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The problem of channel estimation for multicarrier communications is addressed. We focus on systems employing the Discrete
Cosine TransformType-I (DCT1) even at both the transmitter and the receiver, presenting an algorithmwhich achieves an accurate
estimation of symmetric channel filters using only a small number of training symbols. The solution is obtained by using either
matrix inversion or compressed sensing algorithms.We provide the theoretical results which guarantee the validity of the proposed
technique for the DCT1. Numerical simulations illustrate the good behaviour of the proposed algorithm.

1. Introduction

In wireless communications, the channel filter is usually
time-varying; for this reason, it is necessary to estimate the
channel filter from time to time. To this aim, some training
symbols (i.e., symbols known both by the transmitter and
by the receiver) are typically used. In this way, when the
training symbols are transmitted by the channel, the received
signal is used to extract the information about the channel
filter. Some well-known techniques for channel estimation
are based on the Discrete Fourier Transform (DFT); in this
case, the training symbols are OFDM waveforms.

Additionally, if the channel filter is sparse (i.e., con-
taining only a small amount of nonzero coefficients), then
compressed sensing techniques can be applied. Compressed
sensing (CS) algorithms approximate the sparsest solution
to a linear system [1]. This is very useful when the solution
depends on a small number of degrees of freedom and only
a few measurements of the vector are observed. For this

reason, in the last few years CS algorithms have been applied
to a wide variety of scenarios in communications: cognitive
radio, radar, antenna arrays, multicarrier communications,
and so forth. When CS is applied to channel estimation
problems, it is usually denoted as compressed channel
sensing (CCS). Several CCS algorithms have been proposed
in the literature for different types of channels arising in
communication problems, such as ultrawideband channels,
underwater acoustic communications, or multipath channels
[2–5]. Most of these techniques are based on DFTs or spread
spectrum signals.

In this work, we consider a multicarrier communica-
tions system that is based on the Discrete Cosine Trans-
form Type-I (DCT1) even instead of the standard DFT.
Some Discrete Cosine Transforms have been widely used
in the context of multicarrier modulation (MCM), as an
alternative to the DFT, due to their good properties (e.g.,
good performance under carrier frequency offset) [6–13]. In
particular, in a very recent work [14] the DCT1 is applied for
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Figure 1: Block diagram of a multicarrier modulation communications system, including the channel estimation in the receiver.

MCM communications. The main advantages of the DCT1
are as follows:

(i) The inverse of the DCT1 is the same transformDCT1,
up to a scaling factor; so we can use the same
transform at both the transmitter and the receiver
[15].

(ii) The convolution of two vectors is transformed by
DCT1 into a pointwise product of their transforms
(under some symmetry conditions on the vectors)
[15, 16]. This is analogous to the circular convolu-
tion property of the DFT. This is a key property
for signal reconstruction in MCM communications
[14].

For these reasons, we investigate the use of DCT1 for
channel estimation; in particular, we address the problem
of estimation of whole-point symmetric (WS) channels by
means of CS techniques in the DCT1 transform domain. The
strategy consists of using only a few training symbols, which
are transmitted through the channel, and reconstructing the
impulse response of the filter in the receiver by using the same
small number of measurements. Thus, the economy of the
data can be exploited by CS algorithms, which are able to
provide sparse filters.

In this work we will provide not only a new estimation
procedure but also the training signals valid for our algo-
rithm, andwewill show that this technique is both simple and
theoretically correct.These are the main contributions of this
paper. Numerical simulations also illustrate the effectiveness
of our results.

The paper is organized as follows. Firstly, in Section 2
we recall the general channel estimation problem. Secondly,
in Section 3 the DCT1 is introduced and we obtain new
important properties of this transform. Then, the proposed
procedure is presented in Section 4, where its theoretical
justification is also provided. Section 6 contains some numer-
ical examples that illustrate the behaviour of our algorithm.
Finally, we highlight the main contributions of this work in
Section 7.

