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Abstract

In recent years, a plethora of approaches have been proposed to deal
with the increasingly challenging task of multi-output regression. This pa-
per provides a survey on state-of-the-art multi-output regression methods,
that are categorized as problem transformation and algorithm adaptation
methods. In addition, we present the mostly used performance evalu-
ation measures, publicly available data sets for multi-output regression
real-world problems, as well as open-source software frameworks.
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1 Introduction

Multi-output regression, also known in the literature as multi-target ', multi-variate
68 or multi-response®!? regression, aims to simultaneously predict multiple real-
valued output/target variables. When the output variables are binary, the learning
problem is called multi-label classification ' 3. However, when the output variables
are discrete (not necessarily binary), the learning problem is referred to as multi-
dimensional classification .

Several applications for multi-output regression have been studied. They include
ecological modeling to predict multiple target variables describing the condition or
quality of the vegetation®, chemometrics to infer concentrations of several analytes
from multi-variate calibration using multi-variate spectral data'®, prediction of the
audio spectrum of wind noise (represented by several sound pressure variables) of a
given vehicle component 1%, real-time prediction of multiple gas tank levels of the Linz
Donawitz converter gas system'”, simultaneous estimation of different biophysical pa-
rameters from remote sensing images ®, channel estimation through the prediction of
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several received signals!?, etc. In spite of their different backgrounds, these real-world
applications give rise to many challenges such as missing data (i.e., when some feature/-
target values are not observed), the presence of noise typically due to the complexity
of the real domains, and most importantly, the multivariate nature and the compound
dependencies between the multiple feature/target variables. In dealing with these
challenges, it has been proven that multi-output regression methods yield to a better
predictive performance, in general, when compared against the single-output meth-
ods® 17, Multi-output regression methods provide as well the means to effectively
model the multi-output datasets by considering not only the underlying relationships
between the features and the corresponding targets but also the relationships between
the targets, guaranteeing thereby a better representation and interpretability of the
real-world problems®18. A further advantage of the multi-target approaches is that
they may produce simpler models with a better computational efficiency?.

Existing methods for multi-output regression can be categorized as: a) problem
transformation methods (also known as local methods) that transform the multi-output
problem into independent single-output problems each solved using a single-output
regression algorithm, and b) algorithm adaptation methods (also known as global or
big-bang methods) that adapt a specific single-output method (such as decision trees
and support vector machines) to directly handle multi-output data sets. Algorithm
adaptation methods are deemed to be more challenging since they usually aim not
only to predict the multiple targets but also to model and interpret the dependencies
among these targets.

Note here that the multi-task learning problem is related to the multi-output
regression problem: it also aims to learn multiple related tasks (i.e., outputs) at the
same time. Commonly investigated issues in multi-task learning include modeling task
relatedness and the definition of similarity between jointly learned tasks, feature selec-
tion, and certainly, the development of efficient algorithms for learning and predicting
several tasks simultaneously using different approaches, such as clustering, kernel re-
gression, neural networks, tree and graph structures, Bayesian model, etc. The main
difference between multi-output regression and multi-task problems is that tasks may
have different training sets and/or different descriptive features, in contrast to the
target variables that share always the same data and/or descriptive features.

The remainder of this paper is organized as follows. In Section 2, the state-of-the-
art multi-output regression approaches are presented according to the categorization as
problem transformation and algorithm adaptation methods. In Section 3, we provide
a theoretical comparison of the different presented approaches. In Section 4, we dis-
cuss evaluation measures, and publicly available data sets for multi-output regression
learning problems are given in Section 5. Section 6 describes the open-source software
frameworks available for multi-output regression methods, and finally, Section 7 sums
up the paper with some conclusions and possible lines for future research.
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2 Multi-output regression

Let us consider the training data set D of N instances containing a value assignment
for each variable X1,...,Xm, Y1,...,Yy, ie, D = {(x(l),y(l)), R (x(N),y(m)}.
Each instance is characterized by an input vector of m descriptive or predictive

variables x) = (xi”, . ,:cg.l),...,xgl)) and an output vector of d target variables

y® = (ygl),,..,yl(l),...,yy)), withie {1,...,d},j€{1,...,m},and l € {1,...,N}.
The task is to learn a multi-target regression model from D consisting of finding a



function h that assigns to each instance, given by the vector x, a vector y of d target
values:

h:Qx, X...xQx,, — Qy; X...xQy,

X= (1, Tm) — Y = (Y1, -,Yd)s

where (2x; and Qy; denote the sample spaces of each predictive variable X, for all
j €{1,...,m}, and each target variable Y;, for all ¢ € {1,...,d}, respectively. Note
that, all target variables are considered to be continuous here. The learned multi—target
model will be used afterwards to simultaneously predict the values {y(N“), ... ,Sf(N )}
of all target variables of the new incoming unlabeled instances {x(N*1 . x®N)1.

Throughout this section, we provide a survey on state-of-the-art multi-output re-
gression learning methods categorized as problem transformation methods (Section
2.1) and algorithm adaptation methods (Section 2.2).

2.1 Problem transformation methods

These methods are mainly based on transforming the multi-output regression prob-
lem into single-target problems, then building a model for each target, and finally
concatenating all the d predictions. The main drawback of these methods is that the
relationships among the targets are ignored, and the targets are predicted indepen-
dently, which may affect the overall quality of the predictions.

Recently, Spyromitros-Xioufis et al.* proposed to extend well-known multi-label
classification transformation methods to deal with the multi-output regression problem
and to also model the target dependencies. In particular, they introduced two novel
approaches for multi-target regression, multi-target regressor stacking and regressor
chains, inspired by popular and successful multi-label classification approaches.

As discussed in Spyromitros-Xioufis et al.*, only approaches based on single la-
bels (such as the typical binary relevance, stacked generalization-based methods, and
classifier chains) can be straightforwardly adapted to multi-output regression by us-
ing a regression instead of a classification algorithm. Multi-label approaches, based
on either pairs of labels or sets of labels paradigms, are generally not transferable to
multi-target regression problems. However, the random k-labelsets (RAKEL) method
has been the inspiration for a new problem transformation method recently proposed
by Tsoumakas et al.®. Their method creates new output variables as random linear
combinations of k original output variables. Next, a user-specified multi-output al-
gorithm is applied to predict the new variables, and finally, the original targets are
recovered by inverting the random linear transformation.

In this section, we present state-of-the-art multi-output regression methods based
on problem transformation, namely, single-target method, multi-target regressor stack-
ing, regressor chains, and multi-output support vector regression.

