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Aim: To compare grape yield prediction methods to
determine which provide the best results in terms of
earliness of prediction in the growing season, accuracy and
precision.

Methods and results: The grape yields predicted by six
models – one for use at fruitset (FS), two for use at
veraison (V1 and V2), and three for use during the lag
phase (LP40, LP50 and LP60) – were compared to field-
measured yields. Regressions for the yield predicted by
each model were constructed. The V1 and V2 models had
the highest R2 (0.75) and efficiency index (EF; 0.67-0.71)
and the lowest RMSE values (±16-17%, or <0.5 kg per m
of row). The FS model had the same or similar R2 (0.58),
EF (0.06) and RMSE (±30%, or <0.83 kg per m of row)
values as the LP models, but allowed yield predictions to
be made one month earlier.

Conclusion: The validated FS, V1 and V2 models are all
useful in predicting grape yields and could be used to
accurately forecast (with different errors) grape yields at
either early or later time points according to winery needs.
These models could be improved as further data become
available in following seasons.

Significance and impact of the study: Few validated
models are available for predicting grapevine yields at
fruitset and veraison. This study provides predictive models
that can be used at these different times of the growth
cycle.

Key words: yield prediction, modeling, fruitset, veraison,
grapevine

Objectif : Comparer les méthodes d’estimation de
rendement afin de déterminer celles qui obtiennent les
meilleurs résultats en termes de précocité, d’exactitude et
de précision.

Méthodes et résultats : Les rendements de raisin prédits
par six modèles – un à la nouaison (FS), deux à la véraison
(V1 et V2) et trois selon la phase de latence (LP40, LP50 et
LP60) – ont été comparés aux rendements mesurés sur le
terrain. Les régressions pour la prévision du rendement ont
été construites. Les résultats ont montré que les modèles V1
et V2 avaient le plus grand R2 (0.75), indice d’efficacité
(EF; 0,67-0,71) et précision (erreur quadratique moyenne;
±16-17%, ou < 0.5 kg par m de rang). Le modèle FS a eu
des valeurs de R2 (0.58), de EF (0,06) et de précision
(±30%, ou < 0,83 kg par m de rang) identiques ou
similaires à celles des modèles LP, mais a permis de
réaliser des prévisions de rendement un mois plutôt.

Conclusion : Les modèles FS, V1 et V2 ont été validés et
peuvent être utilisés pour faire des prédictions de
rendement (avec une erreur différente) à des moments
différents de la saison selon les besoins de la cave. Tous ces
modèles peuvent être améliorés avec l’augmentation de
données pendant les saisons suivantes.

Signification et impact de l’étude : Pour le moment, il y a
peu de modèles validés pour la prévision du rendement de
la vigne pendant la nouaison et la véraison. Cette étude
fournit des modèles de prédiction qui peuvent être utilisés à
différents moments du cycle de la vigne.

Mots clés : prévision du rendement, modélisation,
nouaison, véraison, vigne
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INTRODUCTION
The prediction of grape yields is necessary to prevent
under- and over-cropping and thus help produce
healthy plants and optimum amounts of fruit each
season. Predicting yields accurately and early in the
grapevine growth cycle is important since it allows
adjustments of cluster load to be made (cluster
thinning), thus promoting ripening and better grape
quality. Yield predictions also allow wineries to
determine their space, machinery and staff
requirements during the harvest period. However,
yields are affected by region, weather, soil conditions,
cultivar, rootstock, vine heterogeneity, etc., and
significant variations in vineyard yield may be
recorded between years, and even between plants
(Clingeleffer et al., 2001; Sabbatini et al., 2012);
yields can, therefore, be difficult to predict.

Grapevine reproductive structures present in one year
begin their development in the previous growth
cycle. For example, the cluster primordia of any year
in question always begin their development at the end
of spring/early summer inside the buds of the
previous year. Their differentiation is halted during
winter when the buds are dormant, but continues in
the following spring over a short period just before
budbreak (Howell, 2001; May, 2000 and 2004).
Thus, grapevine reproductive behaviour is affected
by the environmental conditions of both the present
and previous year. This needs to be taken into
account when vineyard management decisions are
made. 