2. The Channel Estimation Problem

Let us consider a multicarrier modulation communications
system that performs an inverse transform T−1

𝑎

in the trans-
mitter and a direct transform in the receiver T

𝑐

, as shown in
Figure 1. Let us consider also a channel with the following
impulse response:

h = [ℎ
1−], . . . , ℎ−1, ℎ0, ℎ1, . . . , ℎ]−1]

⊤

. (1)

The transmission of an information symbol x =

[𝑥
0

, . . . , 𝑥
𝑁−1

]

⊤ through this channel results in a received
symbol y = [𝑦

0

, . . . , 𝑥
𝑁+2]−3]

⊤, such that

𝑦
𝑘

=

]−1

∑

𝑚=1−]
ℎ
𝑚

𝑥
𝑘−𝑚

+ 𝑛
𝑘

, (2)

where 𝑛
𝑘

is a term related to the additive noise.
In multicarrier systems, in order to eliminate interblock

interference, we often add to the original symbol x a left prefix
xlp and a right suffix xrs, both of length ] − 1:

x
𝑒

=

[

[

[

xlp
x
xrs

]

]

]

. (3)

In matrix form, the received data symbol y is given by

y = H ⋅ x
𝑒

+ n, (4)

whereH is the Toeplitz matrix of size𝑁×(𝑁+2]−2) defined
by the filter:

[

[

[

[

[

[

[

[

[

ℎ
1−] ⋅ ⋅ ⋅ ℎ

0

⋅ ⋅ ⋅ ℎ]−1 0 ⋅ ⋅ ⋅ 0

0 ℎ
1−] d ℎ

0

d ℎ]−1 d
.

.

.

.

.

. d d d d d d 0

0 ⋅ ⋅ ⋅ 0 ℎ
1−] ⋅ ⋅ ⋅ ℎ

0

⋅ ⋅ ⋅ ℎ]−1

]

]

]

]

]

]

]

]

]

. (5)
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It is easy to see [8] that this received symbol can be written as

y = Hequiv ⋅ x + n. (6)

Therefore, if we apply both the discrete transformations T
𝑎

and T
𝑐

in order to diagonalizeHequiv,

T
𝑐

⋅Hequiv ⋅ T
−1

𝑎

= D, (7)

then

y = T−1
𝑐

⋅D ⋅ T
𝑎

⋅ x + n, (8)

and denoting Y = T
𝑐

⋅ y, X = T
𝑎

⋅ x and N = T
𝑐

⋅ n, we get

Y = D ⋅ X + N. (9)

Now, the question is if we know the training symbol x and
its corresponding received symbol y, is it possible to estimate
h? The answer is yes, whenever there is an invertible T which
transforms h into the elements of the diagonal matrix D =

diag(H
0

, . . . ,H
𝑁−1

). Hence, in the absence of noise, it suffices
to computeH

𝑘

= Y
𝑘

/X
𝑘

; but in the presence of noise we only
obtain an estimation in the transform domain:

̂H
𝑘

=

Y
𝑘

X
𝑘

. (10)

Now we can recover the estimated filter as

̂h = T−1 ⋅ [̂H
0

, . . . ,
̂H
𝑁−1

]

⊤

. (11)

Of course, this estimation would be exact in absence of noise.
See Figure 1 for a general diagram of the channel estimation
problem.

The existence of such transform T is a condition usually
met in practice. For example, in OFDM systems the signal
is extended by appending a cyclic prefix or suffix, so that
the equivalent matrix Hequiv is circulant and diagonalized
by the DFT transform. The diagonal matrix D contains the
eigenvalues of Hequiv, which in addition form the vector
DFT(h). Hence, h is estimated simply by applying an inverse
DFT.

As OFDM systems present poor behaviour under car-
rier frequency offset, other multicarrier modulation (MCM)
techniques have been investigated, which are related to
other transformations different from DFT. Among them,
the eight types of Discrete Cosine Transforms (DCTs) have
been studied in the literature, and for each one of them the
corresponding extension technique has been proposed [6,
8, 9, 14]. These works focus on MCM signal reconstruction,
and they provide good results due to the good properties of
the DCTs. However, the channel estimation stage is essential
in order to implement a DCT-MCM system in practice. For
this reason, in this paper we apply the DCT1 to the channel
estimation problem for the first time.

