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The spatial complexity of the distribution of organic matter, chemicals, nutrients, and pollutants has been demonstrated to have
multifractal nature.This fact supports the possibility of existence of some emergent heterogeneity structure built under the evolution
of the system. The aim of this paper is providing a consistent explanation of the mentioned results via an extremely simple model.

1. Introduction: Searching Explanations for
Soil Heterogeneity

Heterogeneity and complexity are ubiquitous at all scales in
soil and hydrologic systems. Nowadays, new technologies are
of an invaluable help for providing a great number of highly
calibrated field measurements. One can get a huge amount
of data from computer tomography of soil samples at micro-
scopic scales, digital terrain catchments of landscapes, and
river basins among many other technological tools. Then
mathematical tools are needed to analyse and interpret those
data as well to construct models to predict. However, along
the way needed to get such a final purpose, scientists also
need to understand why the heterogeneity is produced and
what the organizing principles that might underlie the het-
erogeneity and complexity are (McDonnell et al. [1]). Also it is
encouraged to explore the scaling behaviour of heterogeneity
and the emergent properties in soil and hydrologic systems.
In this paper we are mainly interested in some aspects
concerning the heterogeneity in the soil scenario.

Certainly we believe that the above understanding,
besides providing coherence to science, also may be useful
to get the practical purpose itself. In the case of soil, an
illustrating example supporting this and the issuesmentioned
above is the study of soil texture heterogeneity. On one
hand, Multifractal Analysis of fine granulometry soil data
obtained by laser diffraction techniques provides information
about the scaling behaviour of particle size distribution (PSD)
heterogeneity (Montero [2]). In a second step, models able
to replicate the heterogeneity formerly shown may be useful
for prediction purposes (Mart́ın and Garćıa-Gutiérrez [3]).
The answer to why such heterogeneity exists, however, is
not an easy issue since different sources of heterogeneity
should be expected. In Frisch and Sornette [4] and Sornette
[5], it is suggested that the fractal behaviour might be the
result of a naturalmixing of simplemultiplicative process that
takes place along the fragmentation of different particles, also
pointing out that there is no accepted theoretical explanation.
Recently fragmentation algorithms were proposed to repli-
cate the multifractal nature of soil PSD (Mart́ın et al. [6]). In
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this respect it is needed to say that any partial, but coherent,
explanation should help to understand the (possibly several
ones) organizing principles involved.

On the other hand, the spatial complexity of the distri-
bution of organic matter, chemicals, nutrients, and pollutants
has been studied by different authors (Kravchenko et al. [7],
Lehmann et al. [8]). Multifractal Analysis has been suc-
cessfully used to study the spatial variability of chemi-
cals and organic matter contents, which is characterized
by the generalized fractal dimensions (Kravchenko et al.
[7]). Searching why such structured heterogeneity exists, a
reducionist approach based in the description of transport
equations in soil, seems an unlikely choice to describe the
emergence of such complex pattern across the spatial scales.
On the contrary, an explanation based on the fact that
many complex systems in nature evolve in an intermittent
burst-like way rather than in a smooth gradual manner
(Rodŕıguez-Iturbe and Rinaldo [9]) would bemore adequate.
Further, such a kind of structured heterogeneity is commonly
interpreted as the result of chaos or self-organization which
leads to the emergent structure built under the evolution
of the system (Sornette [5]). The aim of this paper is
to provide a small contribution via an extremely simple
model, which gives a consistent explanation to thementioned
results on spatial variability of chemicals or pollutants in
soil.

The paper is organized as follows. In Section 2.1 themodel
is presented and in Section 2.2 the entropy scaling analysis
method is described. Section 3 is devoted to analysing the
results obtained in different simulations and their discussion.

2. Material and Methods

2.1.The Model. Let us suppose that 𝑆 is a soil area square-
shaped. Suppose further that at any of the four corners there
is a sink 𝑖 (𝑖 = 1, 2, 3, 4) randomly acting in an intermittent
manner. Suppose each sink 𝑖 acting with relative frecuency𝑝

𝑖
.

A pollutant deposit (“pollutant seed”) is supposedly located in
an arbitrary point of the square. When a given sink 𝑖 acts, its
suction action is able to attract the pollutantmatter to another
point reducing the distance to the sink in a factor 𝑟

𝑖
< 1,

where the pollutant rests until a new (or the same) sink acts.
This factor reflects themean value of the suction power of the
respective sinks. However, the “flying” pollutantmatter leaves
a unit of pollutant at any point where the pollutant “rests”
along its travelling.

