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This article addresses the problem of spray vaporization and combustion in axisymmetric 
opposed-jet configurations involving a stream of hot air counterflowing against a stream of 
nitrogen carrying a spray of fuel droplets. The Reynolds numbers of the jets are assumed 
to be large, so that mixing of the two streams is restricted to a thin mixing layer that sepa­
rates the counterflowing streams. The evolution of the droplets in their feed stream from the 
injection location is seen to depend fundamentally on the value of the droplet Stokes num­
ber, St, defined as the ratio of the droplet acceleration time to the mixing-layer strain time 
close to the stagnation point. Two different regimes of spray vaporization and combustion 
can be identified depending on the value of St. For values of St below a critical value, equal 
to 1/4 for dilute sprays with small values of the spray liquid mass-loading ratio, the droplets 
decelerate to approach the gas stagnation plane with a vanishing axial velocity. In this case, 
the droplets located initially near the axis reach the mixing layer, where they can vaporize 
due to the heat received from the hot air, producing fuel vapor that can burn with the oxygen 
in a diffusion flame located on the air side of the mixing layer. The character of the spray 
combustion is different for values of St of order unity, because the droplets cross the stagna­
tion plane and move into the opposing air stream, reaching distances that are much larger 
than the mixing-layer thickness before they turn around. The vaporization of these crossing 
droplets, and also the combustion of the fuel vapor generated by them, occur in the hot air 
stream, without significant effects of molecular diffusion, generating a vaporization-assisted 
nonpremixed flame that stands on the air side outside the mixing layer. Separate formu­
lations will be given below for these two regimes of combustion, with attention restricted 
to the near-stagnation-point region, where the solution is self-similar and all variables are 
only dependent on the distance to the stagnation plane. The resulting formulations display a 
reduced number of controlling parameters that effectively embody dependences of the struc­
ture of the spray flame on spray dilution, droplet inertia, and fuel preferential diffusion. 
Sample solutions are given for the limiting cases of pure vaporization and of infinitely fast 
chemistry, with the latter limit formulated in terms of chemistry-free coupling functions that 
allow for general nonunity Lewis numbers of the fuel vapor. 



INTRODUCTION 

For the high Reynolds numbers typically encountered in combustion applications the 
flow is turbulent and the flames appear embedded in thin mixing layers that are locally 
distorted and strained by the turbulent motion (Peters, 2000). In applications involving 
spray combustion, the interactions of the flame with the flow are also dependent on the 
presence of the fuel droplets (Sirignano, 2010). These interactions can be investigated by 
consideration of simple laminar problems, an example being the counterflow mixing layer 
investigated here, which has been widely used as a cartoon to represent local flow condi­
tions in strained mixing layers (Peters, 2000). Counterflow structures that move with the 
mean velocity can be abstracted from the interface dynamics of shear and mixing layers 
(Corcos and Sherman, 1976). Local counterflow spray configurations are encountered in 
typical combustion chambers around the stagnation point that forms near the injector exit 
as a result of vortex breakdown of the swirling air-feed stream (see, for example, Edwards 
and Rudoff, 1990). 

Counterflow configurations have been employed in previous experimental analyses 
of spray diffusion flames, with numerous fundamental contributions originating from the 
combustion laboratories at UCSD (Li, 1997; Li and Williams, 2000; Li et al., 1993; Puri 
and Libby, 1989) and at Yale university (Chen and Gomez, 1992; Gao et al, 1996; Massot 
et al, 1998; Santoro and Gomez, 2002; Santoro et al, 2002). Numerical analyses were 
developed in parallel efforts. Continillo and Sirignano (1990) provided for the first time a 
two-continua formulation for spray flames in counterflow mixing layers and the conditions 
needed for the solution to remain self-similar in the vicinity of the stagnation point, where 
fluid properties are functions of the distance to the stagnation plane. The two-continua 
description applies to the dilute spray conditions typically found in the main vaporization 
and combustion region of practical liquid-fueled combustion devices (Sirignano, 2010), 
when the interdroplet distances are significantly larger than the droplet diameter and, for 
the counterflow configuration, smaller than the mixing-layer thickness. Then each droplet 
moves and vaporizes individually in the gas environment provided collectively by the 
droplets, which includes the statistically smoothed effect of the wakes of the neighbor­
ing droplets, where the exchanges of fuel, energy, and momentum with the gas have been 
dumped. This allows us to use a homogenized treatment of the dispersed phase, in which 
the droplets appear as distributed point sources, resulting in source terms in the gas-phase 
equations that are proportional to the number of droplets per unit volume. 

The two-continua formulation, termed multicontinua formulation when used for the 
analysis of polydisperse sprays by incorporation of several droplet classes in the compu­
tation, has been used to explore different aspects of counterflow spray diffusion flames. 
The computation is simplified when the droplets are sufficiently small that they vaporize 
completely before crossing the stagnation plane (Kee et al, 2011; Laurent and Massot, 
2001; Schlotz and Gufheil, 2000; Wang et al. 2013; Zhu et al, 2012). However, as noted by 
Puri and Libby (1989) and Chen et al. (1992), sufficiently large droplets cross the stagna­
tion plane and even undergo oscillatory trajectories, a general complicating characteristic 
of particle-laden stagnation-point flows (Fernandez de la Mora and Riesco-Chueca, 1988; 



Figure 1 Schematic view of the typical experimental arrangement employed in experimental studies of 
counterflow spray flames. 

Robinson, 1956). As shown by Gutheil and Sirignano (1998), this can be successfully han­
dled in the self-similar counterflow formulation by consideration of different "sheets of 
solutions," thereby enabling computations that may account for oscillatory droplet tra­
jectories (Gutheil, 2001; Hollmann and Gutheil, 1998; Olguin and Gutheil, 2014). The 
multicontinua formulation can be extended to the treatment of realistic droplet-size distri­
butions by consideration of a large number of droplet classes (or "sectionals"). A different 
sectional approach is followed by other authors (Gao et al, 1996; Massot et al, 1998), who 
used as starting point the spray equation originally derived by Williams (1985). 

THE COUNTERFLOW PROBLEM 

In this article, we shall analyze the vaporization and combustion of sprays in axisym-
metric counterflow arrangements involving two high-Reynolds-number opposing streams, 
one of air and the other containing a polydisperse fuel spray carried by nitrogen. Figure 1 
represents the typical setup used in experimental studies, which involves two opposing noz­
zles of radius R whose exits are located a distance 2H apart. The resulting axisymmetric 
coaxial counterflowing jets are separated by a laminar stagnation-point mixing layer, to be 
described in terms of the radial and axial coordinates r and z measured from the stagnation 
point. The Reynolds number Re = UsR/vs, based on the characteristic injection velocity 
Us and kinematic viscosity v, of the spray-carrier gas, and the accompanying Reynolds 
number of the hotter air stream are moderately large in typical applications. Under those 
conditions, the flow of the counterflowing streams is nearly inviscid and includes a poten­
tial region near the stagnation point where the gas velocity v = (u, v) is determined by the 
uniform strain rate found on each side of the stagnation plane. On the spray side the flow is 
given by 

-Asz and v = Asr/2 (1) 



in terms of the spray-side strain rate As, a quantity of order Us/R. The corresponding strain 
rate found on the air side is, in general, different, with a value AA = As^/ps/pA dictated in 
terms of the inert-to-air density ratio by the condition of negligible pressure variation across 
the mixing layer. Because of the prevailing large Reynolds number flow, mixing between 
both streams occurs only in a thin layer at the separating surface, whose characteristic 
thickness is Sm ~ (ys/As)

l/1 ~ R/Re1/2 < R. In the vicinity of the central stagnation point, 
the mixing layer exhibits a self-similar structure in terms of the strain rate As in which v/r 
and the other fluid variables are a function of the distance z to the stagnation plane. 

Typically in experiments the droplets are injected at a distance zi from the stagnation 
plane much larger than the mixing-layer thickness. The initial temperature of the droplets 
and of the inert gas are often sufficiently lower than the boiling temperature of the liquid 
fuel for droplet vaporization in the spray stream to be negligible. The description of the 
motion of the nonvaporizing droplets in the nearly-inviscid inert stream is given in the 
Appendix. Because of their diverging radial motion, only the droplets initially located near 
the axis, where r <^R, eventually enter the self-similar region of the mixing layer around 
the stagnation point. 