3. The Discrete Cosine Transform
Type-I (DCT1) Even

The DCT1 even of an 𝑁-length signal is given by the matrix
C
1𝑒

, whose (𝑘, 𝑗)th element is defined by

(C
1𝑒

)

𝑘,𝑗

= 𝑎
𝑗

cos(
𝑘𝑗𝜋

𝑁 − 1

) , 0 ≤ 𝑘, 𝑗 ≤ 𝑁 − 1, (12)

where

𝑎
𝑗

=

{
{
{
{

{
{
{
{

{

1

√2 (𝑁 − 1)

, if 𝑗 = 0,𝑁 − 1,

2

√2 (𝑁 − 1)

, otherwise.
(13)

This is the definition of C
1𝑒

given in [15], except for the
normalization factor √2(𝑁 − 1); it has been introduced here
in order to ensure the involution property, C−1

1𝑒

= C
1𝑒

, which
simplifies the numerical calculations. In this way, the direct
and inverse DCT1 transforms are identical.

The first contribution of this work is the demonstration
of the following theorem regarding the invertibility of some
submatrices of the DCT1 matrix. This is a key property
which guarantees that the channel filter can be obtained
by means of a small amount of received data; this will be
applied in the following section, when using compressed
sensing techniques. Let us now state and prove this important
property.

Theorem 1. Any ] × ] submatrix of C
1𝑒

, whose columns have
been extracted from the first ] columns of C

1𝑒

, is invertible.

Proof. The submatrix formed by the first ] columns of C
1𝑒

is
C1e [

I]
O(𝑁−])×] ] . Let us consider any ] × ] submatrix B of this

matrix; our aim is to show that B is invertible. Notice that its
] rows can be indexed as 0 ≤ 𝑘

1

< 𝑘
2

< ⋅ ⋅ ⋅ < 𝑘] ≤ 𝑁 − 1, so
the entries of B are

𝑏
𝑘,𝑗

= 𝑎
𝑗

cos(
𝜋𝑘𝑗

𝑁 − 1

) ,

𝑘 ∈ {𝑘
1

, 𝑘
2

, . . . , 𝑘]} , 𝑗 = 0, . . . , ] − 1.
(14)

To show that B is invertible, it suffices to prove that the
unique vector b such that Bb = 0 is b = 0. Let b =

[𝑏
0

, 𝑏
1

, . . . , 𝑏]−1]
⊤ be such vector; the condition Bb = 0 is

rewritten as

]−1

∑

𝑗=0

𝑎
𝑗

cos(
𝜋𝑘
𝑛

𝑗

𝑁 − 1

) 𝑏
𝑗

= 0, 𝑛 = 1, . . . , ]. (15)

By defining 𝑐
𝑗

= 𝑎
𝑗

𝑏
𝑗

/2 (𝑗 = 0, . . . , ] − 1) we can rewrite the
latter expression as

]−1

∑

𝑗=0

2 cos(
𝜋𝑘
𝑛

𝑗

𝑁 − 1

) 𝑐
𝑗

= 0, 𝑛 = 1, . . . , ]. (16)
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Our aim is to prove that the numbers 𝑐
𝑗

which fulfill (16) are
necessarily null; it is equivalent to the fact that 𝑏

𝑗

= 0, 𝑗 =
0, . . . , ] − 1, finishing the proof.

To this aim, let us now introduce the auxiliary self-
reciprocal polynomial 𝑞 of degree ≤ 2] − 2:

𝑞 (𝑧) = 𝑐]−1 + 𝑐]−2𝑧 + ⋅ ⋅ ⋅ + 2𝑐0𝑧
]−1
+ ⋅ ⋅ ⋅ + 𝑐]−2𝑧

2]−3

+ 𝑐]−1𝑧
2]−2
.

(17)

Notice that, for any 𝑧 ̸= 0, we have that

𝑞 (𝑧) = 𝑧

]−1
]−1

∑

𝑗=0

(𝑧

𝑗

+ 𝑧

−𝑗

) 𝑐
𝑗

; (18)

thus, if 𝑧 is a nonzero root of 𝑞, then also 𝑧−1 is a root of 𝑞.
Our strategy is to prove that 𝑞 has 2] − 1 roots, say, more

than its degree 2] − 2; if this occurs, then 𝑞 must be the null
polynomial, and all its coefficients necessarily are 0, so 𝑐

𝑗

= 0,
𝑗 = 0, . . . , ] − 1, and the claim follows. Let us find some roots
of 𝑞:

(i) By denoting the complex numbers

𝑧
𝑛

= exp(
𝜋𝑘
𝑛

𝑁 − 1

𝑖) , 𝑛 = 1, . . . , ], (19)

it is easy to see that

𝑞 (𝑧
𝑛

) = 𝑧

]−1
𝑛

]−1

∑

𝑗=0

2 cos(𝑗
𝜋𝑘
𝑛

𝑁 − 1

) 𝑐
𝑗

= 0, (20)

where we have used (16). Hence, 𝑧
1

, . . . , 𝑧] are ] roots
of 𝑞; note that there are ] different numbers because
their arguments lie in [0, 𝜋] since