Although a much more sophisticated model might be
constructed for a more realistic performance under the same
essential idea, we rather prefer to emphasize how complexity
may appear under quite simple and natural actions evolving
in time.

2.2. Measuring Heterogeneity. When the model is imple-
mented a first goal is applying mathematical tools in order
to parameterize heterogeneity in a reliable manner.

For simplicity let us assume that the unit square 𝑆 in the
plane is the support of a distribution 𝜇 with highly heteroge-
neous features. In order to scrutinize its heterogeneity, let us
consider a collection (mesh) of 2𝑘 × 2𝑘 𝜀-boxes, 𝑃

𝜀
= {𝑅
𝑖
: 𝑖 =

1, 2, . . . , 2
2𝑘
}, of side length 𝜀 = 2−𝑘, representing a partition

of 𝑆 for each value 𝑘, 𝑘 = 1, 2, 3, . . . (see Figure 1).
When the mass 𝜇(𝑅

𝑖
) inside any box 𝑅

𝑖
is known, the

Shannon entropy (Shannon [10]) of 𝜇 with respect to a fix
partition 𝑃

𝜀
is given by

𝐻
𝜇
(𝑃
𝜀
) = −

2
2𝑘

∑

𝑖=1

𝜇 (𝑅
𝑖
) log𝜇 (𝑅

𝑖
) (1)

provided 𝜇(𝑅
𝑖
) log 𝜇(𝑅

𝑖
) = 0 if 𝜇(𝑅

𝑖
) = 0.

The number 𝐻
𝜇
(𝑃
𝜀
) is expressed in information units

(bits) and its extreme values are log 22𝑘, which corresponds
to the most even (homogeneous) case—where all the squares
have the same cumulative mass—and 0, which corresponds
to the most uneven (heterogeneous) case—where the whole
mass is concentrated in a single square.The Shannon entropy
𝐻
𝜇
(𝑃
𝜀
) is a widely accepted measure of evenness or hetero-

geneity in the mass distribution 𝜇 at the scale level given by
each partition 𝑃

𝜀
. In fact, it can be shown that any measure of

heterogeneity with the natural properties for such goal must
be a multiple of𝐻

𝜇
(𝑃
𝜀
) (Khinchin [11]).

Using increasing values of 𝑘 (decreasing values of 𝜀) one
can obtain an increasing amount of information about the
distribution as 𝐻

𝜇
(𝑃
𝜀
) grows to infinity. If such an increase

is not erratic but rather conforms to a scaling or asymptotic
behaviour of 𝐻

𝜇
(𝑃
𝜀
) when 𝜀 ↓ 0, then the entropy or

information dimension of 𝜇 is defined (Rényi [12]) by means
of the equation

𝐷 ≈
−𝐻
𝜇
(𝑃
𝜀
)

log 𝜀
, (2)

where “≈” means that −𝐻
𝜇
(𝑃
𝜀
) will linearly fit log 𝜀.

3. Results and Discussion

In order to implement the model, different set of values of
𝑟
𝑖
and 𝑝

𝑖
were selected (𝑖 = 1, 2, 3, 4). First close values of

𝑝
𝑖
were used under the assumption of similar intermittent

frequencies, while the 𝑟
𝑖
values used try to investigate the

effect of relative different suction powers. For any simulation
the centre of the square has been chosen as initial position for
the “pollutant seed.”Then for any simulation a scaling entropy
analysis has been made following Section 2.2.

Figures 2(a) and 2(b) show two different simulations of
500 points for the same 𝑝

𝑖
and 𝑟
𝑖
values (𝑝

1
= 0.29, 𝑝

2
= 0.21,

𝑝
3
= 0.29,𝑝

4
= 0.21, 𝑟

1
= 0.7, 𝑟

2
= 0.5, 𝑟

3
= 0.7, and 𝑟

4
= 0.5).