Two important parameters, dependent on the droplet size, govern the coupling 
between the liquid and gas phases in vaporizing sprays, namely, the Stokes number St, 
defined in (9), and the ratio a of the liquid mass to the mass of gas per unit volume, defined 
in (10) (Sanchez et al., in press). The Stokes number, which for the counterflow is the ratio 
of the droplet acceleration time (which is of the order of its vaporization time) to the char­
acteristic strain time A71 of the counterflow mixing layer, measures the coupling of the 
droplets with the gas flow, whereas the ratio a/St measures the coupling of the gas phase 
with the droplets. In vaporizing sprays, effective two-way coupling occurs in the double 
distinguished limit St = 0(1) and a = 0(1). The coupling is more pronounced in the pres­
ence of combustion, because the heat released by burning the fuel vapor is enough to lead 
to flame temperatures several times larger than the spray feed temperatures. In analyzing 
the interphase coupling in burning sprays one should bear in mind that in the combustion of 
typical hydrocarbon fuels the air-to-fuel stoichiometric ratio S (i.e., the mass of air needed 
to burn the unit mass of fuel) is a large quantity of order S ~ 15. As a result, very dilute 
sprays with relatively small values of a ~ 5 _ 1 < 1 may generate diffusion-flame temper­
atures of the order of the stoichiometric adiabatic flame temperature, thereby producing a 
strong effect on the gas flow through the associated gas expansion. 

The analysis in this article will focus on values of the Stokes number of order unity 
and values of the liquid mass-loading ratio a of order 5_ 1 . Since a < 1, we find one-way 
coupling of the droplets in the spray stream, but strong two-way coupling in regions affected 
by the fuel-vapor combustion if the gas-phase reaction has been ignited. For these dilute 
sprays, the computation of the droplet motion downstream from the injection plane, given 
in the Appendix, reveals different behaviors depending on the value of St. For St < 1/4, 
the droplets are seen to approach the stagnation plane with a vanishing transverse velocity, 
whereas for St > 1/4 they cross the stagnation plane and move into the opposing air stream. 
These two behaviors lead to two distinct regimes of spray vaporization and combustion, 
which are analyzed separately below. For St < 1/4, we find that the droplets are trapped 
in the mixing layer, where droplet vaporization and gas-phase chemical reactions occur. 
For St > 1/4, on the other hand, the droplets traverse the stagnation plane with a crossing 
velocity that is much larger than the transverse gas velocity in the mixing layer, penetrating 
large distances of the order of the initial injection distance into the counterflowing stream 
before they turn around. Droplet vaporization occurs in this case on the air side, with the 



inertial droplets distributing the fuel vapor over transverse distances much larger than the 
mixing-layer thickness. Correspondingly, when this fuel vapor reacts with the oxygen of 
the air, the diffusion flame that forms stands away from the mixing layer, with a structure 
markedly different from that found for St < 1/4. 

SPRAY VAPORIZATION AND COMBUSTION IN THE COUNTERFLOW 
MIXING LAYER 

The droplet velocity v^ = (Ud, Vd) and the droplet number density found near the 
stagnation plane outside the mixing layer are determined by the evolution of the near-
axis droplets as they move from z = Zi until they finally reach the stagnation plane z = 0. 
As shown in the Appendix, for dilute sprays with small values of the liquid mass-loading 
ratio, the droplets with Stokes number St < 1/4 approach the stagnation-point region with 
axial and radial velocity components 

1 - VI - 4St 
ud = AsZ (2) 

and 

V2St + 1 - 1 
vd = ~ ^ Asr/2, (3) 

independent of the injection conditions. Because of their vanishing axial velocity, instead 
of crossing to the air side, these droplets remain in the mixing layer, corresponding to small 
axial distances z of the order of the mixing-layer thickness Sm, where they vaporize when 
encountering the hot air. 

In this section we give the multi-continua formulation for spray vaporization and 
combustion in the counterflow mixing layer, the relevant regime for droplets with St < 
1/4. Attention is restricted to the near-stagnation-point region, where the flow has a self-
similar structure determined by the strain rate As, in which the gas phase is described in 
terms of the radial and axial velocity components v = A(z) rjl and u(z), temperature and 
density T (z) and p(z), and mass fractions Yj(z). A poly disperse spray with Nc different 
droplet classes is considered. For each droplet class j , the continuum solution is given in 
terms of the droplet number density nJ(z), droplet radial and axial velocity components 
vd = AJ

d(z) rjl and u}
d(z), and droplet radius aHz) and temperature TJ

d(z), the latter assumed 
to be uniform inside the droplet, a valid approximation when the thermal conductivity of the 
liquid fuel is much larger than that of the gas surrounding the droplet (Law and Sirignano, 
1977). We begin by giving the expressions for the exchange rates of momentum, energy, and 
mass between the two phases, followed by the equations and boundary conditions for the 
liquid and gas phases. The formulation includes in the boundary conditions for the liquid 
phase the droplet velocity distributions given in (2) and (3) and the accompanying droplet 
number density given in (AlO), which hold at intermediate distances Sm < z < R- Together 
with the case of pure spray vaporization, specific consideration will be given below to the 
limit of infinitely fast reaction and its formulation in terms of coupling functions (Arrieta-
Sanagustin et al, 2013; Sanchez et al, in press). 



Droplet Submodels 

The drag force f acting on the individual droplet of each class, its rate of vaporiza­
tion m->, and heating rate qJ

d, which depend in general on the droplet-gas slip motion, are 
evaluated below for the case of droplet Reynolds numbers small compared with unity, lead­
ing to a set of compact expressions. Effects of near-droplet convection associated with the 
slip velocity introduce corrections to the exchange rates that, surprisingly, remain moder­
ately small as the slip-flow Reynolds number increases to values of order unity, so that the 
description given in (4)-(8) provides sufficient accuracy under most conditions of interest. 
More complete droplet models, incorporating dependences on droplet Reynolds number as 
well as influences of additional effects not contemplated in the derivation given below are 
available (Abramzon and Sirignano, 1989) and could be incorporated in the counterflow 
formulation. 

The expressions given below result from the quasi-steady analysis of the flow field 
near the individual droplet, using the local gas-phase values for the outer conditions. They 
include the familiar Stokes law for the force of the gas on the individual droplet 

P = 6jriJ,aHv - \j
d) = 6iriJ,aj u - ud,\A — Ad\ r/2 (4) 

where [i is the viscosity of the gas surrounding the droplet. The rate of vaporization and the 
rate of heating of the individual droplet 

mJ = (4jtKaJ/cp) XJ (5) 

and 

^ = 47r^(^f--|V <6> 
are expressed in terms of the dimensionless vaporization rate XJ, an eigenvalue of the prob­
lem, representing a Stefan-flow Peclet number based on the mean radial gas velocity at the 
droplet surface. Here, K and cp are the thermal conductivity and the specific heat at constant 
pressure of the gas and Ly is the latent heat of vaporization of the fuel. The value of XJ is 
found to be given by 

V = —In H (7) 

in terms of the fuel-vapor Lewis number LeF and the values of its mass fraction in the 
atmosphere surrounding the droplet YF and at the liquid surface Y^s; the latter determined 
by the Clasius-Clapeyron relation in terms of the droplet temperature 

Ml j ( U U \ 
-^Y}

v, = exp — — (8) 
MF

 F's V\RvTv RvPd 



Here, MF and M}
s are the molecular mass of the fuel and the mean molecular mass of the gas 

at the droplet surface, RF = R° /MF is the fuel gas constant, and TB is the boiling tempera­
ture of the fuel at the chamber pressure. The computation is simplified here by employing 

the expression MF/MJ
S = Y^s + (1 — Y^A MF/'MN2, an approximation that accounts for 

the large differences of the molecular masses of the fuel vapor and N2, while taking the 
molecular mass of all other species equal to that of nitrogen. In that case, Eq. (8) can be 
used to determine Y^s as a function of Td, while (7) gives explicitly XJ in terms of Y^s 

and IF-

For most liquid fuels, the latent heat of vaporization is sufficiently large that the 
condition Ly » RFTB is satisfied. According to (8), the fuel-vapor mass fraction on the 
droplet surface Fps remains exponentially small as long as the droplet temperature Td stays 

sufficiently below JR, i.e., its value is such that (JR — TJA/TB » [LV/(7?F7B)] • As a 
result, when the droplets are injected in a cold carrier gas, the initial rate of vaporization 
becomes negligibly small, as can be seen from (7) with YF = 0 and Yv s < 1. In this case, 
significant vaporization is seen to occur only after the droplets enter in contact with the hot 
air in the mixing layer; and changes in the droplet radius can be neglected altogether when 
studying the droplet evolution in the outer stream, as done in the Appendix. 