0 ≤

𝜋𝑘
1

𝑁 − 1

<

𝜋𝑘
2

𝑁 − 1

< ⋅ ⋅ ⋅ <

𝜋𝑘]

𝑁 − 1

≤ 𝜋. (21)

(ii) As already mentioned, for any 𝑛 = 1, . . . , ], also 𝑧−1
𝑛

is
a root of 𝑞:

𝑧

−1

𝑛

= exp(−
𝜋𝑘
𝑛

𝑁 − 1

𝑖) , 𝑛 = 1, . . . , ]. (22)

So there are ] different roots of 𝑞whose arguments lie
in [−𝜋, 0].

(iii) The union of the set of roots of (19) and (22) provide
a total amount of 2] different roots if 𝑘

1

> 0 and 𝑘] <
𝑁 − 1. In this case, 𝑞 has more roots than its degree,
so 𝑞 is the null polynomial and the claim holds.
In case 𝑘

1

= 0, the corresponding root 𝑧
1

= 1

has been counted twice; the same happens if 𝑘] =
𝑁 − 1, because the root 𝑧] = −1 would appear twice.
In these cases, we can only guarantee that there are
2] − 2 different roots but it is easy to see that any self-
reciprocal polynomial of even degree 𝑞 satisfies the
following property: if 𝑧 = 1 (or 𝑧 = −1) is a root of 𝑞,
then it is a root of multiplicity at least 2. This implies
that, in our case, 𝑧

1

= 1 (or 𝑧] = −1) is a double root,
so 𝑞 has at least 2] − 1 roots, concluding the proof.

h
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Figure 2: Symmetries in x and h to be used in DCT1-based systems
(𝑁 ≫ (2] + 1)) [14].

4. Channel Estimation in DCT1
Multicarrier Systems

Let us assume that the channel filter presents whole-point
(WS) symmetry: h = [ℎ]−1, . . . , ℎ1, ℎ0, ℎ1, . . . , ℎ]−1]

⊤

. As we
have already mentioned before, the interblock interference
is eliminated by introducing as redundancy a left prefix xlp
and also a right suffix xrs, both of length ] − 1, into each data
symbol to be transmitted. In order to apply DCT1, it is proved
in [9, 14] that it suffices to consider the extended block x

𝑒

in
(3) with the choice of prefix xlp and suffix xrs as follows:

(xlp)
𝑛

= 𝑥]−𝑛, ∀𝑛 = 0, . . . , ] − 2,

(xrs)
𝑛

= 𝑥
𝑁−2−𝑛

, ∀𝑛 = 0, . . . , ] − 2
(23)

whichmeans that we apply a whole-point symmetry (WS) on
the left and on the right sides of the original symbol. Figure 2
illustrates an example of the WS symmetric extension of x.
The received vector (4) is then

y = H ⋅ x
𝑒

+ n = Hequiv ⋅ x + n. (24)

It is proved in [14] that the corresponding Hequiv can be
perfectly diagonalized via the DCT1:

C
1𝑒

⋅Hequiv ⋅ C
−1

1𝑒

= D, (25)

and the diagonal elements of D eigenvalues of Hequiv are
themselves the DCT1 transform of the vector h𝑟ZP:

H
𝑘

= (C
1𝑒

⋅ h𝑟ZP) (𝑘) , 𝑘 = 0, . . . , 𝑁 − 1, (26)

where h𝑟ZP stands for the half-right filter of h, padded with
zeroes:

h𝑟ZP = [ℎ0, . . . , ℎ]−1, 0, . . . , 0]
⊤

. (27)

Thus, we have been able to find an easy solution to the
channel estimation problem in DCT1 MCM communication
systems. Following the general statement of the problem
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given in Section 2, we denote Y := C
1𝑒

⋅ y, X := C
1𝑒

⋅ x, and
N := C

1𝑒

⋅ n and get the scheme

Y = D ⋅ X + N, (28)

whereD = diag(H
0

, . . . ,H
𝑁−1

).
As the components of the training signal X are the

symbols that can be stored in memory, from this equation we
simply obtain an estimation ofH

𝑘

, for any component 𝑘 such
that X

𝑘

̸= 0:

̂H
𝑘

=

Y
𝑘

X
𝑘

. (29)

In other words, if all the 1-tap filters X
𝑘

are nonzero (𝑘 =
0, . . . , 𝑁 − 1), then we compute the 𝑁-length vector ̂h =

C−1
1𝑒

⋅
̂H, which gives a perfect estimation of h𝑟ZP in absence

of noise, and we can straightforwardly obtain the symmetric
channel filter h = [ℎ]−1, . . . , ℎ1, ℎ0, ℎ1, . . . , ℎ]−1].

