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The present article proposes a measure of correlation for multiqubit mixed states. The 
measure is defined recursively, accumulating the correlation of the subspaces, making it 
simple to calcúlate without the use of regression. Unlike usual measures, the proposed 
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models. 
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1. Introduction 

Quantum correlations are very significant in quantum information tasks.1 For this 
reason, quantifying correlations is one of the most important problem in quantum 
information theory.2 

Many quantum correlation measures have already been proposed: entanglement 
of formation, geometric entanglement, quantum discord, etc.3-5 Although the first 
type of quantum correlation studied was bipartite, today both entanglement and 
quantum discord have several generalizations for the multipartite case.6-8 The rel-
evance of multipartite correlation applies for quantum information processing,9'10 



for speeding up quantum algorithms and for the study of many-body systems. 
Unfortunately, most of these measures can only be analytically determined for a 
few qubits; or require the calculation of nonlinear regressions, which limits the 
possibilities of studying more complex systems. 

In Sec. 2 a total correlation measure for multiqubit mixed states is defined 
recursively, accumulating the correlation of the subspaces, and henee, making it 
simple to calcúlate without the use of regression. The proposed measure has the 
property of being a continuous additive measure that reflects the dimensionality of 
the state. Appendix A presents proofs for the measure properties. 

In many-body physics analysis, correlation plays a fundamental role in quantum 
phase transition (QPT). In highly correlated systems, QPT is due to quantum 
fluctuations.13 The behavior of quantum discord and entanglement measures in the 
analysis of QPT in several Heisenberg spin chain models, shows that correlation 
measures can be used to detect critical points (CPs).14~16 As shown in Sec. 3, 
the proposed measure serves as an indicator of CPs in QPT, even in low noise 
environments. 

Conclusions and proposed future work are presented in Sec. 4. 

2. Cumulative Correlation Measure 

2.1. Definition 

In this section a definition for a new cumulative measure of correlation for multi­
qubit states is introduced. The proposed correlation computes total (quantum and 
classical) correlation. 

Definition 1. Given a multiqubit state p, the cumulative correlation measure 
(CCM) is defined as 

C(p) = imn[2N-2D(p,pAk <g> pBh) + C{pAk) + C{pBh)\, (1) 
{fc} 

where D(-, •) denotes a quantum distance, and k is an Índex for an element 
{pAk,PBk) in the set of all possible bipartitions of the state. 

The proposed measure starts computing the sum of the distance between state 
p and the product of its reduced matrices (pAk and psk), weighted by a dimensional 
factor (2W~2), accumulating the CCM of each part, C(pAk) and C(psk)- The re-
cursion stops for one qubit states (C(piq) = 0). The final result is the minimum 
among all partitions. 

Remark 1. In order to achieve the properties listed in the next subsection, the 
distance D(-, •) used must have the following features: 

(1) Invariance. D(UpW, UaW) = D(p,a), where U is a unitary operator. 
(2) Contractivity. D(e(p),e(a)) < D(p,a), where e(a) are quantum local opera-

tions (e = e1 (g> • • • Cg> eN). 



(3) Monotonicity. D(pA,aA) < D(pAB,aAB). 

Remark 2. In this paper the relative entropy is used 

DRB(P,a) = S(p\\a) = Trp(logp -loga) (2) 

as the distance in definition (1). Though not a distance, given the symmetric prop­
erty failure,17 it is always used in the order defined in (2). Relative entropy satisfies 
the aforementioned properties.1 Because in the proposed measure a = pAk (g> pBk-, 
the relative entropy is equal to the mutual information.18 

2.2. Properties of CCM 

In the last years some conditions that multiqubit correlation measures should satisfy 
have been discussed.2'18'19 Here properties satisfied by CCM are shown, whereas 
proofs are presented in Appendix A. 

Property 1. CCM must be positive or zero. 

C(p)>0. (3) 

Property 2. Any product multiqubit state p = p1 (g> • • • Cg> pN has no correlation. 

C V <g> • • • <g> p N ) = 0 . (4) 

Property 3. CCM is invariant under local unitary transformations (U = U1 (g> • • • (g 
UN). 

C{UPU^) = C{p). (5) 

Property 4. CCM valué is not affected in a system p increased by locally non-
correlated auxiliary subsystems. 

C{p®a) = C{p), (6) 

w h e r e a = a1 (g> • • • Cg> aK. 

Property 5. Quantum local operations do not increase CCM. 