Dimensionless Formulation 

The spray-side value of the strain rate As and the associated characteristic mixing-
layer thickness Sm = (DTs/As) , where DTs is the thermal diffusivity of the unperturbed 
carrier gas, will be used as scales in defining the dimensionless variables z = z/Sm, A = 
A/As, U = u/(As8m),AJ

d = AJ
d/As, mduJ

d = uJ
d/(As8m). Similarly, the unperturbed density 

ps and temperature Ts of the carrier gas will be used to scale p = p/ps, f = T/Ts, and 
fd = Td/Ts. The initial radius of each droplet class at the injection location a\ will be 
used to define the dimensionless value of the droplet radius W = a->/aj. For counterflow 
configurations with large Reynolds numbers Re, the analysis given in the Appendix reveals 
that n}, the number of droplets per unit volume, has a characteristic value in the mixing layer 

n)m much larger than the value at the injection plane n\ according to n}
m/nJj = B (R/Sm) ~ 

Rec'l2, where O' = 1 - 2L/2StJ + 1 - l)/ (l - Vl - 4sA and B is a constant of order 
unity. Hence, to investigate the solution in the mixing layer, we use n}

m to scale the number 
density according to nJ = n?/n}

m. For each droplet class, the droplet radius at injection a\ 
and the characteristic number density n}

m will be seen to appearin the resulting formulation 
through the Stokes number 

St> = -As(afy pilixs (9) 

and the liquid mass-loading ratio 

(4ir/3)(aj) n)mPl 
t} = ^ (10) 



where pi is the density of the liquid fuel. For simplicity, the tilde denoting nondimensional 
quantities is removed in the remainder of the article. 

Given the gas-phase distributions of temperature and velocity, the evolution of each 
droplet class j requires integration of the equations following the droplet trajectories 

« > ^ - J - ^ («-«*) (11) a dz St' (aj) 

(AJd) }AA}, 1 Ta 

+ uJ d 
,(A- A^ (12) 

dz St' (ni\2 \ d) } w 
\3 

id(a}) 2 
il-^-t- = :a]TaV (13) d dz 3PrSt̂  

jOTl _ Ic^T^ T-T}
d _ L^ 

{a^fVv-l cpl 
Ud dz " SPrSt; (nj\

2 e» - 1 cBT, *' (U) 

dz 
(n}uJ\+n}AJ

d = Q (15) 

supplemented with the expressions (7) and (8), needed to compute the dimensionless vapor­
ization rate XK For droplets with St < 1/4, the initial conditions consistent with the solution 
found at intermediate distances Sm < z < R, given in (2), (3), and (A10), are 

1 - Vl - 4St' 
a] - 1 = ui H ; z d 2St; 

^ _ _ (16) 
_ V2St̂  + 1 - 1 = T J 1 = nj_z-a = o asz ^ co 

StJ 

yielding a convenient description independent of the specific injection conditions. In writ­
ing (16), droplet vaporization prior to entering the mixing layer has been neglected along 
with differences of the droplet temperature from that of the carrier gas. 

To complete the formulation we give now, using the nondimensional variables defined 
above, the gas-phase conservation equations, beginning with the continuity and radial 
momentum equations 

d 2 i aJ . • 
— (pit) + pA= } —nJaJTaXJ (17) 
dz V ; 3Pr f- St' 

pA2 

+ Pu^=l-+ Pr A (r ^)+T £ » W U -A)(l + l v ) (18) 
dz 2 dz\ dzj j^SV V d J\ 3Pr / 



If the chemical reaction between the oxygen of the air and the fuel vapor is assumed to 
occur according to the global irreversible step F + 5O2 -> (1 + s) P + q', where s and q' 
are the mass of oxygen consumed and the amount of heat released per unit mass of fuel 
burned, then the equations for energy and reactants become 

A(„,r) + M r =!(rf) 
q ( Scop \ 2 -̂ A aJ 

(19) 

S\PsAj 3 P r ^ S t ^ < 

— (puYF) + pAYF = [Ta —- ) - - ( — - ) + — > — n3a3TaV (20) 
dz J F LeFdzV dz7 S V P A / 3Pr^St^ 

(„*,) + M*o = £ r ^ _ ( £ ) - ( ^ 0 ) + My0 = - ^ - j - ( -

where g = <// (c^Jj) is a dimensionless combustion heat per unit mass of fuel, and the fac­
tor S = S/YQ2A in (21) represents the amount of air needed to burn the unit mass of fuel 
vapor, a fairly large quantity for most fuels of practical interest (e.g., S ~ 15 for dodecane). 
Here, cop is the mass of fuel consumed per unit volume per unit time and YQ = YO2/YQ2A is 
the mass fraction of oxygen scaled with its value on the air side YQ2A — 0.232. A Fickian 
description is adopted for the species diffusion velocities, with Lep denoting the Lewis 
number of the fuel vapor and a unity value assumed for that of O2. The gas Prandtl num­
ber Pr appearing in (19) and (20) is assumed to be Pr = 0.7. A simple power-law a Ta 

with exponent a = 0.7 has been assumed for the temperature dependence of the different 
transport coefficients. 

The chemical-reaction terms appear written in (19)—(21) in terms of the 
dimensionless oxygen-consumption rate (Scop) / (psAs), which when important should 
result in changes of order unity in YQ, as can be inferred from (21). The same dimensionless 
rate is multiplied by q/S in (19), thereby introducing changes in the dimensionless temper­
ature T of order q/S, and by 5_1in (20), generating changes in YF of order 5_ 1 . This fuel 
mass fraction will be provided by the last term in (20) if aJ is of order 5_ 1 , as it is in the 
distinguished regime aJ ~ 5 _ 1 considered below. 

The above equations (17)—(21) are to be integrated with the boundary conditions 

u + z = A-l = T-l = YF = Yo = 0 as z -+ +00 
A-y/TA = T-TA = YF = Yo-l = 0 as z -+ - co . ( ' 

Differences in molecular weight between the two feed streams have been neglected in 
writing the boundary condition for the strain rate on the air side, so that the value 
AA = AS*JPslPA simplifies to *JTA when expressed in dimensionless form. Note that an 
arbitrary zero displacement of the spray stream is assumed in writing the boundary con­
dition w + z = 0 a s z ^ + o o . The location z = Zo of the stagnation plane, where u = 0, 



is obtained as part of the integration. The above equations must be supplemented with the 
equation of state written in the nondimensional form 

pT=[\- yF(l - MN2/MF)]_1 (23) 

To complete the formulation we should give the finite rate of fuel consumption cap. In this 
article, we shall limit the description to the two extreme limiting cases of negligible and 
infinitely fast reaction rate. 

Governing Parameters 

The dimensionless formulation given above serves to identify the parameters that 
control the structure of spray diffusion flames. Some of the parameters are related to 
the properties of the fuel, including its specific heat Q and molecular mass MF, which 
appear through the ratios cp/ci and M^2/MF in (14) and (23), respectively, the latent 
heat of vaporization Ly, which appears in dimensionless form in (8) and (14), the fuel 
Lewis number LeF, present in (7) and (20), and the boiling temperature Tg, which enters 
in the Clasius-Clapeyron relation (8). The main fhermochemical parameters involved in 
the chemical reaction, i.e., the mass S of air needed to burn the unit mass of fuel vapor 
and the dimensionless heat of reaction q = q'/ (cpTs), are also fuel dependent, although 
the differences are only small between fuels that share the same molecular structure, 
such as saturated hydrocarbons. For instance, for heptane and dodecane S ~(15.2,15) 
and q' = (45,44.5) kJ/g, giving a characteristic dimensionless temperature increase q/S = 
q'/(ScpTs) = (8.22,8.24) when evaluated at the normal temperature Ts = 300 K with the 
average specific heat cp = 1200 J/(kg K). 

