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A B S T R A C T 

Forecasting large and fast variations of wind power (the so-called ramps) helps achieve the integration 
of large amounts of wind energy. This paper presents a survey on wind power ramp forecasting, 
reflecting the increasing interest on this topic observed since 2007. Three main aspects were identified 
from the literature: wind power ramp definition, ramp underlying meteorological causes and experi­
ences in predicting ramps. In this framework, we additionally outline a number of recommendations and 
potential lines of research. 

1. Introduction 

Wind energy shows clear advantages as compared with traditional 
energy sources. However, one of the main drawbacks of wind energy 
is that it exhibits intermittent generation greatly depending on 
environmental conditions. Intermittency adds complexity to the 
management of power systems because supply and demand must 
be balanced almost instantaneously. Potential solutions are demand 
response techniques (such as plug-in vehicles) and large scale storage 
(such as supercapacitors and hydrogen storage) [1], though these 
might be available only in the middle/long-term. Instead, wind power 
intermittency can be partly mitigated through forecasting techniques, 
which aim at reducing the uncertainty of future wind generation of a 
wind farm or portfolio. In a few decades, approaches to wind power 
forecasting have evolved rapidly, with special emphasis in the short-

term (prediction horizons up to one day). For a detailed review on the 
topic, readers are referred to Costa et al. [2], Giebel [3], and Jung and 
Broadwater [4]. 

In the last few years, the so-called ramp events have attracted 
growing interest in the wind power forecasting community. The idea 
behind the notion of a ramp is that a local event (in the form of a large 
and fast power variation in a wind farm or portfolio) is critical enough 
to deserve special attention. By critical we mean that the potential 
damage or cost associated to a bad management of the event is 
considered too high or, at least, qualitatively higher than that 
associated to non-ramp situations. An example would be a scenario 
of load curtailments due to a severe drop of wind power generation. 
Real experiences of critical events from the grid operator standpoint 
have been documented by Ela and Kirby [5] and Wan [6]. Energy 
traders operating in electricity markets might also be affected by 
ramps, as inaccurate bids during these events may derive in expensive 
penalties [7]. Despite these situations, according to Potter et al. [8], the 
impact of ramp events may be occasionally undervalued by forecasters 
because wind power forecasting traditionally focuses on minimising 



the overall error committed in long time periods (i.e. months, years). 
This would justify ramp forecasting as a particular case of wind power 
forecasting specifically oriented to improve the forecast of such events. 

The booming importance of wind power ramp forecasting is 
observed in the increasing number of studies and projects on this 
topic, as illustrated in Fig. 1. This figure shows the number of wind 
power ramp-related works on a yearly basis since 2007 (for a 
detailed list of references, see Table 1). Data for each year are broken 
down according to type of work (technical report, conference paper, 
doctoral thesis, non-JCR paper and JCR paper). It is noted that records 
concerning 2014 are computed only up to August, meaning that the 
final number of works published in this year is likely to fit with the 
general positive trend observed in the picture. Another interesting 
remark is that publications in the form of technical reports pre­
dominate in a first stage (2007-2008), while conference papers 
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Fig. 1. Number of wind power ramp-related works depicted on a yearly basis and 
broken down according to type of work. * denotes data up to August 2014. 

become more frequent since 2010, followed by a noticeable increase 
of JCR articles experienced in recent years. 

The geographical distribution of the case studies considered in 
wind power ramp-related works is shown in Fig. 2. As expected, 
ramp events have become a concern in regions with significant levels 
of wind power penetration. In particular, North America accumulates 
most of the case studies addressed in the reviewed works: 13 case 
studies in the Electric Reliability Council of Texas (ERCOT), 9 in the 
area managed by the Bonneville Power Administration (BPA) and 6 in 
the Alberta region. Other regions with prominent research activity on 
wind power ramps are Europe (16 case studies, half of them located 
in the Iberian peninsula) and Australia (in particular, South Australia 
and Tasmania). More recently, a few publications considered case 
studies in growing economies (China and India), where wind power 
is being developed rapidly. 

This paper is devoted to provide an overview on wind power 
ramp forecasting, along with a brief summary of current open 
questions and future lines of research. It is noted that a review on 
this topic was already published in 2010 [22]. Nevertheless, 
research on ramp events has experienced a noticeable increase 
since then, as shown in the figures above. For this reason, this 
paper also aims to update the aforementioned work. 

The paper is organised as follows. The following three sections 
deal with the main aspects on wind power ramps identified from 
the literature: Section 2 addresses the notion of ramp event; in 
Section 3 relevant findings on ramp underlying meteorological 
causes are reviewed; Section 4 gathers approaches and experi­
ences oriented to wind power ramp forecasting. The paper ends 
with Section 5 highlighting some of the weak points identified 
from the literature, and suggesting potential lines of research on 
the topic. 

2. Ramp definition 

Table 1 
References of the works considered in Fig. 1. 