C(e(p)) < C(p), (7) 

where e = e1 (g> • • • Cg> eN. 

The above properties are commonly accepted for a good correlation measure.20 

Besides these, CCM also has the following properties. 

Property 6. CCM is an additive measure. 

C{4>®v)=C{p) + C{v). (8) 

Property 7. CCM reflects the dimensionality of the state space. Two conditions 
express this: 



(1) Máximum correlation measure is non-decreasing with dimensionality. 

max C(pM) < max C(pN), (9) 

where M and N are the dimensión of the states, and M < N. 
(2) For GHZ states21 the correlation measure increases with dimensión. 

C(PGHZM) < C ( P G H Z N ) (10) 

where M < N. 

Besides these properties is important to note that the proposed measure is 
continuous. 

2.3. CCM for GHZ states 

Using decimal notation to simplify the description of canonical base vectors 
(e.g., 1101) = |5)), N qubits GHZ states can be described as 

|GHZ)N = ^ ( | 0 . . . 0 ) + |1. . .1)) = ^ ( | 0 ) + | 2 W - 1 ) ) , (11) 

pGHz = |GHZ)(GHZ|Ar . (12) 

For GHZ states, all the bipartite reduced matrices are of type 

PAfc = i( |0)(0| + | 2 w - - l ) ( 2 w - - l | ) , (13) 

^ f c = ^(|0)(0| + | 2 w - - l ) ( 2 w - - l | ) , (14) 

where N = ÑAU + Nsk- The product state in Eq. (1) has the form 

l ) ( 2 A r - l 

\m)(m\ + \2N - 1 -m)(2N- 1 - m i ) , (15) 

PAkr¿)PBk=\(\0)(0\+\2N-l)(2N-í\ 

where m G { 1 , . . . , 2N~1 — 1}. Essentially, they are all the same state (except for 
a change in the qubits). Therefore, all the distances between pcnz and pAk <8> pBk 

are equal, and are considered normalized (independent of the number of qubits N), 
Le., 

-DGHZ = D(pGRZ, PAk <8> PBk) = 1 ; 

=> C(pGRZ) = 2N-2DGRZ + mm[C(PAk) + C(pBk)] 
{k} 

= 2N-2 + min[C(pAk) + C(pBk)]. (16) 

The reduced matrices of pAk are of the same type as (13) (as are PBk)- Then, 
regardless of the dimensión, the normalized distances between A and any of the 
Kronecker producís of its reduced matrices are all the same, denoted here as d. 



Cumulative Measure of Correlation for Multipartite Quantum States 

Considering that the minimization for all partitions occurs (due to a power of 2 
factor) for partitions with N/2 qubits (N even), or with (N + l ) /2 and (N — l ) /2 
qubits (N odd), the valúes of CCM for GHZ states can be computed with the 
following algorithm: 

F{x, 2) = x, 

F{x, 3) = 2x + d, 

N_9 N\ 
N > 4(even) : b [x, N) = 2 x + 2b a, — 

2 / 2 (17) 

N_r¡ T^ Í 1 N — Í \ ( N + 1 \ 
Af > 5(odd) : t [x, N) = 2 x + b \ a, + b a, , 

V 2 / 2 
CÍPGHZJV) = F(l,N), 

where PGHZJV is an N qubit GHZ state. When the distance used is the relative 
entropy ( D R E ) , the constant d equals 1/2. Table 1 shows the proposed measure for 
the first nine GHZ states. 

For example, in TL4 the puré states 

Pi = IV'I}(V'I|J l^i) = IGHZ2) <8> IGHZ2) 

= — (|0000) + |0011) + 11100) +11111)), 

P2 = 1̂ 2) (^2 I j 1̂ 2) = IGHZ3) Cg) |0) 

= —(loooo) + l i n o ) ) , 
2 

P3 = |V'3)(V'3|; lí/̂ 3) = IGHZ4} = —(loooo) + 11111}) (18) 
2 

have as results C(p\) = 2, C(p2) = 2.5 and C(ps) = 5. In the first two states 
(pi and P2) the additive property of the measure is explicit. This example shows 
the influence of large correlated subspaces in high dimensión quantum spaces. The 
larger the dimensión of a correlated subspace, the greater the measure of correlation. 

Table 1. CCM valúes for GHZ states GHZ. 