For each droplet class, the inertia of the droplets and the dilution of the spray are char­
acterized by the Stokes number St;' and the liquid mass-loading ratio aJ given in (9) and 
(10), respectively. It is of interest that, since the characteristic times for droplet vaporiza­
tion and droplet heating are comparable to the droplet acceleration time (Sanchez et al, 
in press), the Stokes number St;' characterizes not only the coupling of the droplet motion 
with the gas flow in (11) and (12) but also their vaporization and heating, as can be seen 
in (13) and (14). As previously anticipated, a;'/St;' measures in (17)-(20) the coupling of 
the gas flow with the droplets. Since for all liquid fuels the mass of air S needed to burn 
the unit mass of fuel is always a large quantity, fairly small values of a < 1 are sufficient 
to generate a robust spray flame. For these dilute conditions, the direct effects of droplet 
vaporization, heating, and acceleration on the gas motion are negligible, as can be inferred 
from observation of the droplet source terms in (17)-(20), although significant interphase 
coupling still exists associated with the strong exothermicity of the chemical reaction. 

The boundary conditions (22) introduce only one additional parameter in the descrip­
tion, namely, the free-stream temperature ratio TA. An attractive characteristic of the 
formulation given here is that the boundary conditions for the liquid phase, given in (16), are 
independent of the injection conditions, whose effects are reflected mainly on aJ through 
the value of the apparent number density n}

m. 

The Burke-Schumann Formulation of Counterflow Spray Flames 

The above formulation can be used to compute reacting sprays and also purely vapor­
izing sprays, the latter given by cap = 0 in (19)—(21). Reactive solutions depend on the 



competition of the chemical reaction rate with the transport rates of heat of species and also 
with the interphase exchange rates. The solution can be simplified in the Burke-Schumann 
limit of infinitely fast reaction rate, when the chemical reaction is seen to occur in a flame 
sheet located at z = Zf, separating a region for z> Zf where ^o = 0 from a region for 
z < Zf where IF = 0, whereas at the flame both reactant concentrations are simultaneously 
zero. 

As indicated elsewhere (Arrieta-Sanagustin et al, 2013; Sanchez et al., in press), 
to handle the Dirac-delta character of the reaction term associated with the limit of 
infinitely fast reaction one may follow the general procedure suggested by Shvab (1948) 
and Zeldovich (1949) for gaseous diffusion flames, appropriately extended to account for 
the nonunity Lewis number of the fuel vapor (Linan, 1991; Linan and Williams, 1993; 
Linan et al., 2015). Thus, subtracting (21) from (20) times S leads to 

d 

dz 
pu (sYF ~Yo)]+ pA (sYF - y0) 

d 

dz 
Ta-(sYF/LeF-YQ) 

N 

+ V —nJaJTaXJ 

3 P r ^ S t ; 
(24) 

which can be written in the alternative form 

(puZ) + pAZ: 
S/LeF + l d / dZN 

dz S + 1 dz y dz 

involving a diffusion-weighted mixture-fraction variable, 

^ _ SYF/LeF -YQ + 1 

S/LeF + 1 

in addition to the classical mixture-fraction variable, 

2 Nc a} 

+ V —n3a3TaV 
3Pr^ -S t^ 

(25) 

(26) 

SYF -YQ + 1 

5 + 1 
(27) 

A similar manipulation of (19) and (21) yields 

d (PuH) + PAH=± (r>*p\ + ^-j: ^nUrvU 
dz dz V dz / 3 Pr f-* st ; ei.j _ i (28) 

for the excess enthalpy, 

H = T-TA+(f0-l)q/S (29) 



In the sum over droplet classes, H}
d = T}

d — TA — q/S represents the excess-enthalpy value 
for the vaporizing fuel vapor of each droplet class. In this case, since the Lewis number 
of oxygen is assumed to be unity, the coupling functions emerging in the diffusion and 
convective terms in (28) are identical, thereby simplifying the formulation. The boundary 
conditions for (25) and (28) are given by 

Z — Zst = Z — Zrf = 0 and H = Ts — TA — q/S as z -> oo (30) 

Z = Z = 0 and H = 0 as z ^ - o o (31) 

where Zst = 1/(1 + S) andZst = l / ( l + S/heF). 
In the description of the limit of infinitely fast reaction, the three conservation equa­

tions for the energy and the reactants (19)—(21) are replaced with the chemistry-free 
equations (25) and (28), together with the condition, 

YFY0 = 0 (32) 

of noncoexistence of the reactants. The flame is located where both the vapor fuel YF and 
the oxygen YQ are simultaneously zero, corresponding to values of the mixture fraction 
Z = Zst or Z = Z„.. For Z > Zst, we find YQ = 0 and 

YF=- - ^ = - ^wAT = TA+H+l (33) 
1 - Art 1 - Zst o 

whereas for Z < Zst, YF = 0 and 

Z Z q Z 
Y0 = l = 1 - ^ and J = rA +H+-— (34) 

7 7 <i 7 
L-'St Z^st ° ^ 

These relationships link the values of Z, Z, and H and provide the mass fractions of 
reactants and the temperature in terms of the coupling functions across the mixing layer. 
If needed, source-free conservation equations that determine the product concentrations can 
be obtained from linear combinations accounting for nonunity Lewis numbers of CO2 and 
H20 (Arrieta-Sanagustin et al., 2013). 

Sample Numerical Results 

The above formulation can be used to investigate different aspects of strained spray 
diffusion flames for the two limiting regimes of zero and infinitely fast reaction rates. 
In the sample integrations shown below, the values cp/ci = 0.543, M^2/MF = 0.165, 
Lep = 2.62, Ly/icpTs) = 1.005, TB/TS = 1.63, and q = 123.6 are employed, as corre­
sponds to dodecane with Ts = 300 K and with a constant mean value cp = 1200 J/(kg K) 
assumed for the specific heat of the gas mixture. Also, since the air is often preheated in 
fuel-spray applications, an elevated air-to-inert temperature ratio TA = 2 is considered. 

We begin by investigating solutions corresponding to chemically frozen flow, 
obtained by removing the chemical source terms in (19)—(21). Sample profiles obtained for 



3 

2 

1 T, 
u, ud. 

0 a, n 

-1 

- 2 

- 4 - 2 0 2 4 

Figure 2 Structure of a vaporizing monodisperse dodecane spray in a counterflow mixing layer for a = 0.2 and 
St = 0.2. 

a monodisperse dodecane spray with a = 0.2 and St = 0.2 are shown in Figure 2, where 
the axial distance is measured with respect to the stagnation plane, which was found to lie 
at zo = —0.69. Due to their inertia, the droplets are seen to accumulate, as can be seen in 
the profile of n. The droplet radius remains constant until the surrounding gas temperature 
increases to values sufficiently close to the boiling temperature as the droplets approach 
the stagnation plane. The large residence time associated with the limited axial velocities 
found as the droplets approach z = Zo facilitates droplet vaporization, so that the radius 
a is seen to decrease rapidly across a thin vaporization region adjacent to the stagnation 
plane. Rapid droplet vaporization generates fuel vapor that accumulates near z = Zo and 
then diffuses to both sides of the mixing layer, mixing with the oxygen of the air. 

The limit of infinitely fast reaction is considered in Figure 3, with all parameters 
being identical to those of Figure 2. The computation makes use of (25) and (28) as a 
replacement for (19)—(21). The profiles of Z, Z, and H, scaled with their characteristic 
values Z ~ Z ~ a and H ~ q/S, are given in the lower plot, and the associated profiles 
of Yp, Yo, and T, calculated from (33) and (34), are shown in the upper plot, along with 
the profiles of u, Ud, a, and n. As can be seen, in the fast-reaction limit the gradients of 
temperature and mass fractions have jumps at the flame sheet, while the gradients of Z and 
H are continuous. The gradient of the classical mixture fraction Z also jumps at the flame, 
as corresponds to a localized chemical source. 