2.1.1 Single-target method

In the baseline single-target (ST) method®, a multi-target model is comprised of d
single-target models, each trained on a transformed training set D; = {(Xgl), yE”), e
(X(N),yEN))},i € {1,...,d}, to predict the value of a single-target variable Y;. In

this way, the target variables are predicted independently and potential relationships



between them cannot be exploited. The ST method is also known as binary relevance
in the literature'3

Since the multi-target prediction problem is transformed into several single-target
problems, any off-the-shelf single-target regression algorithm can be used. For in-
stance, Spyromitros-Xioufis et al.? used four well-known regression algorithms, namely,
ridge regression 25 support vector regression machines 2%, regression trees?”, and stochas-
tic gradient boosting2®

Moreover, Hoerl and Kennard ?® proposed the separate ridge regression method to
deal with multi-variate regression problems. It consists of performing a separate ridge
regression of each individual target Y; on the predictor variables X = (X1,...,Xm).
The regression coefficient estimates a,;, with ¢ € {1,...,d} and j € {1,...,m}, are
the solution to a penalized least squares criterion:

i=1 {i=1

{ai; iz = arg {m}m {Z( Zaj (l>) }+>\¢;a]2-, ie{l,...,d},

where \; > 0 represents the ridge parameters.

2.1.2 Multi-target regressor stacking

The multi-target regressor stacking (MTRS) method* is inspired by?® where stacked
generalization®® was used to deal with multi-label classification. MTRS training is
a two-stage process. First, d single-target models are learned as in ST. However,
instead of directly using these models for prediction, MTRS includes an additional
training stage where a second set of d meta-models are learned, one for each target Y;,

1e{l,...,d}.

Each meta-model is learned on a transformed training set D; = {(X*(1)7y£1))
L (xN)] (N>)} where x*® = (acgl>,.“7:cg\l,),g(l) ...,g)((ll)) is a transformed input

vector consisting of the original input vector of the training set augmented by predic-
tions (or estimates) of their target variables yielded by the first-stage models. In fact,
MTRS is based on the idea that a second-stage model is able to correct the prediction
of a first-stage model by using information about the predictions of other first-stage
models.

The predictions for a new instance x
models inducing the estimated output vector y

N+1) are obtained by generatm% first-stage
N+1) — = (9 gNH), gt , then ap-
plying the second-stage models on the transformed input vector x*<N+1) = (z; <N+1) ..

x%w'l), Q}NH), e ;Q‘(iNH)) to produce the final estimated multi-output targets y(N'H)
)

2.1.3 Regressor chains

The regressor chains (RC) method® is inspired by the recent multi-label chain classi-
fiers®'. RC is another problem transformation method, based on the idea of chaining
single-target models. The training of RC consists of selecting a random chain (i.e.,
permutation) of the set of target variables, then building a separate regression model
for each target following the order of the selected chain.

Assuming that the ordered set or the full chain C' = (Yl, Yo, ... ,Yd) is selected, the
first model is only concerned with the prediction of Y;. Then, subsequent models for

Yis.t.i>1 are trained on the transformed data sets D; = {(xf(l), yfl)), cee (x;‘(N)7 yfm)}7



where x; xg), ey x&fl), y{l), . 7y§£)1) is a transformed input vector consisting of

the original input vector of the training set augmented by the actual values of all
previous targets in the chain. Spyromitros-Xioufis et al.* then introduced the regres-
sor chain corrected (RCC) method that uses cross-validation estimates instead of the
actual values in the transformation data step.

However, the main problem with the RC and RCC methods is that they are sen-
sitive to the selected chain ordering. To avoid this problem, and like®!, Spyromitros-
Xioufis et al.* proposed a set of regression chain models with differently ordered chains:
if the number of distinct chains was less than 10, they created exactly as many models
as the number of distinct label chains; otherwise, they selected 10 chains randomly.
The resulting approaches are called ensemble of regressor chains (ERC) and ensemble
of regressor chains corrected (ERCC).

(l):(

2.1.4 Multi-output support vector regression

Zhang et al.®? presented a multi-output support vector regression approach based on
problem transformation. It builds a multi-output model that takes into account the
correlations between all the targets using the vector virtualization method. Basically,
it extends the original feature space and expresses the multi-output problem as an
equivalent single-output problem, so that it can then be solved using the single-output
least squares support vector regression machines (LS-SVR) algorithm.

In particular, Zhang et al.3? used a binary representation to express y(l> with
vectors I; of length d such that only the i*" element representing the i*" output takes
the value 1 and all the remaining elements are zero. In this way, for any instance
(x(l), y(”), d virtual samples are built by feature vector virtualization as follows:

(117 X(l)7 yy))
(x(l),y(l)) — ...
(L, x5 ).
This yields, a new data set D; = {((I,‘,x“)),yy))}, with ¢ € {1,...,d} and | €
{1,..., N}, in the extended feature space. The solution follows directly from solving

a set of linear equations using extended LS-SVR, where the objective function f to be
minimized is defined as follows:

1 1 N d 5
r 2 :2 : l

=1 i=1

s.t. ylm = ngzS(Ii,x(l)) +Lb+el

7 )
where w = (w1, ..., wq) defines the weights, ¢(-) is a nonlinear transformation to the
feature space, and b = (b1,...,bq)" is the bias vector. C is the trade-off factor used

to balance the strengths of the Vapnik-Chervonenkis dimension and the loss, and egl)
is the fitting error for each instance in the data set D;.

2.2 Algorithm adaptation methods

These methods are based on the idea of simultaneously predicting all the targets using a
single model that is able to capture all dependencies and internal relationships between



them. This actually has several advantages over problem transformation methods: it
is easier to interpret a single multi-target model than many single-target models and it
ensures better predictive performance especially when the targets are correlated %1°.
In this section, we present state-of-the-art multi-output regression methods defined
as extensions of several standard learning algorithms including statistical methods,
support vector machines, kernel methods, regression trees, and classification rules.

2.2.1 Statistical methods

The statistical approaches are considered as the first attempt to deal with simultane-
ously predicting multiple real-valued targets. They aim to take advantage of correla-
tions between the target variables in order to improve predictive accuracy compared
with the traditional procedure of doing individual regressions of each target variable
on the common set of predictor variables.