5. Compressed Channel Sensing for DCT1

Now, the question is what can we do if a component of
X is null? In effect, this is a situation very common in
practice. Indeed, we would like to have only a few training
symbols X

𝑘

̸= 0 and many null components X
𝑘

= 0.

Moreover, how can we obtain an estimated vector h𝑟ZP =

[ℎ
0

, . . . , ℎ]−1, 0, . . . , 0] which is sparse? The answer to these
two questions is given by two facts: on the one hand, we can
apply compressed sensing techniques; on the other hand, the
DCT1 matrix presents a key property which guarantees that
the ] components of the sparse vector h𝑟ZP can be obtained by
knowing only ] components of the vector ̂H

𝑘

.

Let us explain this idea in detail. If there are only ]
nonzero symbols X

𝑘

̸= 0, corresponding to the components
𝑘 = 𝑘

1

, . . . , 𝑘], then only ] components of the vector ̂H
are defined, by means of (29). As C

1𝑒

⋅ h𝑟ZP has length 𝑁, it
is impossible to recover its 𝑁 components, but at least we
can try to estimate ] of them by means of the computed ]
components of the estimated vector ̂H. Let us use the same
notation ̂H to define the ]-length vector which contains the ]
known components of (29). Then, we need to find the sparse
vector h𝑟ZP that minimizes the norm

min 



C ⋅ h𝑟ZP − ̂H






, (30)

where C denotes the submatrix of C
1𝑒

formed by its ]
corresponding rows 𝑘 = 𝑘

1

, . . . , 𝑘].
Besides, we can exploit the structure of h𝑟ZP, which has

𝑁 − ] final zeroes, so we can write

C ⋅ h𝑟ZP = C ⋅ [
h𝑟

0
] = C ⋅ [

I]
O
(𝑁−])×]

] ⋅ h𝑟 = C
𝑓

⋅ h𝑟, (31)

where we have denoted h𝑟 = [ℎ
0

, . . . , ℎ]−1]
⊤,

C
𝑓

= C ⋅ [
I]

O
(𝑁−])×]

] , (32)
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Figure 3: Channel reconstruction SNR (̂SNR(dB)) as a function of
the signal power to noise ratio (SNR(dB)).The length of the channel
is 𝐿 = 7, the length of the DCT1 is 𝑁 = 256, and 𝑁

𝑠

= 2000

simulations have been performed.

andC
𝑓

stands for the ]×] submatrix ofC
1𝑒

containing thefirst
] columns of C

1𝑒

and the corresponding rows 𝑘 = 𝑘
1

, . . . , 𝑘].

In this way, we have the following minimization problem:

min 



C
𝑓

⋅ h𝑟 − ̂H



, (33)

where vectors h𝑟 and ̂H have length ].
Compressed sensing techniques show that it is possible

to achieve the sparsest vector h𝑟 if its sparsity order is 𝑠 <
spark(C

𝑓

)/2 (the spark of a square matrix is its rank plus 1).
As we have proved in Section 3, our Theorem 1 guarantees
that the rank of any square submatrix of the first columns
of C
1𝑒

is maximum, so C
𝑓

has maximum rank. This means
that we can reconstruct sparse filters h𝑟 of sparsity order 𝑠 <
(]+ 1)/2. In practice, it is possible to recover vector h𝑟 in two
ways:

(i) As C
𝑓

is invertible, we can simply define h𝑟 = C−1
𝑓

⋅
̂H

so as to get null error (C
𝑓

⋅ h𝑟 − ̂H = 0).This is true in
absence of noise, but the drawback in practice is that
we may obtain a nonsparse vector h𝑟.