The comparison of Figures 2 and 3 clearly shows how thermal expansion modifies 
significantly the velocity field in the presence of combustion, as can be seen by observation 
of the profile of axial velocity. As a result, the stagnation plane, located at zo = —0.69 for 
chemically frozen flow, is displaced to zo = —2.75 for infinitely fast reaction. The droplet 
behavior is also different when a spray diffusion flame is present, because the temperature 
increase associated with the chemical heat release enhances droplet vaporization, with the 
result that the droplets disappear far from the stagnation plane at a relatively thin vaporiza­
tion layer where the fuel vapor is seen to accumulate, giving a peak value of IF of order a. 
The fuel vapor diffuses both upstream, against the incoming flow, and also downstream, to 
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Figure 3 Structure of a monodisperse dodecane spray flame in a counterflow mixing layer for a = 0.2 and 
St = 0.2. 

reach the diffusion flame and react with the oxygen of the air arriving there by diffusion, 
with fluxes in stoichiometric proportions. The external sheath combustion regime shown in 
Figure 3, with the spray vaporizing at a distance from the flame, is the configuration encoun­
tered in most spray counterflow diffusion flames; this was verified in numerical integrations 
by varying the different controlling parameters. For larger values of a, the flame tends to 
move into the air side of the mixing layer. 

To enable the assessment of preferential diffusion effects, Figure 4 exhibits the 
results obtained when the fuel-vapor Lewis number is set equal to unity in the integra­
tions. Changing the fuel-vapor diffusivity modifies its transport rate across the mixing layer 
and also the solution for the local fuel-vapor profile in the vaporization region around the 
droplets. The latter modification has an impact on the spray flow through the perturbed 
droplet vaporization rate, as can be seen in (7), with X being proportional to the reciprocal 
of Lep. The two separate phenomena have counteracting effects on the amount of fuel vapor 
present in the vaporization region. Thus, decreasing the Lewis number from Lep = 2.62 
to Lep = 1 is expected to increase directly the production rate of fuel vapor as dictated by 
(7), and therefore the associated local value of Y-p. However, a smaller Lewis number pro­
motes also the rate of fuel-vapor diffusion from the vaporization region, thereby decreasing 
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Figure 4 Structure of a monodisperse dodecane spray flame in a counterflow mixing layer for a = 0.2 and St = 
0.2. Besides the results obtained with the Lewis number of dodecane (i.e., Lep = 2.62), shown in solid curves, 
the figure represents in dashed curves results obtained by setting the fuel Lewis number equal to unity. The black 
curves represent the liquid-phase properties a, n, and Ud in the region where droplets exist. 

the resulting peak value of IF there. As can be seen, both effects are approximately in 
balance for the case considered in Figure 4, with the result that the peak value of IF 
is almost the same for both computations. The larger diffusivity of the fuel vapor for 
Lep = 1 results in an increased transport rate from the vaporization region, leading to 
a wider YF profile and to a diffusion flame that lies farther into the air stream. 

The local balance between the rate of heat loss from, and the rate of fuel dif­
fusion into, the reaction sheet determines largely the peak temperature achieved at the 
flame. A decrease in Lep results in a reduction of the rate of heat loss relative to that of 
fuel diffusion, and therefore causes an increase of the flame temperature, a well-known 
differential-diffusion effect observed for instance in hydrogen combustion (Sanchez and 
Williams, 2014). This reasoning, based on the local molecular-transport balance at the 
flame, explains the results shown in Figure 4, where the peak temperature found for 
Lep = 1 is considerably larger than that corresponding to the heptane diffusivity. 

Evaluation of Extinction Conditions 

The reaction layer shown in Figures 3 and 4 (a sheet in the infinitely fast reaction 
limit used here) is not affected directly by the presence of the droplets. Correspondingly, its 
internal structure, determined by a balance between the chemical reaction and the diffusive 
transport of heat and chemical species, would be identical to that found in gaseous com­
bustion. Computation of finite-rate effects, including critical extinction conditions, could 
be therefore investigated a posteriori by considering the gaseous reacting layer located at 
Z = Z„.. If a chemistry model with a one-step Arrhenius reaction is adopted, then the 
extinction regime involves, as shown by Linan (1974), small deviations from the Burke-
Schumann solution. The analysis has been generalized to account for preferential diffusion 
effects associated with nonunity values of the fuel Lewis number (see the detailed extinction 

LeF = 1.0 
LeF = 2.62 



analysis given in the online supplemental appendix of Linan et al, 2015). The structure 
of the reacting layer is seen to depend on the flame-sheet temperature 7} of the Burke-
Schumann solution, on the flame-sheet value of the scalar dissipation rate x/> and on 
the fraction of the chemical heat release at the flame that is conducted towards the oxi­
dizer side, y; computed with use made of the gradient of excess enthalpy (dH/dz)f. Thus, 
values of 7}, Xf> and Y obtained in the limit of infinitely fast reaction with the Burke-
Schumann formulation presented previously could be combined with the analysis of the 
reaction-diffusion layer of gaseous flames to determine critical extinction conditions for 
spray diffusion flames. Note that, in this nonequidiffusional case, the scalar dissipation 
rate at the flame sheet must be evaluated in terms of the gradient of the modified mixture 
fraction Z, as x = DT(dZ/dz) . This has a value that, contrary to the scalar dissipation 
rate based on the standard mixture fraction Z, does not jump across the flame sheet when 
LeF 7̂  Leo2. It is also worth mentioning that, since for all fuels the chemical reaction rate 
is strongly dependent on the temperature, the extinction conditions are very sensitive to 
variations of the peak temperature. Therefore, influences of spray dilution, droplet inertia, 
and fuel-vapor diffusivity on flame extinction could be easily assessed from the results of 
the Burke-Schumann integrations by investigating how variations of St, a, and Lep affect 
the resulting values of 7}. 

AIR-SIDE VAPORIZATION AND COMBUSTION OF INERTIAL SPRAYS 

The evolution of the droplets downstream from their injection location in high-
Reynolds-number opposed-jet configurations, investigated in the Appendix, indicates that, 
when the Stokes number is sufficiently large (i.e., St > 1/4 for dilute sprays of nonvapor-
izing droplets), the droplets cross the stagnation plane to reach values of z of order zi into 
the opposing air stream. The vaporization of the droplets and the reaction of the resulting 
fuel vapor with the oxygen of the air occur mainly, after crossing the mixing layer, in the 
air stream, without significant diffusion effects. The description will be simplified by con­
sidering that droplet injection occurs in the near-stagnation-point region, i.e., at distances 
Zi much larger than Sm for the Reynolds number (z//<5m) to be large, but small enough 
compared with R for the gas-phase solution (1) to apply. The resulting formulation, which 
employs the length and velocity scales zi and Aszi associated with the injection distance, 
is delineated below and used to generate some illustrative results for the limiting cases of 
purely vaporizing sprays and infinitely fast chemistry. 

Conservation Equations and Boundary Conditions 

For the analysis, the conservation equations for the liquid and gas phases, given in 
(11)—(15) and in (17)—(21), respectively, must be rewritten by introducing the rescaled 
transverse coordinate z/zi along with the rescaled variables u/(Aszi),u}

d/(Aszi), and«J/n/> 
while the remaining nondimensional variables are those employed earlier in the mixing-
layer analysis, i.e., A/As, A}

d/As, T/Ts, p/ps, a,i/'a\, and T}
d/Ts. The resulting equations 

for the liquid phase can be seen to be equal to (11)—(15), but the boundary conditions 
(16) used in the mixing-layer analysis must be replaced now by 

aj-l = uJ
d + uj/(Aszi) = A3

d - Aj/As = TJ
d- TJ/TS = nJ - 1 = 0 at z/zi = 1 

(35) 



involving the nondimensional injection velocity components uj/(Aszi) and Aj/As and the 
nondimensional injection temperature Tj/Ts. 