Number of qubits CCM CCM with D R E 

2 1 1 
3 2 + d 2.5 
4 4 + 2d 5 
5 8 + 4d 10 
6 16 + 6d 19 
7 32 + 9d 36.5 
8 64 + 12d 70 
9 128 + 18d 137 
10 256 + 24d 268 

1450050-5 



3. CCM and Quantum Phase TVansition 

In order to show the benefits of the proposed measure, some examples of strongly 
correlated spin chains, modeled by Heisenberg Hamiltonians, are studied. The 
generic spin 1/2 Hamiltonian model14 is given by 

N 

H=- £ ( - 4 « i + VM+i + Jz°zi°l+Í + h°!), (19) 
¿=i 

where N is the number of spins, ax'v'z are the Pauli matrices and the boundary 
condition <TI = <TAT+I is satisfied. In this paper only the case of interaction through 
nearest neighbors is analyzed. 

Recently, several articles have reported detection of CPs in QPT models by dif-
ferent types of quantum correlations measures, i.e., entanglement, quantum discord 
and others.22-26 The selected examples, the Transverse Ising chain and the XXZ 
model, have the advantage that can be exactly solvable in one dimensión, and the 
CPs are well known.27 The performance of CCM is studied for these models. 

3.1. The XXZ model 

3.1.1. Detection o>/ critical points 

The Hamiltonian of the anisotropic XXZ model28'29 is given by 

1 N 

Hxxz = ~ 2 £ ( < ^ ? + i + CTM+i + A<7M+ 1), (20) 
¿=i 

where Jx = Jy = 1/2 and h = 0, being Jz = A/2 the anisotropy parameter used 
in (19). 

The model exhibits three phases for the ground state: for A —> —oo the chain is 
fully antiferromagnetic; for —1 < A < 1 there is a gapless phase, and for A —> oo has 
a fully polarized ferromagnet. These phases are separated by two CPs: at A = — 1 
there is an infinite-order QPT, and a first-order QPT at A = 1. 

Figure 1 shows the results of CCM and the total correlation measure defined in 
Ref. 30, Tv, is given by 

TV = S(P\\PI®P2---PN). (21) 

As observed, both measures have a discontinuity in A = 1, signaling a first-order 
CP. 

Figure 2 shows the details for —1.5 < A < 1. While for Tv the valué is constant, 
CCM presents a máximum for A = — 1 signaling the infinite-order CP. As expected, 
the máximum valué grows with the number of spins in the chain (Fig. 3). 
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Fig. 1. Correlation (CCM and Tv) of the grounded state and detection of CPs for XXZ chain 
of six spins. CCM (continuous Une) and Tv (dashed Une) for —1.5 < A < 1.5. Both measures 
signaling the flrst-order CP at A = 1. 

Fig. 2. Detail ( -1 .5 < A < 1) for CCM in the XXZ model. CCM can detect (máximum) the 
inflnite-order CP at A = —1. 
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Fig. 3. CCM for XXZ chains of 4 (solid), 6 (dotted) and 8 (dashed) spins. In order to visualize 
the differences, the figure shows the logarithm of the measures. 



3.1.2. Double chain QPT 

Unlike genuine measures,2'31 CCM can signal the partial phase transition in a sys-
tem. Consider the double chain Hamiltonian given by 

1 N 

Huxxz = - - ] [ > M + i + TXTX
+1 + a«ay

i+1 + T¡T¡+1 + ••• 
z ¿=i 

+ A a ^ + 1 + A r r ! r 4 1 ) , (22) 

where ax'v'z and TX'V'Z are the Pauli matrices oí the two chains. This Hamiltonian 
represents a double independent XXZ model. 

The results in Figs. 4 and 5 show that CCM can signal the partial phase tran­
sition in both subsystems. 

3.1.3. Open dynamics and QPT 

In the last years many articles deal with the behavior of the ground state of a spin 
chain considering the decoherence generated by the interaction with the environ-

Fig. 4. Double chain QPT. Independent and simultaneous flrst-order CPs signaling. 