In recent years, a number of methods have been
suggested for predicting vineyard yields. Some
indirect real-time methods (Tarara et al., 2005)
involve placing load cells on row support wires.
Variations in the tension of the wire provide
indications of the crop level at the moment of
measurement. Such information on the dynamics of
berry growth can be used to inform management
decisions during the growth cycle. However, berry
growth dynamics prior to ripening may vary greatly
between years; this may require certain adjustments
in any function used to predict yield (Tarara and
Blom, 2009; Tarara et al., 2014).

Several authors (Dobrowski et al., 2003; Dunn and
Martin, 2004; Martínez-Casasnovas and Bordes,
2005; Nuske et al., 2011; Diago et al., 2012) have
constructed models for making yield predictions
based on digital, aerial or satellite images. All have
shown good predictive capacity but require costly
imaging and remote sensing operations. Vineyard’s
yields can, however, be predicted using more
traditional methods based on yield components and

information on phenological and climatological
variables collected over the years. These methods
require the inspection of the number of clusters per
vine, the number of berries per cluster, and berry
weight (Dunn, 2010; Sabbatini et al., 2012). The first
two variables can usually be determined accurately
by sampling at veraison, i.e., quite early in the growth
cycle. The main source of variation lies in the
predicted berry weight; the quality of any yield
prediction is therefore strongly determined by how
accurately this can be forecast.

Berry weight can be anticipated in several ways. A
relatively simple and commonly used method is to
rely on historical data for average berry weight at
harvest (Dami, 2006; Barajas et al., 2010). However,
such method may not always be very accurate since it
usually does not take into account all the variables
that might affect a crop in any particular year. Other
methods employ the idea that berry weight at a
particular phenological stage is related to its final
weight via a coefficient. Sabbatini et al. (2012)
described a berry weight prediction method based on
the idea that, during the lag phase, berry weight is
approximately 50% of its final weight (Coombe and
McCarthy, 2000). Thus, growers could predict yields
at harvest by simply multiplying the number of plants
by the average number of clusters, and multiplying
this figure by double the average lag phase cluster
weight (obtained by sampling). However, this
requires the lag phase to be accurately identified
(Sabbatini et al., 2012). Further, the 50% value
suggested may differ from region to region.

Barajas et al. (2010) and Nuske et al. (2011)
suggested that yields can be predicted from the
simple relationship between final berry weight and
historical yields at harvest. Pool et al. (1993), Bates
(2008) and Sun et al. (2012) suggested the use of
growing degree days (GDD) to determine when berry
weight reaches approximately 50% of its final weight
(between 1000-1700 according to Sabbatini et al.
[2012]). Multiplying this weight by two and then
relating this figure to historical yield data provides a
prediction for the present year. 

Naturally, yield predictions need to be made after any
required cluster thinning. Cluster thinning is best
performed 20-30 days after flowering, normally
between fruitset and veraison (Dokoozlian and
Hirschfelt, 1995; Keller et al., 2005; Sabbatini et al.,
2012; Sun et al., 2012). Yield predictions are
therefore best made after veraison. 

Yields can also be predicted from cluster weight.
However, the results can be misleading due to annual
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variation in berry weight and berry number per
cluster (Sabbatini et al., 2011 and 2012). 

Yield predictions can be attempted at any time during
the growth cycle, although they become more
accurate later in the cycle (Folwell et al., 1994). Early
prediction, however, is important in vineyard and
winery management, but none of the more traditional
methods mentioned above are very reliable and there
are only few grapevine models available (García de
Cortázar-Atauri, 2006; Santos et al., 2011; Cola et al.,
2014; Parker et al., 2011). The present work
compares the grape yields predicted by six models –
one for use at fruitset (FS), two for use at veraison
(V1 and V2), and three for use during the lag phase
(LP40, LP50 and LP60) – with observed yields to
determine which provide results with an acceptable
error earliest in the growing season.