Izenman®? proposed reduced-rank regression which places a rank of constraint on
the matrix of estimated regression coefficients. Considering the following regression
model:

m
yi:Zaijxj—l—ei, Z'E{l,...,d},

j=1

the aim is to determine the coefficient matrix A, € R¥™™ of rank r < min{m,d} such
that

A,=arg min FE [(y —Ax)"Z (y - Ax)}

rank(A)=r

with estimated error ¥ = E(eeTQ, where €7 = {e1,...,e4}. The above equation is
then solved as A, = B, A, where A € R?X™ is the matrix of the ordinary least squares
(OLS) estimates and the reduced-rank shrinking matrix B, € R4*? is given by

B, =T 'IT,

where I, = diag{1(i < )} ; and T is the canonical co-ordinate matrix that seeks to
maximize the correlation between the d-vector y and the m-vector x.

Later, Brown and Zidek” presented a multi-variate version of the Hoerl-Kennard
ridge regression rule and proposed the estimator ﬁ* (K):

B K) = x"x0I+ L, oK) ' (x"x® 1), B

where K(d x d) > 0 is the ridge matrix. ® denotes the usual Kronecker product and
B, 3* are (md x 1) vectors of estimators of 8 = (B1,...,Bm)", where B1,...,Bm are
each (1 x d) row vectors of 3. /é represents the maximum likelihood estimator of 3
corresponding to K = 0.

Furthermore, van der Merwe and Zidek®* introduced the filtered canonical y-
variate regression (FICYREG) method defined as a generalization to the multi-variate
regression problem of the James-Stein estimator. The estimated coefficient matrix
A e R¥™™ takes the form



A =BJA,

where A € R¥™ is the matrix of OLS estimates. The shrinking matrix B; € R4
is given by By = T~'FT, where T is the sample canonical co-ordinate matrix and
F = diag{fi,..., fa} represents the canonical co-ordinate shrinkage factors {fi}7_;
that depend on the number of targets d, the number of predictor variables m, and the
corresponding sample squared canonical correlations {&2}¢ ;:

fi= (é? - m_Td_l)/éf (1 - m—Td—l) and f; < maz{0, fi}.

In addition, one of the most prominent approaches for dealing with the multi-
output regression problem is the curds and whey (C&W) method proposed by Breiman
and Friedman in®. Basically, given d targets y = (y1,...,%4)" with separate least
squares regressions ¥y = (J1,. .., Qd)T, where y and X are the sample means of y and
X, respectively, a more accurate predictor g; of each y; is obtained using a linear
combination

d
§¢:ﬂi+zbik(z}k—ﬂk)a ie{l,....d},
k=1

of the OLS predictors

Gi= it )i —3;), st
j=1

N m
. . n - n o -4\?
{a; };nzl =arg min Z (yf - Zaj(x; ) mj))
tagdit, |1 =1

rather than with the least squares themselves. Here a;; are the estimated regres-
sion coefficients, and b;x can be regarded as shrinking parameters that transform the
vector-valued OLS estimates y to the biased estimates y, and are determined by the
C&W procedure, which is a form of multi-variate shrinking. In fact, the estimates of
the matrix B = [bix] € R¥? take the form of B = T~!'ST, where T is the d x d
matrix whose rows are the response canonical co-ordinates maximizing the correla-
tions between y and x, and S = diag(si,...,sq) is a diagonal shrinking matrix. To
estimate B, C&W starts by transforming (T'), shrinking (i.e., multiplying by S), then
transforming back (T™).

More recently, Similé and Tikka'® investigated the problem of input selection and
shrinkage in multi-response linear regression. They presented a simultaneous variable
selection (SVS) method called L2-SVS, where the importance of an input in the model
is measured by the La-norm of the regression coefficients associated with the input.
To solve the L2-SVS, W, the m X d matrix of regression coefficients, is estimated by
minimizing the error sum of squares subject to a sparsity constraint as follows:



. 1 2 . -
min f(W) = Slly = xW]|[ subject to 2||wﬂ|2 <,
o

where the subscript F denotes the Frobenius norm, i.e., [|B||% = 3=, b7;. The factor
|[w;l|2 is a measure of the importance of the jth input in the model, and r is a free
parameter that controls the amount of shrinkage that is applied to the estimate.

If the value of r > 0 is large enough, the optimal W is equal to the ordinary least
squares solution, whereas small values of » impose a row-sparse structure on W, which
means that only some of the inputs are effective in the estimate.

Abraham et al.3® coupled linear regressions and quantile mapping to both minimize
the residual errors and capturing the joint (including non-linear) relationships among
variables. The method was tested on bivariate and trivariate output spaces showing
that it is able to reduce residual errors while keeping the joint distribution of the
output variables.

2.2.2 Multi-output support vector regression

Traditionally, support vector regression (SVR) is used with a single-output variable.
It aims to determine the mapping between the input vector x and the single output
y; from a given training data set D;, by finding the regressor w € R™*! and the bias
term b € R that minimize

N
S+ 3L (s~ (o) w4 b)),
=1

where ¢(-) is a non-linear transformation to a higher dimensional Hilbert space H,
and C is a parameter chosen by the user that determines the trade-off between the
regularization and the error reduction term, first and second addend, respectively. L is
a Vapnick e-insensitive loss function, which is equal to 0 for |y¥ — (¢(x(l))Tw+b)| <e
and to |y — (gf)(x(l))Tw +b)| — ¢ for Iy — (d)(x(l))Tw +b)| > e. The solution (w
and b) is induced by a linear combination of the training set in the transformed space
with an absolute error equal to or greater than e.

Hence, in order to deal with the multi-output case, single-output SVR can be
easily applied independently to each output (see Section 2.1.4). Because it has the
serious drawback of not taking into account the possible correlations between outputs
however, several approaches have been proposed to extend traditional SVR in order
to better manage the multi-output case. In general, this consists of minimizing

d N
%Z w2 + C’ZL(y(l) _ (¢(X(l))TW+b))7
i=1 =1

where the m x d matrix W = (w1, w2,...,wq) and b = (b1, bo, .. wbd)T.

For instance, Vazquez and Walter®® extended SVR by considering the so-called
Cokriging®” method, which is a multi-output version of Kriging that exploits the
correlations due to the proximity in the space of factors and outputs. In this way,
with an appropriate choice of covariance and cross-covariances models, the authors



showed that multi-output SVR yields better results than an independent prediction
of the outputs.

Sanchez-Ferndndez et al.'® introduced a generalization of SVR. The so-called mul-
tiregressor SVR (M-SVR) is based on an iterative reweighted least squares (IRWLS)
procedure that iteratively estimates the weights W and the bias parameters b until
convergence, i.e., until reaching a stationary point where there is no more improvement
of the considered loss function.