(ii) Alternatively, as C
𝑓

has maximum rank ], we can
apply some well-known algorithms used in CS sce-
narios (e.g., Lasso techniques, OMP, andCoSamp [5])
in order to find the sparse solution h𝑟 of the problem.
These algorithms convergewhen thematrix of the lin-
ear system C

𝑓

satisfies either the Restricted Isometry
Property (RIP) or a weaker property regarding the
coherence of C

𝑓

. Luckily, we can also guarantee that
this good property is fulfilled by the DCT1, by placing
𝑠 symbols at equally spaced positions. This proce-
dure has been applied in our simulations, and this
clear advantage is the reason why the DCT1 matrix
performs well for compressed sensing techniques in
the simulations.
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Ĥ
(𝜔

)

(b)

0 2 4 6 8
n

0

0.5

1

1.5

h
[n
]

−1

−0.5

−2

(c)

0

0.5

1

1.5

2

2.5

3

0 1 2 3
𝜔

−3 −2 −1

Ĥ
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Figure 4: (a), (c), and (e) Estimated channel’s impulse response for SNR = 0 dB, SNR = 10 dB, and SNR = 20 dB, respectively. (b), (d), and (f)
Estimated channel’s frequency response for SNR = 0 dB, SNR = 10 dB, and SNR = 20 dB, respectively. In all cases the length of the channel is
𝐿 = 7, the length of the DCT1 is𝑁 = 256, and𝑁

𝑝

= 4 pilot subcarriers are used in the transmitter.
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Summary of the procedure is as follows:

(1) Choose a training signal X of length𝑁, and compute
C−1
1𝑒

⋅ X = x.
(2) Apply a whole-point symmetry of length ]−1 at both

edges of x so as to obtain x
𝑒

of length𝑁 + 2] − 2.
(3) Transmit x

𝑒

through the channel.
(4) Take the𝑁 central components of the received vector,

which form y.
(5) Apply the DCT1 block: Y = C

1𝑒

⋅ y.
(6) Compute ̂H

𝑘

= Y
𝑘

/X
𝑘

.
(7) In case X

𝑘

̸= 0 for all 𝑘, obtain C−1
1𝑒

⋅
̂H which is

the desired estimation of the half-right filter h𝑟ZP =
[h𝑟, 0, . . . , 0]⊤.

(8) In case some components of X
𝑘

are null, and at least
] components of X

𝑘

are nonzero, find the solution h𝑟
of the problem

min 



C
𝑓

⋅ h𝑟 − ̂H



(34)

that can be solved via CS techniques or simply
defining

h𝑟 = C−1
𝑓

⋅
̂H. (35)

(9) In any case, from h𝑟 = [ℎ
0

, . . . , ℎ]−1] byWS symmetry
we get the estimated filter channel

h = [ℎ]−1, . . . , ℎ1, ℎ0, ℎ1, . . . , ℎ]−1] . (36)

6. Numerical Results

In this section, we analyse the behaviour of the proposed
compressed channel sensing (CCS) scheme by testing it on
three channels: a fixed simple channel of length 𝐿 = 7 (i.e.,
] = 4), a more challenging fixed nonminimumphase channel
of length 𝐿 = 11 (i.e., ] = 6), and a perturbed symmetric
version of the ITU-T M.1225 pedestrian channel A [17]. In
all cases, a sparse signal is constructed in the DCT1 domain
by setting 𝑋

𝑘

= 1 if 𝑘 = 𝑟𝑃 (for 𝑃 = (𝑁 − 1)/(] − 1)) and
𝑋
𝑘

= 0 otherwise. Hence, 𝑋
𝑘

is a ]-sparse vector containing
only ] nonnull elements uniformly distributed, as stated in
the previous section. For instance, when𝐿 = 7wehave𝑃 = 85
and the nonnull elements are only 𝑋

0

, 𝑋
85

, 𝑋
170

, and 𝑋
255

,
whereas for 𝐿 = 11 we have 𝑃 = 51 and the nonnull elements
are 𝑋

0

, 𝑋
51

, 𝑋
102

, 𝑋
153

, 𝑋
204

, and 𝑋
255

. In this way, we are
truly performing a compressed sensing of the channel, since
we are only exploring certain elements (which correspond to
particular frequencies) in the transformed domain.