Since the scales for the problem are based on the injection distance zi, in the nondi­
mensional equations for the gas flow the Reynolds number (z//<5m) appears dividing the 
molecular transport terms in (18)—(21) (and also in Eqs. (25) and (28) for the coupling 
functions of the fast-reaction limit). In the limit zi > <5m, therefore, the equations reduce to 
the Euler equations. The integration for the spray side z > 0 must employ as boundary con­
ditions u = 0 at z = 0 and A — 1 = T—l = YF = Yo = 0asz-^oc; whereas for z < 0 
we must use u = 0 at z = 0 and A — *JT\ = T — TA = YF = Yo — l = 0asz-^ — oo. The 
solution must allow for a discontinuity at the stagnation plane z = 0, with order-unity jumps 
in temperature, strain rate, and composition that are smoothed across the thin mixing layer, 
which is not described in the simplified diffusionless analysis given here. 

The numerical computation with the multicontinua formulation requires the coupled 
solution of the gas and liquid phases in an iterative scheme that may start by solving the 
Euler form of the gas-phase equations (17)—(21) in the two separate domains z > 0 and 
z < 0, with an adequate starting guess used for the droplet properties. The resulting profiles 
of velocity, temperature, and reactant mass fractions are next used in computing for each 
droplet class the distributions of a, Td, ud, Ad, and n by integrating (11)—(15) from z = Zi-
The procedure is followed iteratively until convergence is achieved. 

For dilute sprays with small values of the liquid mass-loading ratio a (now defined in 
terms of the droplet number density at injection «/) of order a ~ 5_ 1 , there exists one-way 
coupling of the droplets with the gas flow in the spray stream z > 0, where we find in the 
gas only small departures, of order a, from the unperturbed properties u + z/zi = A — 1 = 
T — 1 = Y-p = Yo = 0. For these dilute sprays, strong two-way coupling may appear on 
the air side if combustion occurs there. If the spray-carrier temperature Ts and the droplet 
injection temperature 7} are sufficiently smaller than the boiling temperature TB for the 

condition (TB — T3
d\/TB » [Ly/^RpTg)^ to hold everywhere on the spray side of the 

counterflow, then droplet vaporization is entirely negligible on the spray stream. That is 
the case considered in the sample computations in Figures 5 and 6 (to be discussed later), 
which correspond to dodecane sprays injected at normal atmospheric temperature. 

Treatment of Reversing Droplets 

For St > 1/4, the droplets are seen to cross the stagnation plane and penetrate into 
the air side, a characteristic of sprays in counterflows noted in early work (Chen et al, 
1992; Puri and Libby, 1989). In the presence of reverse droplet motion the solution for a 
given droplet class is no longer uniquely defined in terms of the distance to the stagnation 
plane, because we may find advancing droplets and returning droplets at the same location 
z but with different values of a, Td, Ud, and Ad. In the Eulerian description of the droplet 
dynamics, which is convenient for the self-similar analysis of the spray counterflow, this 
can be accounted for in the integrations, as proposed by Gutheil and Sirignano (1998), by 
introducing different "sheets of solutions" or, equivalently, by considering the advancing 
and returning droplets as belonging to different classes; so that an additional independent 
droplet class is added to the description when the droplets reverse their motion (Sanchez 
et al., in press). 

The implementation of the integration procedure for the turning droplets must 
account for the local description of the flow near the turning plane z = Zt, where uJ

d = 0. 
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There, the integration of the advancing droplets provides nonzero finite values of aJ 

AJ
d = AJ

dt, and TJ
d = TJ

dt. On the other hand, the local axial-velocity distribution 

/ V/2 

St (4r 
(z - Zt) 

1/2 (36) 

obtained from (11) in terms of the local values, at z = Zt, of the gas temperature Tt and 
gas velocity ut (with the minus and plus signs corresponding to advancing and returning 
droplets, respectively), can be used in (15) to show that the droplet number density diverges 
at the turning plane in the form 

nJ = C(z-Zt) 
-1/2 (37) 

where the constant C is determined numerically. To avoid the existence of multivalued 
functions within a given droplet class, the droplets that have turned are assigned to a newly 
created droplet class, whose radius, velocity, and temperature are determined by integrating 
(11)—(14) for increasing z with initial conditions a} = a{, AJ

d 
• AJ 

Adt> uJ
d = 0, and Td idt 
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at z = Zt, while the associated number of droplets is obtained from (15) with a boundary 
value nj = C(z — Zt)~1^2 evaluated near z = Zt-

Sample Numerical Results 

The formulation delineated above was used to compute the diffusionless counterflow 
structure corresponding to a dodecane monodisperse spray with a= 0.05, with results given 
in the left-hand-side panels of Figures 5 and 6 for pure vaporization and infinitely fast 
reaction, respectively (the right-hand-side panels are to be discussed later). In the integra­
tions, the thermochemical properties are those indicated earlier in the "Sample Numerical 
Results" section and the droplets are assumed to be injected with the local velocity and 
temperature of the gas flow. 

The profiles given in Figure 5 indicate that droplet vaporization is confined to the 
hot air side. Because of their significant inertia, the droplets cross the stagnation plane 
with a finite velocity, turning around at Zt/zi — —0.156. Droplet vaporization occurs at 
intermediate distances —0.156 < z/zi < 0, resulting in a fuel mass fraction that peaks at 
an intermediate location z/zi = —0.05. The accumulation of the droplets near the turning 
plane is visible in the profiles of droplet number density n. As can be inferred from the 
convection-vaporization balance in (20), the local singularity (37) results in a fuel-vapor 



profile that increases rapidly from the turning point according to YF <x (z — Zt) • Also of 
interest is that the returning droplets, whose radius decrease significantly after spending 
time on the hot side of the counterflow, disappear in this case before reaching the mixing 
layer. For larger values of the Stokes number, the droplets may have sufficient inertia to 
either cross the stagnation plane into the spray side of the counterflow, where they would 
undergo a second turning, or may approach the stagnation plane with a vanishing velocity 
and be trapped in the mixing layer, where they can continue to evolve. 

Results corresponding to infinitely fast chemistry are shown in Figure 6. Because 
of the higher temperature associated with the chemical heat release, vaporization is more 
pronounced in this case, with the droplets disappearing soon after turning around at Zt/zi — 
—0.183. Since the mixture fraction begins to increase from the value Z = 0 only after the 
air stream meets the droplets at the turning point Zt, the flame surface Z = Zst is always at a 
location z/ > Zt, intermediate between the turning point and the stagnation plane, indicating 
that, in the diffusionless limit, the droplets necessarily cross the flame. Because of the rapid 
vaporization rate associated with the accumulation of the droplets at the turning point, 
the mixture fraction increases there according to Z <x(z — Zt)l/1- Since the value of Zst is 
moderately small, the resulting diffusion flame appears very close to the turning point, i.e., 
at Zf/zi = —0.181 in the computations of Figure 6. Clearly, the flame would stand farther 
from the turning point in configurations with larger values of Zst. Part of the heat released 
at the flame sheet by the chemical reaction is employed to vaporize the droplets, which 
explains the sharp decrease of the temperature profile on the fuel side of the flame. 

Besides results of diffusionless computations, the figures also include, in the right-
hand-side panels, results corresponding to a moderately large value of the Reynolds number 
(zi/8m)2, computed by retaining in the gas-phase conservation equations the molecular 
transport terms, which are proportional to (z//<5m)~2. The integrations use the boundary 
conditions (22). The diffusionless limit is seen to reproduce adequately the large Reynolds 
number results, with significant departures appearing mainly around the stagnation plane, 
where the jumps in temperature and composition predicted by the diffusionless approx­
imation are smoothed out in the presence of diffusion. Molecular transport also has a 
noticeable effect on the profiles of temperature and oxygen on the air side of the flame 
sheet in Figure 6, resulting in less pronounced gradients, to be taken into account when 
evaluating the flame-extinction conditions. Also, of interest is that, unlike the diffusionless 
solution shown in the left-hand-side panel, the droplets do not cross the flame in the finite 
Reynolds number computations of Figure 6, where the flame stands to the left of, although 
very close to, the turning point. Outside the layers of rapid change mentioned above, the 
differences between corresponding profiles in the side-by-side panels of Figures 5 and 6 
are relatively small, with somewhat larger departures observed in the profiles of fuel-vapor 
mass fraction shown in Figure 5, that being a result of the modified spray vaporization rate 
found in the mixing layer. 