Similarly, Brudnak>® developed a vector-valued SVR by extending the notions of
the estimator, loss function and regularization functional from the scalar-valued case;
and Tuia et al.*® proposed a multi-output support vector regression method by extend-
ing the single-output SVR to multiple outputs while maintaining the advantages of a
sparse and compact solution using a cost function. Later, Deger et al.®® adapted Tuia
et al.’s'® approach to tackle the problem of reflectance recovery from multispectral
camera output, and proved through their empirical results that it has the advantages
of being simpler and faster to compute than a scalar-valued based method.

In“%, Cai and Cherkassky described a new methodology for regression problems,
combining Vapnik’s SVM+ regression method and the multi-task learning (MTL)
setting. SVM+, also known as learning with structured data, extends the standard
SVM regression by taking into account the group information available in the training
data. The SVM+ approach learns a single regression model using information on all
groups, whereas the proposed SVM+MTL approach learns several related regression
models, specifically one model for each group.

In*', Liu et al. considered the output space as a Riemannian submanifold to
incorporate its geometric structure into the regression process, and they proposed a
locally linear transformation (LLT) mechanism to define the loss functions on the
output manifold. Their proposed approach, called LLT-SVR, starts by identifying
the k-nearest neighbors of each output using the Euclidean distance, then obtains
local coordinate systems, and finally trains the regression model by solving a convex
quadratic programming problem.

Moreover, Han et al.'” dealt with the prediction of the gas tank level of the Linz
Donawitz converter gas system using a multi-output least squares SVR. They consid-
ered both the single-output and the combined-output fitting errors. In model solving, a
full-rank equation is given to determine the required parameters during training using
an optimization based on particle swarm“? (an evolutionary computation method).

Xu et al.*® recently proposed another approach to extend least squares SVR to
the multi-output case. The so-called multi-output LS-SVR (MLS-SVR) then solves
the problem by finding the weights W = (w1,...,wg) and the bias parameters b =
(b1,...,b4)T that minimize the following objective function:

1 1
min F(W,E) = = trace(W' W) + v = trace(E"E),
WER"h X4 beRd 2 2

st.Y=2Z"TW + 7“epmat(bT7 N, 1)+ &,

where Z = (p(xM), p(x?), ..., o(x™)) € R"»*N o R™ — R is a mapping to
some higher dimensional Hilbert space H with n; dimensions. The function repmat
defined over a 1 X d matrix b repmat(bT, N, 1) creates a large block matrix consisting
of an N x 1 tiling of copies of b. E = (£1,&2,...,€4) € fod is a matrix consisting of
slack variables, and v € RY is a positive real regularized parameter.



2.2.3 Kernel methods

A study of vector-valued learning with kernel methods was started by Micchelli and
Pontil?, where they analyzed the regularized least squares from the computational
point of view. They also analyzed the theoretical aspects of reproducing kernel Hilbert
spaces (RKHS) in the range-space of the estimator, and they generalized the repre-
senter theorem for Tikhonov regularization to the vector-valued setting.

Baldassarre et al.** later studied a class of regularized kernel methods for multi-
output learning which are based on filtering the spectrum of the kernel matrix. They
considered methods also including Tikhonov regularization as a special case, and al-
ternatives such as vector-valued extensions of squared loss function (L2) boosting and
other iterative schemes. In particular, they claimed that Tikhonov regularization could
be seen as a low-pass filtering applied to the kernel matrix. The idea is thus to use
different kinds of spectral filtering, defining regularized matrices that in general do not
have interpretation as penalized empirical risk minimization.

In addition, Evgeniou and Pontil*® considered the learning of an average task
simultaneously with small deviations for each task, and Evgeniou et al. extended
their earlier results in*® by developing indexed kernels with coupled regularization
functionals.

Alvarez et al.*” reviewed at length kernel methods for vector-valued functions,
focusing especially on regularization and Bayesian prospective, connecting the two
points of view. They provided a large collection of kernel choices, focusing on separable
kernels, sum of separable kernels and further extensions as kernels to learn divergence-
free and curl-free vector fields.

2.2.4 Multi-target regression trees

Multi-target regression trees, also known as multi-variate regression trees or multi-
objective regression trees, are trees able to predict multiple continuous targets at
once. Multi-target regression trees have two main advantages over building a separate
regression tree for each target*®. First, a single multi-target regression tree is usually
much smaller than the total size of the individual single-target trees for all variables,
and, second, a multi-target regression tree better identifies the dependencies between
the different target variables.

One of the first approaches proposed for dealing with multi-target regression trees
was proposed by De’ath?®. He presented an extension of the univariate recursive
partitioning method (CART)®° to the multi-output regression problem. Hence, the
so-called multi-variate regression trees (MRTSs) are built following the same steps as
CART, i.e., starting with all instances in the root node, then iteratively finding the
optimal split and partitioning the leaves accordingly until a pre-defined stopping cri-
terion is reached. The only difference from CART is the redefinition of the impurity
measure of a node as the sum of squared error over the multi-variate response:

SIS0 -5,)°

=1 i=1

where ygl) denotes the value of the output variable Y; for the instance [ and %, denotes
the mean of Y; in the node. Each split is selected to minimize the sum of squared
error. Finally, each leaf of the tree can be characterized by the multi-variate mean
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of its instances, the number of instances at the leaf, and its defining feature values.
De’ath®® claimed that MRT also inherits characteristics of univariate regression trees:
they are easy to construct and the resulting groups are often simple to interpret;
they are robust to the addition of pure noise response and/or feature variables; they
automatically detect the interactions between variables, and they handle missing values
in feature variables with minimal loss of information.

Struyf and Dzeroski*® proposed a constraint-based system for building multi-
objective regression trees (MORTSs). It includes both size and accuracy constraints,
so that the user can trade off size (and thus interpretability) for accuracy by either
specifying maximum tree size or minimum accuracy. Their approach consists of first
building a large tree using the training set, then pruning it in a second step to sat-
isfy the user constraints. This has the advantage that the tree can be stored in the
inductive database and used for answering inductive queries with different constraints.

Basically, MORTSs are constructed with a standard top-down induction algorithm
, and the heuristic used for selecting the attribute tests in the internal nodes is
the intra-cluster variation summed over the subsets (or clusters) induced by the test.
Intra-cluster variation is defined as N - Zf;l Var(Y;) with N the number of instances
in the cluster, d number of target variables, and Var(Y;) the variance of the target
variable Y; in the cluster. Minimizing intra-cluster variation produces homogeneous
leaves, which in turn results in accurate predictions.