MATERIALS AND METHODS
1. Experimental vineyards

The present work involved 14 vineyards (total
surface over 700 ha) at the “El Jaral” estate in
Malpica del Tajo (Toledo, Spain; 44º14’N, 3º58’W).
The growing area has a Mediterranean climate with
more than 2000 GDD each season. Plant rows were
NW-SE oriented; spacing was 2.7 x 1.2 m. Irrigation
drippers (3·L h-1) were spaced 1.2 m apart in each
row (one per plant); all plants received the same
amount of water in the same year. Plants were grown
on trellises (bilateral cordons), vertical-shoot-position
(VSP) trained, and spur-pruned. 

Four plots (total area covered 1296 m2) were
established in each vineyard during four consecutive

seasons (2004-2007). Each plot involved two rows of
25 plants, surrounded by border vines. Yield
component data were collected from 30 plants (15 in
each row) at fruitset and harvest, and from 20 plants
(10 in each row) at veraison (which requires cluster
removal). Table 1 shows the varieties planted in each
vineyard, their rootstocks, and yield data for 2004-
2007. The phenology of each variety varied slightly.

2. Construction of models for predicting yield

The grape yields predicted by six models – one for
use at fruitset (FS), two for use at veraison (V1 and
V2), and three for use during the lag phase (LP40,
LP50 and LP60) – were compared to observed yields
(kg per m of row).

1. FS model. This model required: i) counting the
number of clusters per plant from 30 plants (15 per
row) per replicate in each vineyard (total of 120
plants per vineyard) at fruitset and ii) recording the
mean cluster weight at harvest from the historical
dataset for each vineyard.

2. Veraison model 1 (V1). This model required:
clusters from 20 plants per replicate to be removed at
veraison and weighed using a JADEVER® JCA
Series balance (maximum capacity 60 kg; accurate to
1 g). The mean cluster weight for each vineyard was
multiplied by a coefficient K1 (Eq. 1) describing the
relationship between berry weight at veraison and
harvest:
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Experimental 
Vineyards Variety Rootstock 

Clusters/m (N) Final Cluster Weight (g) Final Yield (kg/m) 

! SD ! SD ! SD 
1 Petit Verdot 420A 23.46 3.04 132.95 23.26 3.07 0.72 
2 Cabernet-Sauvignon 110R 32.48 16.19 108.99 19.79 3.25 1.26 
3 Cabernet-Sauvignon 110R 33.88 12.86 91.36 21.9 2.88 1.05 
4 Cabernet-Sauvignon 3309C 37.92 18.03 94.91 20.78 2.83 0.98 
5 Cabernet-Sauvignon 3309C 30.71 18.24 95.81 15.97 2.55 0.99 
6 Cabernet-Sauvignon 1103P 30.03 16.97 90.11 16.18 2.5 0.91 
7 Cabernet-Sauvignon 1103P 27.27 9.03 127.11 41.63 2.84 0.55 
8 Merlot SO4 31.41 12.15 108.58 32.11 2.64 0.49 
9 Merlot 3309C 23.46 10.7 147.05 33.59 2.46 0.41 

10 Syrah 110R 24.44 8.55 101.36 16.14 2.08 0.29 
11 Syrah 110R 22.55 8.67 179.81 50.96 2.87 0.74 
12 Syrah SO4 28.14 11.26 148.88 42.6 4.09 0.94 
13 Merlot 110R 37.56 14.08 124.17 24.79 4.22 1.06 
14 Merlot 110R 36.83 13.27 124.87 23.6 4.24 1.06 

 

