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The authors discuss and demonstrate the growth of InN surface quantum dots on a high-In-content

In0.73Ga0.27N layer, directly on a Si(111) substrate by plasma-assisted molecular beam epitaxy.

Atomic force microscopy and transmission electron microscopy reveal uniformly distributed quantum

dots with diameters of 10–40 nm, heights of 2–4 nm, and a relatively low density of �7 � 109 cm�2.

A thin InN wetting layer below the quantum dots proves the Stranski-Krastanov growth mode. Near-

field scanning optical microscopy shows distinct and spatially well localized near-infrared emission

from single surface quantum dots. This holds promise for future telecommunication and sensing

devices. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905662]

Research on semiconductor nanomaterials has led to a

vast variety of applications, including renewable energy,

bio-sensing, and nano-photonics. In the search for the best

material, InGaN combines the most superior properties such

as the widest bandgap tunability, high near band edge

absorption, high carrier mobility, surface electron accumula-

tion, chemical stability, and superior radiation hardness.1

High flexibility in performance design and functionality is

offered by the combination with quantum dots (QDs) acting

as artificial atoms with size dependent quantized electronic

properties. Self-assembled GaN QDs have been intensively

investigated for blue light emitters.2 In the pursuit of high

performance green light emitting diodes, InGaN QDs have

been grown on both c- and m-plane GaN3,4 and by selective

area epitaxy applying diblock copolymer lithography.5

InGaN QDs on GaN have been obtained by both molecular

beam epitaxy (MBE) and metal organic vapor phase epitaxy

(MOVPE) by either direct island formation (Volmer-Weber,

VW growth mode) or wetting layer followed by island for-

mation (Stranski-Krastanov, SK growth mode).6–9

Near-infrared photoluminescence (PL) emission was

reported for InN QDs on GaN with size dependent peak

energy, blue shifting from 0.78 to 1.07 eV when the QD

height was reduced from 32.4 to 6.5 nm.10 We have recently

started the growth of InN QDs on high-In-content InGaN

layers by plasma-assisted (PA) MBE and found excellent op-

tical performance optimized for intermediate band solar cells

and demonstrated applications in the fields of bio-sensors

and ion-selective electrodes.11–14 As for most of the previous

studies, these QD structures were grown on GaN/sapphire

templates. This limits device design flexibility due to the

insulating behavior. Hence, the direct growth on Si sub-

strates is the ultimate goal, allowing for device designs such

as InGaN/Si tandem solar cells and vertical contact schemes

at much lower cost and for the direct integration with exist-

ing Si technology. Along this line, we have already reported

the growth of thick and uniform high-In-content InGaN

layers on Si by either strongly promoting growth selectivity

(the separation of low- and high-In-content regions) produc-

ing micron-sized atomically flat In-rich regions15 or by the

suppression of growth selectivity at lower temperature result-

ing in undulated, chemically uniform InGaN layers16 with

high optical quality.

Here, we report the growth of InN surface QDs (SQDs)

on such a chemically uniform high-In-content In0.73Ga0.27N

layer (the In content is determined by X-ray diffraction),

directly on Si(111) by PA MBE. Atomic force microscopy

(AFM) and transmission electron microscopy (TEM) reveal

uniformly distributed QDs with diameters ranging from 10 to

40 nm and a relatively low density of �7 � 109 QDs cm�2.

AFM measurements show QD heights of 2–4 nm. Formation

of a thin (0.9 nm) and uniform two-dimensional InN wetting

layer proves the Stranski-Krastanov growth mode. Near-field

scanning optical microscopy (NSOM) measurements show

spatially uniform emission from the InGaN layer and distinct

and spatially well localized emission from single SQDs in the

near-infrared. The QDs structural quality is comparable to that

of the QDs grown on GaN/sapphire templates.

All growth experiments were performed in a PA MBE

[MECA 2000] system equipped with a radio-frequency (RF)

active N plasma source. 1 in. Si(111) wafers were degassed
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in the introduction chamber at 450 �C for 4 h followed by

annealing at 850 �C for 30 min in the growth chamber for ox-

ide removal. The cleaned Si surface was then nitrided under

active N flux with molecular N2 flow rate of 0.9 sccm and

RF power of 350 W at 850 �C for 5 min. After cooling down

to 450 �C, InGaN growth was performed with the Ga, In, and

active N fluxes of 8.1 � 1013, 4.4 � 1014, and 7.2 � 1014

atoms/cm2 s, respectively. The growth time was 1 h resulting

in a 450 nm thick and compact InGaN layer. For the InN

SQDs growth, the same In and N fluxes were maintained and

no growth interruption was inserted. The growth time for the

SQDs was 10 s (�3 monolayers).