In addition, Appice and Dzeroski? presented an algorithm, named multi-target
stepwise model tree induction (MTSMOTI), for inducing multi-target model trees in a
stepwise fashion. Model trees are decision trees whose leaves contain linear regression
models that predict the value of a single continuous target variable. Based on the
stepwise model tree induction algorithm®!, MTSMOTI induces the model tree top-
down by choosing at each step to either partition the training space (split nodes)
or introduce a regression variable in the set of linear models to be associated with
leaves. In this way, each leaf of such a model tree contains several linear models, each
predicting the value of a different target variable Y;.

Kocev et al.® explored and compared two approaches for dealing with multi-output
regression problem: first, learning a model for each output separately (i.e., multiple
regression trees) and, second, learning one model for all outputs simultaneously (i.e.,
a single multi-target regression tree). In order to improve predictive performance,
Kocev et al.52 also considered two ensemble learning techniques, namely, bagging >
and random forests >3 of regression trees and multi-target regression trees.

Ikonomovska et al.>* proposed an incremental multi-target model tree algorithm,
referred to as FIMT-MT, for simultaneous modeling of multiple continuous targets
from time changing data streams. FIMT-MT extends an incremental single-target
model tree by adopting the principles of the predictive clustering methodology in the
split selection criterion. In the tree leaves, linear models are separately computed for
each target using an incremental training of perceptrons.

Stojanova et al.?® developed the NCLUS algorithm for modeling non-stationary
autocorrelation in network data by using predictive clustering trees (i.e., decision trees
with a hierarchy of clusters: the top-node corresponds to one cluster containing all
data, which is recursively partitioned into smaller clusters while moving down the
tree). NCLUS is a top-down induction algorithm that recursively partitions the set of
nodes based on the average values of variance reduction and autocorrelation measure
computed over the set of all target variables.

More recently, a similar work has been proposed by Appice et al.’6. They dealt
with the problem of modeling non-stationary spatial autocorrelation of multi-variate
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geophysical data streams by using interpolative clustering trees (i.e., tree structured
models where a split node is associated with a cluster and a leaf node with a single
predictive model for the multiple target variables). Their proposed time-evolving
method is also based on a top-down induction algorithm that makes use of variance
reduction and spatial autocorrelation measure computed over the target variables.

Levatic et al.®” addressed the task of semi-supervised learning for multi-target
regression and proposed a self-training approach using a random forest of predictive
clustering trees. The main feature of self-training is that it iteratively uses its own
most reliable predictions in the learning process. The most reliable predictions are
selected in this case using a threshold on the reliability scores, which are computed as
the average of the normalised per-target standard deviations.

2.2.5 Rule methods

Aho et al.®® presented a new method for learning rule ensembles for multi-target re-
gression problems and simultaneously predicting multiple numeric target attributes.
The so-called Flited Rule Ensemble (FIRE) algorithm transcribes an ensemble of re-
gression trees into a large collection of rules, then an optimization procedure is used to
select the best (and much smaller) subset of these rules and determine their respective
weights.

More recently, Aho et al.* extended the FIRE algorithm by combining rules with
simple linear functions in order to increase the predictive accuracy. Thus, FIRE op-
timizes the weights of rules and linear terms with a gradient-directed optimization
algorithm. Given an unlabeled example x, the resulting rule ensemble is a vector y
consisting of the values of all target variables:

R

d m
y= f(x) = wo avg + Zwkrk(x) + ZZWUXZ‘J‘,

k=1 i=1 j=1

where wo € R is the baseline prediction, avg is the constant vector whose components
are the average values for each of the targets, and R defines the number of considered
rules. Hence, the first sum is the contribution of the R rules: each rule ry is a vector
function that gives a constant prediction for each of the targets if it covers the example
X, or returns a zero vector otherwise; and the weights wy, are optimized by a gradient-
directed optimization algorithm. The double sum is the contribution of optional m x d
linear terms. In fact, a linear term x;; is a vector that corresponds to the influence of
the jth numerical descriptive variable X; on the ith target variable Y;, that is, its ith
component is equal to X, whereas all other components are zero:

xij:(O,..., 0,&']'7 0,,0)
~— )~~~
i-1 ; i+1

i

Finally, the values of all weights w;; are also determined using a gradient-directed op-
timization algorithm that depends on a gradient threshold 7. Thus, the optimization
procedure is repeated using different values of 7 in order to find a set of weights with
the smallest validation error.

Table 1 summarizes the reviewed multi-output regression algorithms.
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Table 1: Summary of multi-output regression methods

Method Reference Year

Single target Spyromitros-Xioufis et al.? [2012

Problem Random linear target combinations/Tsoumakas et al.® 2014
transformation|Separate ridge regression Hoerl and Kennard 1970
methods Multi-target regressor stacking Spyromitros-Xioufis et al.? [2012
Regressor chains Spyromitros-Xioufis et al.* 2012

Multi-output SVR Zhang et al.>? 2012

Izenman %3 1975

van der Merwe and Zidek3*|1980

Statistical methods Brown and Zidek” 1980

Breiman and Friedman® 1997

Simild and Tikka'° 2007

Abraham et al.?" 2013

Brudnak3® 2006

Cai et al.*® 2009

Deger et al.®® 2012

Han et al.'” 2012

Algorltl.lm Multi-output SVR Liu et al.*' 1 2009
adaptation Sanchez et al.*® 2004
methods Tuia et al.'® 2011
Vazquez and Walter 2003

Xu et al.*? 2013

Baldassarre et al.** 2012

Evgeniou and Pontil*® 2004

Kernel methods Evgeniou et al.*° 2005

Micchelli and Pontil? 2005

Alvarez at al.*7 2012

De’ath®? 2002

Appice and Dzeroski? 2007

Kocev et al.” 2009

Kocev et al.®? 2012

Multi-target regression trees Struyf and Dzeroski*® 2006

Tkonomovska, et al.> 2011

Stojanova et al.®® 2012

Appice et al.®® 2014

Levatic et al.®” 2014

Rule methods Aho et al.®® 2009

Aho et al.! 2012
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3 Discussion

Note that, even though the single-target (ST) method is a simple approach, it does
not imply simpler models. In fact, exploiting relationships among the output variables
could be used to improve the precision or reduce computational costs as explained in
what follows.

First, let us point out that some transformation algorithms fail to properly exploit
the multi-output relationships, and therefore they may be considered as ST methods.
For instance, this is the case of RC using linear regression as base models, namely,
OLS or ridge estimators of the coefficients.