Fig. 5. Double chain QPT. Detail for the inflnity-order double CP at A = — 1 and A = — 1. 



ment 32 34 Real quantum systems are subject to interactions, because they can not 
be completely isolated. Then, it is of interest to know the behavior of fundamen­
tal states near CPs in the presence of noise caused by decoherence. As studied in 
Ref. 35, this effect can be achieved using Krauss operator representation, where the 
decoherence noise is typified by a set of operators Ei that must hold ^ ¿ EiE¡ = I. 
Then, decoherence can be expressed as 

e{p) = YJEiPE¡ . (23) 

This example shows correlation evolution of XXZ fundamental states when am-
plitude damping noise operators are used, 

En (24) 
'l 0 \ 0 0 \ 

and Ei = 

to typify a dissipative interaction with the environment.1 In this case, the behavior 
is similar to the bipartite mutual information shown in Ref. 35. Figure 6 illustrates 
the evolution of the ground states near the infinity-order CPs ( — 1.5 < A < 1), 
considering a low noise approach (0 < p < 0.04). It is interesting to note that the 
máximum is more pronounced with some amount of noise (Fig. 7). 

3.2. Transverse Ising model 

The Ising model has a different universality class of CP in comparison to the XXZ 
model. As in Ref. 28, the Hamiltonian of the transverse Ising model is given by (19) 
using Jx = 1, Jy = Jz = 0 and h = A, resulting in 

N 

¿I Ising 

¿=1 
{"W+i + ^¡) (25) 

For A = 0 all the spins point in the x-direction, while for A —> oo all point in 
the z-direction. The ground state presents a CP at A = 1. This is signaled by an 

Fig. 6. CCM evolution of XXZ fundamental states in presence of noise. Evolution of fundamental 
states near the infinity-order CP. 



o 
o 

Fig. 7. CCM evolution of XXZ fundamental states in presence of noise. Contours for p € 
{0,0.01,0.02,0.03,0.04}. 

Fig. 8. Transverse Ising model. Derivative of CCM near the ground state. 

inflexión point in the CCM curve (observed in Fig. 8 as a minimum in the derivative 
of CCM curve), similar to other measures of correlation.24'35~37 

4. Conclusions 

In summary, this paper proposes a total cumulative measure of correlation, CCM. 
which meets the expected properties for a multiqubit correlation, adding desirable 
features as additivity and dependence on the dimensión of space. 

Some results in the study of QPT have been illustrated. As in the case of 
quantum correlation (as quantum discord), CCM can be used to signal CPs. And. 
although the calculation grows exponentially with the dimensión, nonlinear regres-
sion methods are not required. Another advantage is that for GHZ states the results 
can be known algebraically, facilitating comparison between different dimensión 
systems. 



While in this article relative entropy is used as the distance of the algorithm, 
the proposal is actually a framework that can be defined according to the chosen 
distance, creating a relationship between each interpretation of correlation and each 
type of distance. 

As future work, it is interesting to find good definitions for quantum correlation 
counterparts of this total correlation. 
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Appendix A. Proof of CCM properties 

This section presents the proofs of CCM properties presented in subsection 2.2. 

A. l . Property 1 

Proof. By distance definition, D(p,a) > 0 for all p and a. Then, considering the 
recursive nature of the measure and that C(p) = 0 for the ultimate decomposition 
(one qubit), C(p) > 0 for all p. O 

A.2. Property 2 

Proof. This property is a direct consequence of the additivity (Property 6) proved 
below and that the correlation is zero for one-qubits states. D 

A.3. Property 3 

Proof. Assuming a state p' = UpU\ where U = U1 (g> • • • Cg> UNis a local unitary 
transformation, the CCM of the new state is 

C(p') = min[2N-2D(p',p'Ak ® p'BJ + C(p'Ak) + C(p'BJ} (A.l) 

being p'A and p'B the k bipartition of the transformed state. Using the same 
partition (and properly rearranging the qubits) and considering U = UAk <8> UBk we 
have that 

p'Ak=^Bk(p') = UAkpAkU{k, p'Bk=TrAk(p>) = UBkPBkUÍk, (A.2) 

which implies that 

PAk ® PAk = UAkPAkUAk ® UBkPBkUBk = Uk(PAk <g> PBk)U¡ . (A.3) 

So, by the required invariance property of the distance 

D(p',PAk ®PBk) =D(pk,PAk®PBk)],-
By finite induction is easy to see that C(p'A ) = C(pAk) and C(p'B ) = C(pBk). 

so CCM is invariant under unitary local operations. D 



A.4. Property 4 

Proof. This property is a direct consequence of the Properties 2 and 6. D 

A.5. Property 5 

Proof. Consider local operations such that e(p), e = e1 (g> • • • (g> eN. The correlation 
of a state, resulted of applying a local operation e(p) is 

C(e(p))=Ymni2N-2D(e(p),aAk®aBk)+C(aAk) + C(aBk)}, (A.4) 

where e = eAk ®eBk, crAk = TrBk(e(p)) and aBk = TrAk(e(p)). 
Using Stokes tensor38 is straightforward that aAk Cg> aBk = s(pAk <8> pBk), where 

pAk = TtBk(p) and pBk = TrAk(p). Then, by contractivity (Sec. 2.1). 