Table 1 – Mean number of clusters, final cluster weight (g) and final yield (kg per m of row) (means ± SD) 
for each vineyard between 2004 and 2007.
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where N is the number of years involved in the
calculation of the mean yield, n = i refers to the first
year of the data range, k refers to the last year of the
data range, and K1i is determined via Equation 2: 

3. Veraison model 2 (V2). This model is the same as
that above but employs the coefficient K2 (Eq. 3),
obtained as follows:

where N is the number of years involved in the
calculation of the mean yield, n = i refers to the first
year of the data range, k refers to the last year of the
data range, and K2i is determined via Equation 4:

4. Lag phase models (LP40, LP50 and LP60). These
models are all based on the idea that, at lag phase,
berry weight is approximately 50% of its final weight
(Coombe and McCarthy, 2000). However, these
models assume that, at lag phase, the berry weight
reached is in fact 40% (LP40), 50% (LP50) or 60%
(LP60) of final berry weight. Yield predictions were
calculated as for the above V1 and V2 models, but
substituting K1 or K2 for the KLP coefficient, which has
a value of 5/2, 2.0 and 5/3 for the LP40, LP50 and
LP60 models, respectively. 

The performance of these six models in predicting
the observed yield was determined using Equation 5:

where Yr is the estimated yield per m of row, Yo is
the independent term of the regression equation, P is
the number of plants per m of row, C is the number
of clusters per plant, Cw is the cluster weight, µ is the
error, and the subscript i refers to the year and
replicate in question. All regressions (Eq. 5) were
calculated using the IBM-SPSS v.19 PROC REG
routine and then compared by ANOVA using the
same software.

3. Model comparison and validation

The models were compared and validated based on
two criteria extensively used in plant models
(Bellocchi et al., 2010; Miranda et al., 2013) and
taking into account the following (Eq. 6): 

(i) the efficiency index (EF), a normalized statistic
that determines the proportion of variance
explained by the model, and

(i) the root mean squared error (RMSE), a residual-
based measure that provides the mean error of the
prediction (expressed in kg per m of row).

where Oi is the observed value, Pi is the predicted
value, O is the mean observed value, and n is the
number of observations.

Finally, graphical procedures (Bland and Altman,
1986; Mayer and Butler, 1993 in Miranda et al.,
2013) were used to compare the yields predicted at
harvest by each model to those observed. Scatter
plots were drawn and the line of equality (on which
all points would lie if the observed and estimated
values were exactly the same) drawn. The lack of
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Table 2 – Mean dates at which the different phenological stages were reached, and GDD data (budbreak-harvest) 
for each variety between 2004 and 2007.

1GDD = growing degree days

01-fuente_05b-tomazic  01/04/15  19:29  Page30

https://www.researchgate.net/publication/225116089_Validation_of_biophysical_models_Issues_and_methodologies_A_review?el=1_x_8&enrichId=rgreq-a7cd8c6e964049ea9e7cb599f125120b-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ3NTcwOTtBUzoyMjIwNTgzMzczMTI3NjhAMTQyOTk1NDI0MTkwMg==
https://www.researchgate.net/publication/248701483_Evaluation_and_fitting_of_models_for_determining_peach_phenological_stages_at_a_regional_scale?el=1_x_8&enrichId=rgreq-a7cd8c6e964049ea9e7cb599f125120b-XXX&enrichSource=Y292ZXJQYWdlOzI3MjQ3NTcwOTtBUzoyMjIwNTgzMzczMTI3NjhAMTQyOTk1NDI0MTkwMg==


agreement between the observed yields and those
predicted by each model was examined by
calculating the relative bias using a Bland and
Altman graph (Miranda et al., 2013), which takes
into account the mean (µ) and the standard deviation
(SD) of the differences. The interval defined by µ ±
2SD (limits of agreement) was calculated for each
model.

All the models were then subjected to validation
using independent real and observed datasets. 

RESULTS

Table 3 reveals the differences between the models in
terms of R2. The V1 and V2 models had higher R2

values (covering close to 75% of the total variability)
than the FS and the three LP models (R2 range 0.58-
0.6). 