Lemma 3.1 RC with linear regression is an ST if OLS or ridge regression is used as
base models.

Proof 3.2 See Appendix.

To our knowledge, Lemma 3.1 is valid just for linear regression. However, it
presents an example of the fact that, in some cases, intuitions behind a model could
be misleading. In particular, when problem transformations methods are used in
combination with ensemble methods (e.g., ERC and ERCC), the advantages of the
multi-output approach could be hard to understand and interpret.

In addition, statistical methods and multi-output support vector regression (MO-
SVR) are methods that mainly rely on the idea of embedding of the output-space.
They assume that the space of the output variables could be described using a sub-
space of lower dimensions than R?¢ (e.g., Izenman®®, Brudnak®® Liu et al.*!). There
are several reasons to adopt this embedding:

e When m < d. In this case, an embedding is certain .

e When we have a prior knowledge on the output-space structure, for example
spatial relationship among the output variables3°.

e When we assume a linear model with a non-full rank matrix of coefficients 3334,

e When we assume a manifold structure for the output-space!.

Such an embedding implies a series of advantages. First of all, a more compact
representation of the output space is achieved. Second, in the case of linear models,
it assures correct estimations of ill-posed problems”?3#*. Third, it may improve the
predictive performance of the considered methods®!. Moreover, in the case of MO-
SVR and kernel methods with a large number of input variables, computations could
become very costly, so exploiting output dependencies permits to reduce them38.

Statistical methods could be considered as a direct extensions of the ST linear
regression, while MO-SVR and kernel methods present the merits of dealing with non-
linear regression functions, and therefore they are more general. We could then ascribe
statistical methods in the modeling tradition of statistics, while MO-SVR, kernel meth-
ods, rule methods and multi-target regression trees rather belong to the algorithmic
branch of statistics or to the machine learning community (see Breimann ®?).

Predictive performance. Considering the model’s predictive performance as a
comparison criterion, the benefits of using MTRS and RC (or ERC and the corrected
versions) instead of the baseline ST approach are not so clear. In fact, in Spyromitros-
Xioufiis et al.?, an extensive empirical comparison of these methods is presented, and
the results show that ST methods outperform several variants of MTRS and ERC.
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This fact is especially notable in the straightforward applications. In particular, the
benefits of MTRS and RC methods seem to derive uniquely from the randomization
process (e.g., due to the order of the chain) and from the ensemble model (e.g., ERC).

Statistical methods could improve notably the performance with respect to a base-
line ST regression but only if specific assumptions are fulfilled, that is, a relation among
outputs truly exists, and a linear output-output relationship (in addition to a linear
input-output relationship) is verified. Otherwise, using these statistical models could
produce a detriment of the predictive performance. In particular, if we assume that
the d x m matrix of regression coefficients has a reduced rank r < min(d, m), when in
reality it posses a full-rank, then we are obviously wrongly estimating the relationship
and we lose some information.

MO-SVR and kernel methods are, in general, designed to achieve a good predictive
performance where linearity can not be assumed. It is interesting to notice that some
of the MO-SVR methods are basically designed with the following goals: 1) speeding
up computations, 2) obtaining a sparser representation (avoiding the use of the same
support vector for several times) compared to the ST approach®, and 3) keeping
more or less the same error rates as the ST approach. On the contrary, Liu et al.*!
implementation is only based on improving the predictive performance. The authors
also advocate that their method should be implemented in every regression algorithm
because it guarantees to find an optimal local basis for computing distances in the
output manifolds.

Finally, multi-target regression trees and rule methods are also based on finding
simpler multi-output models, that usually achieve good predictive results (i.e., com-
parable with ST approach).

Computational complexity. For alarge number of output variables, all problem
transformation methods face the challenging problems of either solving a large number
of single-target problems (e.g., ST, MTRS, RC) or a single large problem (e.g., LS-SVR,
32). Nevertheless, note that ST and some implementations of RC could be speeded
up in the training and/or prediction phases using a parallel computation (see Section
6 and Appendix B).

Using ST with kernel methods as a base model may also lead to compute the same
kernel over the same points more than once. In this case, it is computationally more
efficient to consider multi-output kernels and thus avoid redundant computations.

Multi-target regression trees and rule methods are also designed to be more com-
petitive from the point of view of computational and memory complexity, especially
compared to their ST counterparts.

Representation and interpretability. Algorithm adaptation methods, relying
on single-target models, do not provide a description of the relationships among the
multiple output variables. Those methods are interpretable as long as the number of
outputs is not intractable, otherwise, it is extremely difficult to analyse each model
and retrieve information about the relationships between the different variables.

Statistical methods provide a similar representation as ST regression models (each
output is a linear combination of inputs), the main difference is that the subset of
independent and sufficient outputs could be discovered. In some cases (e.g., LASSO
penalty estimations), the estimated model could be represented as a graph since the
matrix of the regression coefficients tends to be sparse.

Kernel and MO-SVR methods suffer from the same problem as in the single-output
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SVR. In fact, their model interpretation is not straightforward since the input space is
transformed. The gain in predictive performance is usually paid in terms of readability.

Multi-target regression trees and rule methods build human-readable predictive
models. They are hence considered as the most interpretable multi-output models
(if not coupled with ensemble methods), clearly illustrating which input variables are
relevant and important in the prediction of a given group of outputs.

4 Performance evaluation measures

In this section we introduce the performance evaluation measures used to assess the
behavior of learned models when applied to an unseen or test data set of size Niest, and
thereby to assess the multi-output regression methods used for model induction. Let
y(l) and y(l> be the vectors of the actual and predicted outputs for x<l), respectively,
and ¥ and § be the vectors of averages of the actual and predicted outputs, respectively.
Besides measuring the computing times 1'®17%2 the mostly used evaluation measures
for assessing multi-output regression models are:

e The average correlation coefficient (aCC) 34352

1y d Sy =708 5
aCC = 4 § (1)
es l a7 es l =
= = I@N' (W -7 TN (00 - )2

The average relative error*®

Niest Iy(l) A(l)|

B RO 9! )
“a 2T Al NS O @

e The mean squared error (MSE)?®:40:48;

Niest

1 A
MSE = ZNtest > @ -9y (3)

i=1 =1

17,1 2
e The average root mean squared error (aRMSE) 3:1718:39.52,

1 d ZNfest (1) A(l))
MSE = - = Yi 4
aRMS d;R dz N (4)

The average relative root mean squared error (aRRMSE) 14552,

1 1
aRRMSE = b ZRRMSE =3 2::

Ntest( O] g(l))Q

Nte.st (y(l) 7:)?
7 K]
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e The model size®52: defined for instance as the total number of nodes in trees
(or the total number of rules) in multi-target regression trees (or rule methods).