The inverse DCT1 is then performed and the time-
domain transmitted vector x is passed through the filter with
symmetric impulse response h. Then, zero-mean additive
white Gaussian noise (AWGN) with variance 𝜎2

𝑤

is added,
obtaining the received vector y. The length𝑁DCT1 of the𝑁
central elements of this vector is now computed, resulting in
Y. Finally, the ] elements of Y corresponding to the nonnull
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Figure 5: Channel reconstruction SNR (̂SNR(dB)) as a function of
the signal power to noise ratio (SNR(dB)) for different values of𝑁.
The length of the channel is 𝐿 = 7 and𝑁

𝑠

= 2000 simulations have
been performed.

positions of X are extracted and a length ] inverse DCT1 is
performed on them to estimate the right-half of the channel’s
impulse response. The rest of the channel is reconstructed
exploiting its symmetry.Theperformancemeasure used is the
reconstruction signal to noise ratio (SNR),

̂SNR (dB) = 10 log
10

𝑃
𝑒

𝑃
ℎ

, (37)

where 𝑃
ℎ

= (1/𝐿)h⊤h, 𝑃
𝑒

= (1/𝐿)(h − h𝑟)⊤(h − h𝑟), and 𝐿 is
the channel’s length.

As a first example, we select the following 𝐿 = 7 channel:

h = [0.05, 0.25, −0.5, 1, −0.5, 0.25, 0.05]⊤ . (38)

We set the length of the DCT1 to 𝑁 = 256 and check the
behaviour of the CCS scheme as the channel’s SNR increases
from −10 dB to 30 dB using only 4 training pilots.𝑁

𝑠

= 2000

simulations are performed for each SNR.
Figure 3, which displays the reconstruction SNR as a

function of the channel’s SNR, shows that an increasingly
accurate estimation of the channel can be obtained as the SNR
increases, even by using only𝑁

𝑝

= 4 pilots. It can be seen that
the reconstruction SNR increases linearly as the signal power
to noise ratio increases. Indeed, the following relationship can
be established:

̂SNR (dB) = SNR (dB) + ΔSNR (dB) , (39)

where SNR(dB) = 10log
10

(𝑃
𝑥

/𝜎

2

𝑤

), with 𝑃
𝑥

= (1/𝑁)x⊤x, and
ΔSNR(dB) = 7.78 in this case. This shows that an increase in
SNR of 7.78 dB in the reconstruction is obtained with respect
to the channel’s SNR.
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Figure 6: (a), (c), and (e) Estimated channel’s impulse response for SNR = 0 dB, SNR = 10 dB, and SNR = 20 dB, respectively. (b), (d), and (f)
Estimated channel’s frequency response for SNR = 0 dB, SNR = 10 dB, and SNR = 20 dB, respectively. In all cases the length of the channel is
𝐿 = 11, the length of the DCT1 is𝑁 = 256, and𝑁

𝑝

= 4 pilot subcarriers are used in the transmitter.



The Scientific World Journal 9

Figure 4 shows three examples of the estimated channel’s
impulse and frequency responses for three signal to noise
ratios: SNR = 0 dB, SNR = 10 dB, and SNR = 20 dB. The
channel’s impulse response is displayed on the left hand side
(central dot with the true values and bar spanning the range
between the minimum and maximum recovered values),
whereas the right hand side shows the channel’s frequency
response (true value in black line and shaded area showing
the range between maximum and minimum values). Note
the substantial decrease in the variation of the coefficients of
the channel’s impulse response as the SNR increases (indeed,
for SNR = 20 dB the bars cannot be appreciated, since the
recovered coefficients are always virtually identical to the
true coefficients) and the corresponding improvement in
the estimation of the channel’s frequency response (with a
decrease in the shaded area).

We have also tested the effect of the number of subcar-
riers, 𝑁, by using 𝑁 = 2

𝑛 for 𝑛 = 2, 3, . . . , 10 (i.e., 𝑁 =

4, 8, . . . , 1024). The result, displayed in Figure 5, shows that
the value of𝑁 is irrelevant (in terms of accuracy of the recon-
structed channel), as long as 𝑃 = (𝑁− 1)/(]− 1) is an integer
number and the pilot carriers can be uniformly distributed (as
it happens in this case for 𝑁 ∈ {4, 16, 64, 256, 1024}). When
𝑃 is not an integer number, the pilots cannot be uniformly
distributed and an approximation error is obtained (as seen
in the cases𝑁 = 8,𝑁 = 32,𝑁 = 128, and𝑁 = 512).However,
this error decreases as 𝑁 increases and can be completely
avoided by zero-padding the channel’s impulse response until
𝑃 is integer.