The V1 and V2 models had the best RMSE
(generally <0.5 kg) and EF values (Table 4). The FS,
LP40 and LP50 models showed similar RMSE
values (around 0.83), while LP60 had a slightly lower
RMSE value (0.66). 

The V1 and V2 models had by far the best EF values
(0.71 and 0.67, respectively). The LP60 model had an
EF of 0.34, but the FS, LP40 and LP50 models had
values of just 0.07, -0.26 and 0.11, respectively.

Estimated yields were plotted against the observed
values (Fig. 1). For all models, the data clustered
fairly close to the equality line, and a similar
dispersion between the data used for model building
and validation was observed. All models (except V1
and V2) had a deviation from the ideal relationship (y
= x) around 4-5%, while the V1 and V2 models had
only 2.5% deviation, being better fitted. Normality of
the model predictive errors was formally assessed
using an ANOVA regression test, and their
significances (p<0.0001) indicated that residuals
adequately approximated normality in all cases.

To analyse the predictive ability of the models, the
differences between observed and predicted yields
were plotted against the observed yields (Fig. 2). The
mean differences (µ) between observed and predicted
yields are shown as solid lines (always <1.0 kg). The
FS, LP40, LP50 and LP60 models tended to
overestimate yield in low yielding plots and to
underestimate yield in high yielding plots. These
effects were more severe for the FS (µ = -0.53 kg)
and LP40 (µ = -0.7 kg) models, which had values of
around µ = ±0.2 kg.

DISCUSSION
The R2 values of the V1 and V2 models were about
15% higher than those of the FS, LP40, LP50 and
LP60 models. They also had higher EF values. The
FS model had an EF about 0.60 lower than those of
V1 and V2 since it did not take into account either
berry or cluster weight of the current year - the main
source of variability (Sabbatini et al., 2011 and
2012). The EF values of the LP50 (0.05 lower), LP60
(0.27 lower) and LP40 (0.32 higher) models were
similar to that of the FS model. These results suggest
that yield predictions at fruitset, while not
particularly good, might be of some interest given the
early point in the growth cycle at which they can be
made. Further, fruitset is much easier to identify than
the lag phase. It is important to note that the error
associated with the FS model can be high, although
some wineries might still find the model useful: it
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Table 3 – Relationship between observed and predicted yields and R2 values for the six prediction models.

1All model equations had p values of �0.0001
2Yieldp = average predicted yield (the average observed yield was 2.9 kg per m of row)

Table 4 – Validation: root mean squared error (RMSE)
and efficiency index (EF) values for the six models. 

 
Parametric Model Values 

RMSE  EF 

Fruitset (FS) 0.833 0.065 

Veraison 1 (V1) 0.460 0.707 

Veraison 2 (V2) 0.480 0.670 

Lag phase 40% (LP40) 0.915 -0.255 

Lag phase 50% (LP50) 0.769 0.114 

Lag phase 60% (LP60) 0.664 0.340 
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gives crop and winery managers very early
information. 

The V1 and V2 models had the lowest RMSE values
(close to 0.45 kg per m of row). The mean variability
for the observed yield data for the plots over 2004-
2007 was 0.82 ± 0.29 kg - an error of <0.5 kg per m
of row (Table 1). According to Miranda et al. (2013)
and Diago et al. (2012), RMSE values <1 validate

the model. Using models involving predictions made
at flowering and veraison, Diago et al. (2012)
obtained higher RMSE values (0.749 kg) than those
shown by the V1 and V2 models, while Parker et al.
(2011) obtained similar EF (0.72-0.76) but higher
RMSE values. The V1 and V2 yield predictions are
reliable for this early stage of the growth cycle. The
V1 model provided the best R2 (0.748), EF (0.707)
and RMSE (< 0.5 kg per m of row) results. Veraison
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Figure 1 – Observed yields plotted against the yields predicted by each model. 
The R2 values were validated by ANOVA (p<0.0001).