Note that, the different described estimated errors are computed as the sum/aver-
age over all the separately-computed errors for each target variable. This allows to
calculate the model performance across multiple targets, which may potentially have
distinct ranges. In such cases, the use of a normalization operator could be useful
in order to obtain a normalized error values for each target, prior to averaging. The
normalization is usually done by dividing each target variable by its standard devi-
ation or by re-scaling its range. The re-scaling factor could be either determined by
the data/application at hand (i.e., some prior knowledge), or by the type of the used
evaluation measures. For instance, when using MSE or RMSE, a reasonable choice
would be to scale each target variable by its standard deviation. Relative measures,
such as RRMSE, automatically re-scale the error contributions of each target variable,
and hence, there might be no need here to use an extra normalization operator.

5 Data sets

Despite the many interesting applications of multi-target regression, there are only
a few publicly available data sets. There follows a brief description of those data
sets, which are then summarized in Table 2 including details about the number of in-
stances (represented as training/testing or total number of instances/CV where cross-
validation (CV) is applied for the evaluation process), the number of targets, and the
number of features.

Table 2: Multi-target regression data sets.

Data set Instances | Features | Targets
Solar Flare®® 1389/CV 10 3
Water Quality®! | 1060/CV 16 14
OES97* 323/CV 263 16
OES10* 403/CV 298 16
ATP1d* 201/136 411 6
ATP7d* 188/108 411 6
RF1* 4108/5017 64 8
RF24 4108/5017 576 8
EDM %2 154/CV 16 2
Polymer 43 41/20 10 4
Forestry-Kras®® | 60607/CV 160 2
Soil quality % 1945/CV 142 3

o Solar Flare®: data set for predicting how often three potential types of solar
flare — common, moderate, and severe (i.e., d = 3) — occur in a 24-hour period.
The prediction is performed from the input information of ten feature variables
describing active regions on the sun.

o Water Quality®': data set for inferring chemical from biological parameters of
river water quality. The data are provided by the Hydrometeorological Institute
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of Slovenia and cover the six-year period from 1990 to 1995. It includes the
measured values of 16 different chemical parameters and 14 bioindicator taxa.

OES97 and OES10*: data gathered from the annual Occupation Employment
Survey compiled by the US Bureau of Labor Statistics for the years 1997 (OES97)
and 2010 (OES10). Each row provides the estimated number of full-time equiv-
alent employees across many employment types for a specific metropolitan area.
The input variables are a randomly sequenced subset of employment types, and
the targets (d = 16) are randomly selected from the entire set of categories
above the 50% threshold.

ATP1d and ATP7d*: data sets of airline ticket prices where the rows are se-
quences of time-ordered observations over several days. The input variables
include details about the flights (such as prices, stops, departure date), and the
6 target variables are the minimum prices observed over the next 7 days for
6 flight preferences (namely, any airline with any number of stops, any airline
non-stop only, Delta Airlines, Continental Airlines, AirTran Airlines, and United
Airlines).

RF1 and RF2%: the river flow domain is a temporal prediction task designed
to test predictions on the flows in a river network for 48 hours in the future at
specific locations. The data sets were obtained from the US National Weather
Service and include hourly flow observations for 8 sites in the Mississippi River
network in the United States from September 2011 to September 2012. The RF1
and RF2 data sets contain a total of 64 and 576 predictor variables respectively,
describing lagged flow observations from 6, 12, 18, 24, 36, 48 and 60 hours in
the past.

EDM ®2: data set for the electrical discharge machining (EDM) domain in which
the workpiece surface is machined by electrical discharges occurring in the gap
between two electrodes - the tool and the workpiece. The aim here is to predict
the two target variables, gap control and flow control, using 16 input variables
representing mean values and deviations of the observed quantities of the con-
sidered machining parameters.

Note here that all the above data sets can be downloaded from
http://users.auth.gr/espyromi/datasets.html.

Polymer“®: the Polymer test plant data set includes 10 input variables, mea-

surements of controlled variables in a polymer processing plant (temperatures,
feed rates, etc.), and 4 target variables which are measures of the output of that
plant.

It is available from ftp://ftp.cis.upenn.edu/pub/ungar/chemdata/.

Forestry-Kras®: data set for the prediction of forest stand height and canopy
cover for the Kras region in Western Slovenia. This data set contains 2 target
variables representing forest properties (i.e., vegetation height and canopy cover)
and 160 explanatory input variables derived from Landsat satellite imagery data.
The data are available upon request from the authors.

Soil quality %*: data set for predicting the soil quality from agricultural measures.
It consists of 145 variables, of which 3 are target variables (the abundances of
Acari and Collembolans, and Shannon-Wiener biodiversity), and 142 are input
variables that describe the field where the microarthropod sample was taken and
mainly include agricultural measures (such as crops planted, packing, tillage,
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fertilizer and pesticide use). The data are available upon request from the
authors.

6 Open-source software frameworks

We present now a brief summary of available implementations of some multi-output
regression algorithms.

Problem transformation methods. Single target models, regressor chains and
all the methods described in Spyromitros-Xioufis et al.? have been implemented as an
extension of MULAN®® (developed by Tsoumakas, Spyromitros-Xioufis and Vilcek),
which also consists of an extension of the widely used WEKA software®. MULAN is
available as a library, thus there is no graphical user or command line interfaces.

Similar to MULAN, there is also the MEKA software®’ (developed by Read and
Reutemann), which is defined as a multi-label extension to WEKA. It mainly focuses
on multi-label algorithms, but incorporates as well some multi-output algorithms.
MEKA presents a graphical user interface similar to WEKA and it is very easy to use
for non-experts.

The main advantage of both MEKA and MULAN is that problem transformation
methods can be coupled with any single-target algorithm implemented in the WEKA
library. Moreover, MULAN could be coupled with MOA %® framework for data stream
mining or integrated in ADAMs®® framework for scientific workflow management.

Furthermore, problem transformation methods, such as ST, MTRS and RC could
be easily implemented in R"°, and it is possible to use as well the parallel ™ package
(included in R, version 2.14.0) to speed up computations using parallel computing (see
Appendix B for a simple example of an R source code of a parallel ST implementation).

Statistical methods. The glmnet ™ R package offers the possibility of learning
multi-target linear models with penalized maximum likelihood. In particular, using
this package, it is possible to perform LASSO, ridge or mixed penalty estimation of
the coefficients.