The scaling analysis was made by using values 𝜀 = 2−𝑘 from
𝑘 = 1 to 𝑘 = 6. The mass 𝜇(𝑅

𝑖
) is given by the proportion of

points inside any box𝑅
𝑖
.The value of𝐻

𝜇
(𝑃
𝜀
) is plotted against

− log 𝜀 and a linear fitting is implemented. The slope of the
regression line gives an estimation of the entropy dimension
with𝑅2 value as coefficient of determination. It can be noticed
that the physical appearance of both simulations is quite
different, thus illustrating the high influence of the random
effect in this case. Also the scaling analysis reveals different
results (𝐷 and𝑅2 values) for both simulated distributions. For
the same 𝑝

𝑖
and 𝑟
𝑖
values, simulation of 20000 points leads to

the results in Figures 3(a) and 3(b).
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Figure 1: Partition of the support 𝑆 by squares of side length 𝜀.

(a) (b)

Figure 2: Two distributions generated with 500 points and the same probabilities and factors (𝑝
1
= 0.29, 𝑝

2
= 0.21, 𝑝

3
= 0.29, 𝑝

4
= 0.21,

𝑟
1
= 0.7, 𝑟

2
= 0.5, 𝑟

3
= 0.7, and 𝑟

4
= 0.5).

Table 1

𝑝
𝑖

𝑟
𝑖

𝑁 𝐷 𝑅
2

0,29-0,21-0,29-0,21 0,7-0,5-0,7-0,5
500 1,412 0,9645

1,447 0,9578

20000 1,937 0,9999
1,936 0,9999

Table 2

Number of points𝑁 𝐷

5000 1,841
8000 1,873
10000 1,881
15000 1,903
20000 1,912
25000 1,913
30000 1,919
35000 1,921
40000 1,921
50000 1,923

Table 1 shows the results of this analysis. It is observed
that the influence of the random component diminishes for
increasing number of points used in the simulation. Also the

Table 3

𝑝
𝑖

𝑟
𝑖

𝐷 𝑅
2

0,5-0,5-0,5-0,5 1,991 0,9999
0,25-0,25-0,25-0,25 0,7-0,7-0,5-0,5 1,951 0,9999

0,8-0,6-0,7-0,6 1,924 0,9997

𝑅
2 values become closer to 1. Figure 4 shows the value of

the estimated entropy dimension for increasing number of
points. Table 2 shows data involved in that figure.

Results clearly show the emergence of a mass distribution
with a well-defined structured heterogeneity that the scaling
analysis reveals. In fact the robustness of the results is based
on a theorem of ergodic type (Elton [13]).

Finally Figures 5(a), 5(b), and 5(c) show the result of
20000 points simulation with the same probabilities 𝑝

1
=

𝑝
2
= 𝑝
3
= 𝑝
4
= 0.25 and different values of the factors 𝑟

𝑖
.

Table 3 shows the value of the estimated entropy dimen-
sion.The𝑅2 values obtained reflect the scale invariance of the
resulting distributions.

Smaller 𝑟
𝑖
values representing greater suction powers

have obvious influence on the heterogeneity of the final
distribution which remains parameterized by the entropy
dimension. In an intuitive sense, the entropy dimension
value may be interpreted as uncertainty degree. In fact it
can be used together with other parameters in interpolation
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Figure 3: Two distributions generated with 20000 points and the same probabilities and factors (𝑝
1
= 0.29, 𝑝

2
= 0.21, 𝑝

3
= 0.29, 𝑝

4
= 0.21,

𝑟
1
= 0.7, 𝑟

2
= 0.5, 𝑟

3
= 0.7, and 𝑟

4
= 0.5).
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Figure 4: Value of the estimated entropy dimension 𝐷 for increasing number of points𝑁.

(a) (b) (c)

Figure 5: Distributions generated with 20000 points, the same probabilities, and different factors.
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procedures in soil spatial variability studies (Kravchenko et
al. [7]).

4. Conclusions

Heterogeneity is ubiquitous in many soil scenarios. In par-
ticular the spatial complexity of the distribution of organic
matter, chemicals, nutrients, and pollutants is a frequent
ingredient, which is in the focus of soil studies.

The understanding of why the heterogeneity is produced,
and what the nature of such heterogeneity is, is a need under
the scientific and practical points of view. Any coherent
explanation on the origin of heterogeneity should help to
understand it and to choose the adequate mathematical
techniques for handling it with prediction purposes.

In this paper an extremely simple model is presented,
which gives a consistent explanation of the complexity of
spatial variability of chemicals or pollutants in soil shown in
former studies.

The results shown here strongly suggest the use of scaling
methods coming from fractal geometry for the study of this
kind of distributions.
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