The surface morphology was investigated by AFM in

tapping mode in air. For the TEM investigations, the samples

were prepared in cross-sectional orientations and thinned to

electron transparency by mechanical grinding, polishing, and

ion milling at 3 keV with a Gatan low-voltage precision ion

polishing system. The high-resolution TEM (HRTEM)

results were collected in a JEOL 2010 FEG microscope oper-

ated at 200 keV. The optical properties were studied using a

home built low-temperature NSOM operating at 10 K inside

a high vacuum chamber, described in detail elsewhere.17 The

sample was excited by a 543-nm He–Ne laser. The laser light

was coupled into an uncoated, single mode near-field fiber

probe from Nanonics resulting in a laser power in the fiber of

3.9 lW. The PL from the sample was collected through the

same fiber, providing a spatial resolution of about 150 nm.18

The signal was dispersed in an imaging monochromator and

recorded with a liquid-nitrogen-cooled InGaAs (OMA V)

detector.

Figure 1(a) shows a 1 � 1 lm2 AFM image of the

InGaN and SQDs surface morphology. The InGaN surface

comprises 100–200 nm wide plateaus together with uni-

formly distributed InN SQDs. The development of these pla-

teaus, ideally suited for QD formation, points to the

transition to the columnar growth regime for higher active N

fluxes, but the present InGaN layer is still compact. A three-

dimensional AFM image with enlarged magnification of one

of the plateaus with a single SQD on top is presented in Fig.

1(b). The corresponding AFM line scan across the InN SQD

is depicted in Fig. 1(c). By averaging over line scans

recorded on a large number of different individual SQDs, we

infer a SQD diameter ranging from 10 to 40 nm and height

of 2–4 nm. The average density of the SQDs, deduced from

AFM, is 7 � 109 QDs cm�2.

Detailed atomic-scale structural analysis is provided by

the cross-sectional HRTEM image of a single SQD, shown

in Fig. 2(a). The QD, indicated by the blue line is 3 nm high

and has a base width of 10 nm. The continuous two-

dimensional InN wetting layer underneath the QD, indicated

by the red lines, is about 0.9 nm thick. The crystal structure

of both the wetting layer and the top portion of the QD is

cubic, whereas the crystal structure of the InGaN layer and

lower QD portion is hexagonal or, for the QD, contains a

FIG. 1. (a): 1 � 1 lm2 AFM image of

the InN SQD/In0.73Ga0.27N layer sam-

ple surface. (b) Three-dimensional

AFM image with enlarged magnifica-

tion. (c) AFM line scan across the

SQD.

FIG. 2. (a) HRTEM image of an InN SQD/In0.73Ga0.27N layer directly

grown on Si(111) taken along the11–20 III-N zone axis, highlighting SQD

(blue line), and WL (red line). (b) Zoom of the HRTEM for the QD and (c)

for the WL. (d) Filtered image HRTEM. (e) Zoom indicating the cubic

(ABCABC stack) and hexagonal structure (ABAB stack) for the QD and (d)

the cubic structure (ABCABC stack) for the WL.
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mixture of the cubic and hexagonal phases, as can be

observed in Figs. 2(b) and 2(c), which are a detail of the QD

and the wetting layer, respectively. This implies a change of

the atomic stacking sequence (ABAB in the case of an hex-

agonal crystal, and ABCABC, for a cubic one, when they are

aligned along the ½11�20� and [111] zone axis, respectively)

upon initiation of the InN growth, while the successive relax-

ation by formation of the three-dimensional QD results in

the introduction of stacking faults, i.e., a mixing of the initial

hexagonal structure of the InGaN layer and the cubic struc-

ture of the thin InN layer. To better observe the atomic struc-

ture, the image in Fig. 2(a) has been filtered (using a

conventional spot mask on the Fast-Fourier transform of the

image), which led to Fig. 2(d), and its details, Figs. 2(e) and

2(f); it is possible to easily appreciate the cubic and hexago-

nal regions forming the QD and wetting layer.