The sample computations given here serve to illustrate the structure of the result­
ing flow in this regime of air-side vaporization and combustion. The formulation should 
be exploited in future efforts to analyze the parametric dependence of the solution. The 
rapid transition regions identified also deserve specific attention. An example is the region 
identified in the diffusionless computations between the turning plane and the diffusion 
flame, corresponding in the left-hand-side panel of Figure 6 to the small intermediate range 
—0.183 < z/zi < —0.181, where we find a large amount of droplets vaporizing in the pres­
ence of oxygen. This region has been described here in the limit of infinitely fast reaction, so 



that Yp = 0 there. Finite-rate effects would be needed in general for a more detailed descrip­
tion. Near the flame, the existing large temperature is expected to favor the rapid burning 
on the resulting fuel vapor in a distributed manner (or in flames enclosing the individual 
droplets, if their radii are large enough). Near the turning point, however, the temperature 
is close to that of the unperturbed air stream, and the fuel vapor would mix with the air, 
creating a reactant mixture that could burn in a premixed flame, upstream from the diffu­
sion flame described here. Clearly, this and other aspects of the flow should be addressed 
to provide a more complete understanding of counterflow spray diffusion flames. 

CONCLUSIONS 

We have given, in this article, a compact formulation for the computation of vapor­
ization and combustion of dilute inertial polydisperse sprays in high Reynolds number 
opposed-jet configurations, with attention focused on the self-similar region found near 
the stagnation plane. While the previous authors were concerned with formulations of the 
counterflow spray problem accounting simultaneously for detailed transport, thermochem­
istry, and chemical-kinetic descriptions together with advanced comprehensive models for 
the interphase exchange rates (see, for instance, Gutheil and Sirignano, 1998), we have 
used instead a simplified description based on a one-step fast-reaction model. Our approach 
allows us to identify the main scales and the key dimensionless parameters of the problem, 
based on these scales, which are shown to exhibit in practical applications disparate val­
ues. We can thus identify distinguished regimes involving different physical phenomena. 
This methodology facilitates the derivation of simplified mathematical formulations, which 
readily enable parametric dependences to be investigated, and also the identification of dis­
tinguished behaviors, often obscured in numerical integrations accounting simultaneously 
for multiple physical phenomena. 

For the moderately large values of the Reynolds number typically found in experi­
mental counterflow-spray configurations, the mixing between the air and the spray streams 
is confined to a thin mixing layer, of thickness Sm, that separates the spray stream from 
the opposing hotter air stream. As often occurs in experiments, the droplets are assumed 
to be injected in the outer nearly inviscid region, at distances zi > <5m. For small values of 
the liquid mass-loading ratio, we find one-way coupling of the droplets with the gas in the 
spray stream outside the mixing layer, so that the gas velocity can be determined indepen­
dently of the liquid phase, and then used to compute the droplet motion from the injection 
plane towards the stagnation plane, an analysis presented in the Appendix. Because of their 
diverging radial motion, only the droplets initially located near the axis eventually enter 
the self-similar region of the mixing-layer around the stagnation point, so that the com­
putation of the droplet evolution can be restricted to the near-axis region. The analysis, 
which provides the droplet velocity and droplet number density as the stagnation plane is 
approached, leads to identification of two different regimes depending on the value of the 
droplet Stokes number St, defined as the ratio of the droplet acceleration time to the strain 
time of the nearly inviscid gas flow on the spray side of the stagnation point. For St < 1/4, 
the droplet axial velocity in the spray stream vanishes at the stagnation plane; thus when 
these droplets enter the mixing layer, they vaporize, producing fuel vapor that can react 
there with the oxygen that diffuses from the air side. By way of contrast, for St > 1/4 the 
droplets cross the stagnation plane with a velocity smaller than, although comparable to, 
the injection velocity, penetrating large distances of order zi > <5m into the air stream where 



they can vaporize. Upon ignition this second regime gives rise to a diffusion flame standing 
far on the air side of the counterflow outside the mixing layer. 

The canonical problems identified, including their solution in the extreme limits of 
negligible and infinitely fast chemical reaction, can be used to investigate influences of 
spray dilution and droplet inertia on the flame structure. We expect that the formulation 
presented here, including the effects of nonunity Lewis numbers of the fuel vapor on the 
flame temperature and on the value of the scalar dissipation at the flame that determines 
the flame extinction, will be useful to generate valuable knowledge for flamelet modeling 
of turbulent spray reacting flows. 
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APPENDIX: DROPLET DYNAMICS IN OPPOSED-JET CONFIGURATIONS 

For the opposed-jet configuration considered here, represented schematically in 
Figure 1, the computation of the inviscid flow in the outer streams involves the integra­
tion of the Euler equations for the gas phase coupled to the solution of the liquid phase, 
with the outer jet boundaries and the interface separating the two jets appearing as free 
surfaces to be obtained as part of the solution. The calculation is simplified for small val­
ues of the liquid mass-loading ratio a, such that we find one-way coupling of the droplets 
in the spray stream. Under these conditions, the gas velocity can be computed indepen­
dently of the liquid phase, and then used to determine the droplet velocity v^ = (Ud, Vd) and 
associated droplet number density n of the droplets. 

Computation of the Gas Flow 

The nearly inviscid flow found outside the mixing layer between the counterflowing 
streams and the jet-boundary shear layers with the outer stagnant gas depends on the val­
ues of the internozzle separation H/R and of the inert-to-air density and velocity ratios 
PS/PA and Us/lJA. The calculation can be carried out using the Navier-Stokes equations 
for large values of Re. Outside the mixing-layer and the jet-boundary shear layers, the solu­
tion evolves for Re » 1 towards the inviscid unsteady solution. The integration provides, in 
particular, the distribution of gas velocity along the axis ua (z) and the associated near-axis 
radial velocity va, both components being related through the continuity equation according 
to va = —(dua/dz) rjl. This gas-velocity distribution v =(ua,va) is to be used below in 
computing the near-axis droplet evolution. 

Results of integrations of the axisymmetric Navier-Stokes equations are shown in 
Figure 7 for the symmetric configuration psJ'pA = 1 and US/UA = 1, for which ua(z) = 
—ua(—z). The computations consider a configuration with internozzle separation H/R = 
0.5. The instantaneous isocontours of inert mass fraction shown in the upper plot mark the 
location of the jet-boundary shear layer, which becomes unstable as it evolves after the 
nozzle rim. 

These flow instabilities do not have a strong effect on the velocity distribution along 
the axis u = ua (z), which remains almost steady, as can be seen in the sample profiles 
shown in the intermediate plot for different values of the Reynolds number, Re. The value of 
ua evolves from ua = Us, assumed for z moderately large compared with R, to approach the 
linear decay rate ua = —Asz as z -> 0, where As is the stagnation-point strain rate. As can be 
seen, the growth of the boundary layer on the injector wall results in an initial acceleration 
of the near-axis flow, which is less pronounced for larger values of Re. The corresponding 
value of the strain rate As is seen to approach for Re » 1 a constant value, given by As = 
AsI (Us/R) = 1.51 for the particular case considered in Figure 7. 

As indicated in (1), the velocity near the stagnation point has the self-similar form 
u = —Asz and v = Asr/2. This local description is tested in the intermediate and lower plots 
of Figure 7, with the latter showing the instantaneous distributions of the radial velocity 
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Figure 7 Results of integrations of the axisymmetric Navier-Stokes equations for PS/PA = 1, US/UA = 1, 
H/R = 0.5, and different values of the Reynolds number Re = UsR/vs. The color contours in the upper plot 
give a snapshot of the distribution of inert mass fraction for Re = 2000. The intermediate and lower plot show, 
respectively, the variations of the transverse velocity u with z/R along the axis and the variation of the radial 
velocity v with r in the stagnation plane for Re = (500,1000,2000,4000). (Figure courtesy of Dr. Jaime Carpio.) 

along the stagnation plane. As can be seen, although the flow instabilities cause the radial 
velocity to be unsteady at large radial distances, the solution remains steady, nearly unper­
turbed, in the near-stagnation-point region. The integrations indicate that the linear variation 
of the axial and radial velocity components with the distance to the stagnation point applies 
in a fairly large region. For instance, for the case H/R = 0.5 considered in Figure 7, Eq. (1) 
provides an accurate representation for the velocity field at distances to the stagnation point 
as large as half of the nozzle radius. 