Year Technical report Conference Ph.D. non-JCR JCR 

2007 [91 - - - [10] 
2008 [5,11-13] [14[ - - -
2009 [15,16] [8,17[ [18] [7,19] [20] 
2010 [21,22) [23-27) - - -
2011 [6,28] [29-33) - [34] -
2012 - [35-40) [41] - -
2013 [42-49) [50] [51,52] [53-56] 
2014* - [57-60] - [61,62] [63-66) 

*Denotes data up to August 2014. 

Generally speaking, a ramp event represents a large and fast 
variation in power in a wind farm or portfolio. According to the 
literature ([22] and references therein), a ramp can be charac­
terised by the following parameters: 

• Magnitude (APr): the variation in power observed during 
the event. 

• Duration (Atr): the time period in which a large variation 
takes place. 

• Ramp rate, which is derived from the previous variables 
(APr/Atr) and provides an idea of the ramp intensity. 

• Timing (t0): a time instant related to the ramp occurrence. This 
parameter can be defined either as the starting time or the 
central time of the event. 

Fig. 2. Regional distribution of the case studies considered in wind power ramp-related works (see text for details). 



• Direction: whether the ramp event represents an increase or a 
decrease in power. 

Some of these parameters are reflected in Fig. 3 for the case of 
two consecutive ramp events observed in a wind farm located 
in Spain. 

Provided a ramp event within a wind power time series, the 
aforementioned parameters can be easily assessed. In this line, 
some works analyse the ramping behaviour of wind power 
generation data by performing statistics on the magnitude and 
duration of power gradients [6,15,49]. However, ramp forecasting 
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Fig. 3. Two examples of ramp events experienced in a wind farm located in Spain. 
Some of the parameters usually employed to characterise ramps are indicated (the 
direction is given by the colour: red colour for ramp-up and green colour for ramp-
down). (For interpretation of the references to colour in this figure caption, the 
reader is referred to the web version of this paper.) 

usually entails the inverse problem, that is, provided some criteria, 
forecasters need to identify ramp events in order to analyse the 
underlying causes and perform appropriate models. This translates 
into a need for setting such criteria, i.e. a ramp definition. 

In order to identify ramps within wind power time series, most 
of the works consider a ramp binary classification (a comprehen­
sive list of references is given below in Table 2). The binary 
classification is based on the indicator function, Jt, defined as 
follows: 

/t = 
1 if St > S0 

0 if St < S0, 0) 

with St being a certain criterion function, St : Rn—>R, evaluated at 
time t and S0 e U represents a threshold value. Hence, a specific 
event occurs during a period of time that makes the criterion 
function to go above a given threshold (i.e., J t=l). The indicator 
function allows for the identification of ramp events in a wind 
power time series merely by considering a certain criterion 
function together with a threshold. This criterion is usually based 
on the variation observed between two records of the power time 
series. Mathematically, 

St=Pt+AtT-Pt- (2) 

In this case, the sign of the variation permits one to determine 
whether a ramp is positive, St > AP0 (thus lt=\ for [t, t+At r]) or 
negative, St < - A P 0 (thus lt= - 1 for [t,t+Atr]), AP0 > 0 being 
the threshold value. Since this definition only takes into account 
the end values of a specific time interval, consecutive ramps with 
different direction may lead to an inaccurate ramp identification. 
To avoid this, an alternative criterion function was proposed by 
Kamath [26]: 

St = max([P t,P t+Atr])-min([P t,P t+Atr]). (3) 

The counterpart of this definition is that the ramp direction is 
not obtained because the criterion is positive for both ramp-up 

Table 2 
Binary ramp definitions reviewed in the literature. 

Author APn Atr Case study size Comment 

Cutler [10] 
Cutler [10] 
Freedman [ 12] 
Truewind [ 11 ] 
Truewind [ 11 ] 
Potter ]8] 
Greaves [7] 
Barbour[21] 
Collier [25] 
Bradford [24] 
Bossavy [23] 
Kamath [30] 
Kamath [30] 
Gallego-Castillo [34] 
Cutler [28] 
Cutler [28] 
Cutler [28] 
Cutler [28] 
Zareipour [31 ] 
Pinson [35J 
Bossavy [54J 
Yang [56[ 
Fernandez [42J 
Suzuki [45 [ 
Revheim [58 ] 
Heckenbergerova [57 J 
Can [61 ] 
Can [61[ 

75%PR 

65%PR 

200 MW 
20%PR 

15%PR 

10%PR 

50%PR 

20%PR 

50%PR 

20%PR 

50%PR 

10-12%PR 

15-20%PR 

200 MW 
150 MW 
150 MW 
75 MW 
50 MW 
50%PR 

30%PR 

15%PR 

25%PR 

15%PR 

30%PR 

50%PR 

40%PR 

30%PR 

3 h 
l h 
30min 
l h 
l h 
l h 
4 h 
30min 
4 h 
l h 
n/a 
30min 
l h 
l h 
30min 
5 min 
30min 
30 min 
10 min 
4 h 
n/a 
l h 
3 h 
6 h 
3 h 
5 h 
n/a 
n/a 