Formation of a wetting layer, i.e., growth in the SK

mode is attributed to the medium lattice mismatch for the

current materials combination which is very close to that of

the InAs/GaAs system, which is the most widely studied SK

model system. Lower mismatch easily results in an undu-

lated surface instead of QD nucleation, while larger mis-

match favors the VW growth mode. The appearance of a

cubic wetting layer at the initiation of InN growth requires

further studies. It might be related to the abrupt increase of

the group V to III flux ratio when switching to InN growth

(closing of the Ga shutter)19 or the high compressive strain

in the InN layer. Certainly, in view of applications, this

behavior is beneficial due to the absence of piezoelectric

fields in cubic structures.20

Figure 3(a) shows a near-field overview PL spectrum

taken at an arbitrary position. This broad PL spectrum with

peak energy of 1.23 eV is due to emission from the InGaN

layer as confirmed by reference spectra of samples without

SQDs. At selected positions on the sample in the energy

range from 0.95 to 1.10 eV, the emergence of narrow PL

peaks is observed. These peaks are tentatively attributed to

the emission of distinct SQDs. A representative PL spectrum

of a SQD is shown in Fig. 3(b) with a peak width of 15 meV.

These assignments to single SQD emission are directly con-

firmed by spatial maps of the PL intensity. In Fig. 4(a), a spa-

tial map of the PL intensity related to the InGaN layer is

shown, at the energy of 1.19 eV outside of the SQDs energy

region, revealing spatially uniform emission intensity in this

area. The near-field PL intensity map for the individual

SQDs with PL intensity integrated from 1.00 to 1.08 eV, is

shown in Fig. 4(b). Several well localized emission centers

are observed. The density of optically active (detected)

FIG. 3. (a) Near-field PL spectrum acquired at an arbitrarily chosen position of the sample related to the emission from the InGaN layer. (b) Selected near-field

PL spectrum showing a distinct emission peak from a single SQD on the low energy tail of the InGaN emission.

FIG. 4. Near-field map of the PL inten-

sity acquired at 10 K for (a) the InGaN

layer at energy 1.19 eV outside the

energy region of the SQDs, (b) individ-

ual SQDs integrated over the energy

range of 1.00–1.08 eV, and (c) the sin-

gle SQD with enlarged magnification

integrated from 1.005 to 1.020 eV.
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SQDs is smaller than the SQD density deduced from AFM,

indicating that not all SQDs are optically active. The PL

peak presented in Fig. 3(b) stems from the localized emis-

sion center in the area indicated by the white square in Fig.

4(b). The corresponding near-field PL intensity map of the

single SQD with enlarged magnification is presented in Fig.

4(c) for the PL intensity integrated from 1.005 to 1.020 eV

(Fig. 3(b), shadowed area). Evidently, single SQD emission

is spatially and spectrally well resolved. The PL peak width

for the single SQD of 15 meV is wider than that of the high-

est purity single QDs being in the order of leV even for sin-

gle InGaN QD.21 This is typical for SQDs due to the nearby

presence of charged surface states. Temporal variations in

the charge distribution within these states give rise to fluctu-

ating electric fields in the confined SQDs and thus to a line

broadening in continuous wave PL measurements. InN has

the highest density of charged surface states among all semi-

conductors and such line broadening effects are, therefore,

particularly pronounced. This is in line with the reported 3-

meV peak width for single InAs/GaAs SQDs22 and the 9-

meV peak width for single InGaN SQDs with 20%–25% In

content.23 Most useful, this sensitivity of the energy states of

SQDs to the charge environment with the highest surface

state density for InN SQDs is at the heart for highly sensitive

sensing applications.

In conclusion, InN SQDs have been grown on high-In-

content In0.73Ga0.27 N layers, directly on Si(111) by plasma-

assisted molecular beam epitaxy. Atomic force microscopy

and transmission electron microscopy revealed uniformly

distributed QDs with diameters of 10–40 nm, heights of

2–4 nm, and a rather low density of �7 � 109 QDs cm�2.

The Stranski-Krastanov growth mode was evidenced by the

presence of a thin two-dimensional InN wetting layer below

the QDs. Near-field scanning optical microscopy showed

uniform emission from the InGaN layer and distinct and spa-

tially well localized emission from single SQDs in the near-

infrared spectral range. Such properties have high potential

for telecommunication and highly efficient sensing devices.
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