
data from two databases (IUCN and UNEP-WCMC, 2012; EEA, 
2011). However, these dataseis do not include all existing pro­
tected forests (Mac Sharry, 2011), ñor do they contain detailed 
information on restrictions applied to wood production. This 
means that although we did not find a predictor to significantly 
affect wood production in our regression analyses, it may still be 
a factor of relevance. 

Likewise, some predictors we would have wished to include 
were not available in a consistent, spatially-explicit manner for 
the whole study área. An important factor that could help to 
explain the spatial patterns of wood production, but which was 
not considered here, relates to the location of and distance to wood 
processing facilities, including pulp- and sawmill and energy pro­
duction facilities that use wood as a feedstock. We expect that 
higher levéis of wood production could be observed closer to such 
facilities and production sites. 

Our approach may have excluded local location factors that 
determine spatial variability in wood production across land-
scapes. The analysis of location factors at the level of larger admin-
istrative units can only partly account for factors that determine 
variations at the local to landscape level, e.g. environmental factors 
such as soil conditions, or socio-economic factors such as owner-
ship. Despite these remaining uncertainties, our set of location fac­
tors explained a substantial part of the spatial variation in wood 
production and resulted in a robust disaggregation of wood pro­
duction statistics, as verified by our comparison to the municipal 
level. The results of our validation of the regression-based likeli-
hood maps do suggest that our wood production maps are well 
able to capture local patterns of wood production. However, while 
the accuracy assessment steps we carried out suggest our approach 
resulted in reliable wood production maps, we caution that we 
only had validation and verification data for some regions, from 
the Mediterranean to Scandinavia. A consistent and spatially 
detailed ground-based dataset on wood production is not readily 
available for Europe currently. We can thus not rule out the possi-
bility that our map is less reliable in áreas where we did not have 
such data. A harmonised, European-wide datábase with data from 
national forest inventories would be an invaluable data source for a 
future, more in-depth accuracy assessment. 

5. Conclusión 

We conclude that several location factors are important in 
explaining variation in wood production patterns across Europe: 
productivity, tree species composition and terrain ruggedness. 

Other important factors are growing stock volume, accessibility, 
precipitation amounts and site productivity. Incorporating such 
information significantly improves the disaggregation of wood 
production statistics from the regional level to the grid level as 
compared to disaggregation based on forest cover maps only. The 
final wood production maps give insight into forest ecosystem ser-
vice provisioning and can be used to improve the assessment of 
potential and costs of woody biomass supply. 
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