As a second example, we consider a length 𝐿 = 11 non-
minimum-phase channel:

h = [0.9801, −0.5600, 0.4799, 0.7472, −0.2728, 1,

− 0.2728, 0.7472, 0.4799, −0.5600, 0.9801]

⊤

.

(40)

We set again the length of the DCT1 to 𝑁 = 256 and
check the behaviour of the CCS scheme as the channel’s
SNR increases from −10 dB to 30 dB using only 6 training
pilots. 𝑁

𝑠

= 2000 simulations are performed for each SNR.
However, even though this channel ismuchmore challenging
than the previous one, similar results are obtained in terms of
the reconstruction error. Indeed, (39) is also valid in this case
and the reconstruction SNR versus channel’s SNR curve for
this channel (not shown) is virtually identical to Figure 3. In
fact, we have also tested several other (both minimum and
nonminimum phase) channels and this result seems to apply
to all of them. Figure 6 shows three examples of the estimated
channel’s impulse and frequency responses for three signal to
noise ratios: SNR = 0 dB, SNR = 10 dB, and SNR = 20 dB.

Finally, we test our approach on a perturbed sym-
metric version of the ITU-T M.1225 pedestrian chan-
nel A. The pedestrian channel A was generated using
Matlab’s stdchan function using a carrier frequency 𝑓

𝑐

=

2GHz, a sampling period 𝑇
𝑠

= 10 ns, and a length
𝐿
0

= 196. The resulting channel’s impulse response, h
0

=

[ℎ
0

[0], . . . , ℎ
0

[𝐿
0

− 1]], is very sparse, since it typically has
only 3 nonnull coefficients. The symmetric channel’s impulse
response is constructed as h = [h

0

[𝐿
0

− 1 : −1 : 1], h
0

], so
its length is 𝐿 = 2𝐿

0

− 1 = 391 and we have 𝑃 = 21. Then,
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Figure 7: Channel reconstruction SNR (̂SNR(dB)) as a function of
the noise variance in the coefficients of ℎ[𝑛] (𝜎2

ℎ

) for𝑁 = 4096. The
length of the channel is 𝐿 = 391 and 𝑁

𝑠

= 2000 simulations have
been performed.

the coefficients of ℎ[𝑛] are perturbed by adding independent
white Gaussian noise samples with variance 𝜎2

ℎ

to each of
them in order to analyze the effect of the lack of symmetry,
typical of real-world channels. The results are shown in
Figure 7: a small lack of symmetry (e.g., 𝜎2

ℎ

= 10

−4 or
𝜎

2

ℎ

= 10

−3) practically has no effect; a moderate amount (e.g.,
𝜎

2

ℎ

= 10

−2) lowers the performance but still provides a good
estimate of the channel (with a reconstruction SNR around
30 dB); a large lack of symmetry (e.g., 𝜎2

ℎ

= 10

−1) results in a
low reconstruction SNR (around 10 dB), as the reconstructed
channel is approximately equal to the symmetric part of the
true channel. This highlights the limitations of our approach
but also its potential in many approximately symmetric real-
world channels (e.g., channels with a large central coefficient
and small not completely symmetric coefficients around it).

7. Conclusions

In this work, we have presented a general procedure for the
estimation of any symmetric channel filter for multicarrier
communication systems based on the Discrete Cosine Trans-
formType-I (DCT1) even. For any training signal transmitted
through the channel, at the receiver, we show how to take
into account the information of the training symbol so as to
estimate the channel filter.Themain contribution of this work
is that it is possible to estimate the channel filter with a small
amount of training signals, just knowing a small amount
of the received samples, and regardless of the location of
these samples. This is an important consequence of the good
properties of the DCT1 matrix that have been also proved
here for the first time. Thus, our proposed procedure with
the DCT1 formulation meets the conditions that guarantee
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perfect estimation of the channel filter in absence of noise,
whereas in noisy scenarios a very good estimation can also
be achieved. We have also designed specific sparse training
signals for our DCT1 procedure and showed that it can
also be applied to channels whose impulse response is only
approximately symmetric with good results. Future research
lines include extending these procedure to nonsymmetric
channels.
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[8] M. E. Domı́nguez Jiménez, G. Sansigre Vidal, P. Amo-López,
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