D(e(p),<7Ak ®crBk) = D(e(p),e(pAk ® pBk)) 

< D(p, PAk ® PBk) • (A.5) 

Using this, we will prove by induction that the proposed measure is contractive, 
Le., 

C(e(pj) < C(p). (A.6) 

For two-qubit states, the property is a direct consequence of the distance be-
tween the state and the product of its reduced matrices. 

Suppose now that for any state in a space of dimensión less than or equal 
to N — 1, the measure is contractive. Consider a multiqubit state p. With local 
operations, the correlation measure is 

C(e(p)) = mm[2N-2D(e(plaAk®aBk) + C(aAk) + C(aBk)]. (A.7) 
ÍM 

For each partition k, by (A.5) we have that 

D(£(p),(TAk ®VBk) < D(p,pAk ®pBk). (A.8) 

As aAk and aBk have less than N qubits, 

C(aAk)<C(PAk), 
(A.9) 

C{aBk)<C{PBk). 

Then for all N, 

C(e(pj) < C(p). (A.10) 

D 



A.6. Property 6 

Proof. Now we prove the additivity of the proposed measure. 
For a two-qubit product state the property is straightforward (unique partition). 

C(p) = C(<f> ®<p) = D{p, <f> <g> íf) + C(<f>) + C(<p) = 0 . (A.11) 

In order to perform an induction let's assume that the property holds for all 
product states with less than N qubits. Considering all possible partitions we have 
three cases: 

(1) The full state p is partitioned in the states </> and <p>. For this particular partition. 
feo, as D(p, (¡> ® <f) = 0, we have that 

Ck0(p) = C(<t>)+C(<p). (A.12) 

(2) The used partition k divides the state p such that the first partial trace, pAk-, 
includes the full state </> and some part of <p> (the same applies for the other 
partial trace). In this case we have 

PAk = TrBfc {4>®ip) = 4>®ipA, 
(A.13) 

PBk = TrAfc (</> (g) cp) = cpBk, 

where A'k and Bk is a partition in the TLV subspace (Ak and Bk is a partition 
in the hole TLV <g> TLV space). Then, as additivity holds for states with less than 
N qubits, 

Ck (p) = 2N-2D(p, 4>®<pA>k® cpBk) + C(4>) + ••• 

+ C W ) + C ( ^ f c ) . (A.14) 
i k 

For state <p> we have that 

C(cp)=mm[Ck(cp)}, M<N 
{k} 

= min[2M-2D(^ <pAi ®<fBk) + C(<pAi) + C^Bk)}. (A.15) 

By the monotonicity property (Sec. 2.1), 

D{y, <pA>k ®yBk)< D{p, 4>®ipA'k® ¥Bk) • (A.16) 

Then, 

^C0(p) = C(<p)+C(4>)<Ck(<p) + C(4>)<Ck(p), Wk. (A.17) 

(3) The used partition k divides the state p such that both substates </> and <p> are 
partitioned, where A'k and B'k, and A'k' and B'k' are partitions in the subspaces 
7Í0 and TLV, respectively In this case 

PAk=^Bk{4>®f) = 4>A'k®fA'k' ,A N 

(A.18) 
PBk = TrAfc (</> <g> 92) = 4>B> ® ¥>B" 



and Ck is 

Ck(p) = 2N-2D(p, (4>Ai (g) tpA(¿) (g) (4>BÍ (g) tpB,¿)) 

+ C(4>qL) + <?(¥>,») + C(4>qL) + Cfa»). (A.19) 

By a similar procedure to tha t used in (b) we have tha t CQ < Ck, VA;. 

Then, for a multiqubit s tate the property holds, and by induction the measure 

is additive. D 

A . 7 . Property 7 

Condition 1. 

Proof. This property is straightforward. Suppose tha t PM G TLM is the s tate with 

máximum measure. In the space TLN, A = M + L, we have the s tate 4>N = pM®fL-

By Proper ty 6, C(<f)n) = C(PM) + C(ÍPL) > C(PM)- Then the máximum correlation 

in TLN is greater or equal than C(PM)- • 

Condition 2. 

Proof. Proved in Sec. 2.3. D 
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