Multi-target regression trees. Multi-variate regression trees?® are available
through the R package mvpart "2, which is an extension of the rpart”® package that
implements the CART algorithm. The mvpart package is not currently available in
CRAN but its older versions could be retrieved.

Additional implementation of multi-target regression trees algorithms could be also
found in the CLUS system ™, focused on decision trees and rules induction. Among
others, the CLUS system implements the predictive clustering framework and includes
multi-objective regression trees*®. Moreover, MULAN includes a wrapper implemen-
tation of CLUS, supporting hence multi-objective random forest.

7 Conclusion

In this paper, the state of the art of multi-output regression is thoroughly surveyed,
presenting details of the main approaches that have been proposed in the literature,
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and including a theoretical comparison of these approaches in terms of predictive per-
formance, computational complexity and representation and interpretability. More-
over, we have presented the mostly used performance evaluation measures, as well
as the publicly available data sets for multi-output regression problems, and we have
provided a summary of the related open-source software frameworks.

To the best of our knowledge, there is no other review paper addressing the chal-
lenging problem of multi-output regression. An interesting line of future work would
be to perform a comparative experimental study of the different approaches presented
here on the publicly available data sets to round out this review. Another interesting
extension of this review is to consider different categorizations of the described multi-
output regression approaches, such as grouping them based on how they model the
relationships among the multiple target variables.
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A Proof of Lemma 3.1

‘We present here the proof of Lemma 3.1, when OLS estimations of the coefficients are
used. The case of ridge regression is similar.

Proof A.1 Let X be the N xm matriz of input observations and Y the N xd matriz of
output observations. Let us assume that X' X is invertible, otherwise, OLS estimation
cannot be applied. Let also consider that the the ordering of the chain is exactly as
follows: Yi,...,Yq. Hence, the coefficients of the first target are estimated as the OLS
ones:
R™3 B8, = (X'X) ™ X'y,

where y1 is the first column of Y, corresponding to the observations of Y1. Next, in
the second training step of the chain, the OLS estimation of the coefficients B2 are

computed as the regression of Yo over Xi,...,Xm, Y1 as follows:
X'X | Xty \ '/ X
R™ 58, = ( )
P> viX | yim yi )Y

Using the formula for computing the inverse of a block-defined matriz we obtain:

X'X | X'y \' [ (X'X)"'+8.CD | -B.C
yiX | yim B -CD | C ’
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where
B =(X'X)"' X'y, e R™*,
C=(yyi -y X(X'X) ' X'y)  eR”,
D=8} =y X(X'X)"' e RV,

Assuming that yiy: — yi X (X' X) ' Xy, is invertible, i.e., it is different from 0, we
have

8o — B\ _( (X'X)'X'y> + S1CDX"ys — f1CY /'y
2 B2,1 —CDX'y; + Cyly: ’

and the model of the first two steps of the chain can be expressed as:

T1
1
- t . N t
y1=PB1 : and Y2 = B33
Tm
Tm N
Y1

Finally, substituting 91 into the equation with y2, we obtain:
T X1 I1
v2 = Bs : + B2,181 : = (B3 + B2,181)
Tm Tm Tm

Therefore, it is easy to see now that:

o+ B2181 = (X' X) "' X"y, (6)
The right-hand side of Equation (6) are the OLS estimations of the regression coeffi-
cients of Yo over Xu,...,X.m. Hence, the second step of the chain is equivalent to the

OLS estimation of a ST model. Iterating the argument we obtain that every step of
the chain is equivalent to the ST model.

B R code for a parallel implementation of ST

We developed the following R source code as an example for a parallel implementation
of the single-target (ST) method. It consists of 1) a function for learning ST models
with a user-defined base model (referred to as the input parameter base) and a given
training data set (data), 2) a function for testing the learned ST models and predicting
the output target values given new unseen instances (i.e., newdata), and 3) an example
of use of both functions: we consider here learning and testing a ST method using a
support vector machine as a base model.

Note that, any available R base model implementation could be also used. For
instance, we have tested these R code fragments with linear models (e.g., 1m and glm),
local polynomial regression (loess), ridge regression (rlm from the ridge package),
support vector regression (svm from the e1071 package), and non-parametric kernel
regression (npreg from the np package).

Moreover, it is possible to use parallel computations using the parameter mc. cores.
In this example, we make use of the mclapply function, that relies on forking and
thus works in parallel if mc.cores>1, only when performed on UNIX-like systems (see
parallel documentation for its use on Windows systems).
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require ("parallel") #parallel package

#1)Definition of the learning function for ST models

single_target_mvr<-function(outputs, inputs, base = 1lm, data,

mc.cores = 1, ...){
model_list <- mclapply(mc.cores = mc.cores,

X = outputs, FUN = function(out){

form <- as.formula(paste(out, "~", paste(inputs,

collapse = "+"),sep = ","))
return(base (form, data = datal, c(out, inputs)],...))3})
class(model_list) <- "single_target"

names (model_list) <- outputs
return(model_1list)

}

#2)Definition of the prediction function

predict.single_target <- function(object,newdata = NULL,

mc.cores=1,...){
prediction<-mclapply(mc.cores = mc.cores, X = object,
FUN = predict , newdata = newdata)
return(as.data.frame(prediction))
}

#3) Ezample of use of both functions for learning and testing ST
# using support wvector machine as a base model

require ("MASS") #MASS package
#Generate a rTandom cowariance matriz with ones in the diagonal
A <- matrix(nrow = 8, runif (64, min = -1, max=1))
A <- apply(A, MARGIN = 1,
FUN = function(x){return(x/sqrt( sum(x~2)))})

Sigma <- t(A) %x% A

#Generate training and test set from a multivariate
#Gaussian distribution with Sigma as cowvartiance matriz

Dtrain <- data.frame(mvrnorm(n=1000,mu=rep(0,8),Sigma=Sigma))
Dtest <- data.frame(mvrnorm(n=1000, mu=rep(0,8), Sigma=Sigma))

require ("el1071") #e1071 package for sum
mc.cores <- min( 4, (detectCores() - 1) ) #number of cores

#Learn the ST model

STsvm <- single_target_mvr (outputs=names(Dtrain) [5:8],
inputs=names (Dtrain) [1:4], base=svm,
data=Dtrain, mc.cores= mc.cores)

#Predict target wvalues and compute the mean squared error

prediction <- predict(STsvm , newdata = Dtest)
mse <- mean((prediction - Dtest[,5:8])72)
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