Droplet Motion in the Spray Stream 

To calculate the motion of the near-axis droplets, which ultimately determines the 
droplet velocity and droplet population outside the mixing layer, the gas-velocity distri­
bution v = (ua, va) previously computed is to be used to evaluate the drag force, which is 
assumed to be given by Stokes law f = 6TtiJLsa0(y — va), where /x, is the viscosity of the 
spray carrier gas and a0 is the initial droplet radius. The droplet axial velocity Ud(z) is given 
by the solution of the autonomous system 

dud Ua-Ud dz 

df ta df 

with the near-axis initial conditions Ud = Uj and z = z/.Here, ta = \a2
0Pil[^s is the droplet 

acceleration time corresponding to the Stokes drag force, with pi denoting the density of 
the liquid fuel. Introducing R and ASR as length and velocity scales for z and Ud provides 
the alternative problem 

dUd ua — Ud dz 
-T = JL^7A' T = ^\ Ud(0)-u1 = z(0)-zi = 0 (A2) 
dr St dr 

for the axial velocity Ud = Udl (ASR), where z = z/R and r = t/ta. The solution, involving 
the local stagnation-point Stokes number, 

2 , 
St = -Asa

l
0pil\xs (A3) 

depends on the variation of the axial gas velocity ua(z) = ua/ (ASR) and on the injection 
velocity and injection distance Uj = Uj/ (ASR) and z,i = Zi/R- In the sample computations 
shown below, the gas velocity is approximated by ua = — A^erf [(^/7r/2) ASZ\, with As = 
1.51. a convenient analytical representation of the results of the Navier-Stokes integrations 
shown in Figure 7 for Re » 1. 

Figure 8 shows sample trajectories in the phase plane (z,—Ud). Along the curve 
Ud = ua, represented in blue color, the droplets experience a vanishing drag force and the 
associated trajectories correspondingly exhibit a zero slope, as dictated by the first equation 
in (A2). Qualitatively different behaviors appear depending on the form of the solution near 
the origin, which is a critical point of (A2), with ua = —z. The local solution there is of the 
form z = Ud/'k(x exp(Xr), as determined by the roots 

2St 

of the characteristic polynomial X2 + X/St + 1/St. For St < 1/4 both roots are real and 
negative, so that the origin of the phase plane is a stable node, while for St > 1/4 both 
roots are complex and the origin is a stable spiral point. Both types of solutions are shown 
in Figure 8 associated with the values St = 0.2 (stable node) and St = 1.0 (stable spiral). 

The plot for St = 1.0 in Figure 8 is representative of the counterflow dynamics of 
large droplets with St > 1/4, which are seen to reach the stagnation plane with a nonzero 
crossing velocity Ud of order unity. The trajectories are seen to spiral around the origin, indi­
cating that nonvaporizing droplets with St> 1/4 may undergo multiple stagnation-plane 
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crossings, with velocities that depend on the injection conditions. Clearly, for nonsymmet-
ric counterflow configurations with ps j^ PA, the gas velocity ua used in (A2) to compute lid 
should be modified each time the droplet crosses the stagnation plane. The plot includes the 
separating trajectory that originates at z/R -> oo with Ud = ua, corresponding to droplets 
injected far upstream with the local gas velocity. This trajectory shows a first intersec­
tion with the vertical axis z = 0 at — Ud — 0.3, which is the maximum velocity with which 
droplets released with ui < ua cross the stagnation plane for the first time. 



The solution for St = 0.2 includes as red curves the distinguished separating trajecto­
ries that originate at the critical point with slopes k±. For injection conditions (zi, —Uj) that 
place the droplet initially below the upper separating trajectory, corresponding to droplets 
with initial injection velocities that are comparable to or smaller than the local gas velocity 
ua, the resulting droplet trajectory evolves to approach the origin of the phase plane along 
the critical trajectory associated with X+, which acts as an attractor. These trajectories are 
associated with droplets that do not cross the stagnation plane. Instead they enter the mixing 
layer with a vanishing velocity 

_ l - ^ / T ^ 4 S t _ 
ud = X+z= — z (A5) 

This expression reduces to Ud = —z for St < 1, corresponding to tracing droplets with 
ltd = ua. As seen in the plot, for small droplets with St < 1/4 to cross the stagnation plane, 
their initial velocity at the injection point has to be much larger than the local gas velocity. 
As expected, since the upper separating trajectory becomes steeper for smaller values of 
the Stokes number (i.e., its initial slope becomes X~ = St - 1 for St < 1), the minimum 
injection velocity required to achieve droplet crossing becomes larger for smaller droplets. 
For most cases of practical interest, therefore, the simple criterion St < 1/4 can be used to 
identify droplets that approach the stagnation plane with the linearly decreasing velocity 
(A5), independent of the injection conditions, whereas for St > 1/4 the droplets cross the 
stagnation plane with a crossing velocity of order ASR, comparable to the injection velocity. 

The droplet radial motion follows from integration of 

dvd va - vd dr 

dr ta dr 

with initial conditions Vd = Vj and r = rj. In the axisymmetric flow considered here, 
the droplet radial velocity near the axis is linearly proportional to the radial distance, 
and can be therefore represented in the form Vd = Ad(z) r/2, with initial distribution 
Vj = Air 12 at. Substituting this expression together with the near-axis velocity distri­
bution va = —{dua/dz)r/2 into (A6) and writing the problem in dimensionless form 
leads to 

Aj at I = zi (A7) 

after eliminating the time with use made of the second equation in (A2). Here, Ad = AdjAs 

and Aj = Aj/As. The integration determines the distribution of Ad(z) for the approaching 
droplets. For droplets crossing the stagnation plane, the integration gives a value of Ad(Q) 
of order unity that depends on the initial injection conditions, whereas for droplets with 
St < 1/4, whose axial velocity vanishes at the stagnation plane as dictated by (A5), it is 
seen that 

V2St + 1 - 1 
* = — s — <A» 

_ dAd 
Ud-7=- = 

dz 

1 , 

-s.1 
(dUa - \ UH A2, 

2 



as z -> 0, as is required for the right-hand side of (A7) to vanish as the stagnation plane is 
approached (note that dua/dz = — l a t z < 1). As expected, for St < 1, Eq. (A8) simplifies 
to Ad = 1, corresponding to droplets closely following the gas with radial velocity vd = v. 

The evolution of the droplet number density near the axis n (z) from its injection 
value iti is determined by integrating the steady droplet conservation equation V • (nvd) = 0 
written in the dimensionless form 

— (h ud) + hAd = 0; h= lntz = Zi (A9) 
dz 

where h = n/tij, with ud(z) and Ad(z) obtained from (A2) and (A7), respectively. Because 
of their slip motion, the droplets tend to accumulate so that the value of h is always larger 
than unity for z < z,i- For St > 1/4, the integration yields a finite value h (0) > 1 as z ->- 0. 
By way of contrast, for St < 1/4, the vanishing axial velocity (A5) leads to a diverging 
droplet number density 

n = Bz~C (A10) 

as z ->- 0, where the exponent 

2 k/2St + 1 - ll 
C = \ l- J (All) 

1 - V I -4S t 
can be easily determined by using in (A9) the asymptotic droplet velocity distributions 
given in (A5) and (A8). The limiting values for this exponent are C ~ \St for St « 1 
and C = 3 — V6 ~ 0.55 for St =1/4. The computation of the multiplying factor B in 
(A10) requires integration of (A9), giving a value of order unity that depends on the injec­
tion boundary conditions. According to the expression (A10), the accumulation of droplets 
near the stagnation plane leads to large droplet densities nm of order 

, , , c C/2 
nm/nI = B(R/Sm) - R e » 1 (A12) 

at distances z of the order of the mixing-layer thickness 8, 