Figure 2 – Differences between Observed (O) and Predicted (P) yields plotted against the observed yields.
The solid line is the mean of the differences (µ); the broken lines are the limits of agreement calculated as µ ± SD, 

where SD is the standard deviation of the differences.
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models enjoy the advantage of having more
information since predictions are made later in the
growth cycle. Indeed, both V1 and V2 models are
here shown to predict yields rather well. Similar
results have been obtained by others using veraison
models to predict the yields of fruit trees (Miranda
and Royo, 2004) and grapevines (Parker et al., 2011). 

Correlation coefficients were calculated for each plot
to test the null hypothesis that the values provided by
the models were not linearly related to the observed
yields. Values obtained for the estimation methods
were linearly related (R2 = 0.6-0.75; p<0.0001) to the
true values. Nuske et al. (2011) obtained a correlation
score of R2 = 0.74 when using digital images taken at
veraison, while Diago et al. (2012) obtained similar
values (R2 = 0.73; p<0.002) during maturation. The
present FS and LP models showed more
heterogeneity than the V1 and V2 models. The V1
model had the smallest number of outliers. However,
correlation analysis is not entirely appropriate for
these models (Bland and Altman, 1986; Miranda et
al., 2007); graphical analysis of the dispersion of the
error provides a clearer view of the relationship
between predicted and observed yield (Fig. 2).

The FS, LP40, LP50 and LP60 models tended to
overestimate yield in low yielding plots and to
underestimate yield in high yielding plots. However,
since the deviations were small and constant, these
models could be considered reliable (mainly FS),
given the early stage in the growth cycle.

With the FS model, the SD of the differences revealed
a moderate systematic error (-0.53) and accuracy
(error <0.6 kg per m of row in 95% of cases). As the
cycle progresses, yield predictions become better. The
V1 model showed the best systematic error (0.16) and
accuracy (<0.43 kg per m of row in 95% of cases)
(Fig. 2). The V2 model had a similar systematic error
(-0.16), but showed greater dispersion between
observed and predicted yields and less accurate yield
predictions (<0.46 kg per m of row in 95% of cases),
with a slight tendency to overestimate. The V1 model
had the smallest bias of all and provided the best
results of all. The LP60 model showed a systematic
error of -0.1 but greater bias and less accuracy (0.63
kg per m of row in 95% of cases) than the FS, V1 and
V2 models. The LP40 and LP50 models showed
higher systematic errors (-0.69 and -0.31,
respectively), while their bias, error and accuracy
(0.71-0.72 kg per m of row in 95% of cases) compare
well with the V1 and V2 models, showing that
making predictions when the berries are at 50% of
their final weight does not always work well. 

Some authors report errors in yield predictions of 10-
15% (Miranda and Royo, 2004; Tarara et al., 2005;
Nuske et al., 2011). Yet, others report errors of 20%
(Blom and Tarara, 2009) and 30% (Dunn, 2010). The
present models were more accurate, especially V1
and V2 – despite being of use relatively early in the
growth cycle – and can be considered statistically
acceptable since they meet the criteria of Power
(1993), i.e., they show no significant predictive bias,
adequate accuracy, and the prediction residuals are
normally distributed.

In the prediction of other variables, such as the
timing of a determined phenological stage or the
damage that might be caused by disease or frost,
simple methods based on easily measured variables
are recommended (García de Cortázar-Atauri et al.,
2009; Nendel, 2010; Parker et al., 2011; Daux et al.,
2012; Miranda et al., 2013). Certainly, the present
models, which only take into account berry weight or
cluster weight, meet this criterion.

The models presented in this paper could be
improved year-on-year as observed yield data is
collected and used to feed the historical dataset.

CONCLUSION
The V1 and V2 models could be used to accurately
predict grapevine yields. Despite the inherent error of
the FS model, predictions made at fruitset may be of
interest to some wineries that require information as
early as possible.
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