65 MW 
65 MW 
~ 1 GW 
n/s (portfolio) 
n/s (portfolio) 
~ 1 GW 
3-240 MW 
- 2 0 0 MW 
n/s 
n/s (wind farm) 
n/s (wind farm) 
~ 1 GW 
~ 1 GW 
33 MW 
868 MW 
868 MW 
286 MW 
140 MW 
n/s (portfolio) 
n/s (wind farm) 
8MW 
n/a 
18 MW 
n/s (wind farm) 
n/a 
68 MW 
n/s (wind farm) 
n/s (wind farm) 

Hourly resolution 
10-min resolution 

Threshold for ramp-up 
Threshold for ramp-down 

Core ramp 

Threshold for ramp-down 

Threshold for ramp-up 
Threshold for ramp-down 

PR stands for the rated power of the case study considered. ag is the standard deviation of the first-difference of the wind power time series (see text for details), "n/a" and "n/ 
s" stands for "not applicable" and "not specified", respectively. 



and ramp-down events. Likewise, Kamath [26] noted that the use 
of the criterion given in (2) or the one given in (3) had little effect 
on the statistics obtained in the study. 

The threshold AP0 is usually expressed as a percentage of the 
installed capacity, %PR (see Table 2 below), though a few works 
considering large regions have employed an absolute power 
amplitude threshold [12,28]. In Kamath [26], it is argued that the 
latter option is more appropriate because the installed capacity is 
likely to vary along time as existing wind turbines are upgraded or 
new wind farms are installed. In this situation, a threshold based 
on rated power percentage would identify the same event differ­
ently in distant times. In addition, the absolute threshold value 
may be set in base of technical criteria such as the back-up 
generation available (reserves provided by conventional genera­
tion). Nevertheless, the counterpart of the absolute threshold 
value is that a higher frequency of ramp events is likely to be 
observed as the installed capacity increases [30]. 

Some authors have proposed a different criterion to set the 
threshold value. Gallego-Castillo et al. [34] proposed AP0 to be 
defined as a percentage of as, the standard deviation of the first-
difference wind power time series.1 In Fernandez et al. [42], the 
value for AP0 is set so that ramp events occur 5% of the time. 

A few works opted for time-varying threshold, expressed as a 
percentage of the current generated power during the event [56,64]. 
According to Yang et al. [56], this choice seems to unnecessarily 
complicate the ramp definition because ramp identification becomes 
inaccurate for low values of the actual generated power, and addi­
tional constraints shall be required. 

An attempt to provide a more sophisticated and reliable ramp 
definition was made during the ramp forecasting project described by 
Barbour et al. [21], where a ramp was identified based on two 
features: the core ramp, which represents a large variation in wind 
power output, and the refinement, comprised the pre/post-time 
intervals if a substantial power variation (smaller than the core, but 
larger than a certain threshold) in the same direction was observed. 
Despite the seemingly clarity of the definition, different interpreta­
tions were initially made by the participants, who agreed on a 
common ramp definition only during the last months of the project. 

Computing the indicator function from the wind power time 
series was deemed unsuitable in Bossavy et al. [23] because wind 
power may exhibit high variability in time scales shorter than 
typical ramp lengths. As a consequence, ramp identification may 
become highly sensitive to fast fluctuations or noise. To avoid this 
problem, a criterion function based on a filtered signal, {pf}, was 
proposed. The filtered signal is obtained from a low-pass filter 
where a parameter related to the number of averaged measures, n, 
must be set. Mathematically, 

St=pf
t=mean{p[+h-p[+h_n;h = \,...,n}. (4) 

The parameter n permits us to tune the sensitivity to short 
period variations in the original time series (i.e., the characteristic 
time length of the ramps which are considered of interest). Setting 
the value of n replaces the duration parameter Atr employed in 
previous definitions. 

Despite a few exceptions, the most employed criterion for ramp 
identification is the one provided in Eq. (2). In this case, the key 
elements in defining a ramp event are the threshold values 
(AP0, Atr). Table 2 summarises the thresholds reviewed, clearly 
showing the extent to which different ramp definitions have been 
considered in the literature (the amplitude threshold ranges from 
10%PJJ to 75%PJJ and the duration threshold stretches from 5 min 
to 6 h). It is worth mentioning that most of these thresholds were 
assessed with little or no discussion on their suitability, reflecting 

1 The first-difference of a certain time series {p,} is defined as Ap, —pt-pt 

a lack of agreement with end-users of what could be considered a 
problematic event. In these regard, the most prominent exception 
is that of Cutler et al. [28], where, according to the Australian 
Energy Market Operator, several ramp categories leading to sig­
nificant power system disturbances were employed. 

The binary ramp definition was called into question by Gallego-
Castillo et al. [53 ]. According to the authors, the number of ramp events 
identified within a wind power time series may become very sensitive 
with respect to the threshold values. In addition, a ramp binary 
classification supports the notion that ramps are similar to one another, 
in spite of the fact that ramps with different characteristics are usually 
observed. In order to overcome these drawbacks, the so-called ramp 
function was introduced in order to characterise the ramp intensity 
through a continuous-valued index. Some applications of the ramp 
function were described in [50] and [53]. In this line, a fuzzy approach 
for wind power ramp characterisation was presented in Martnez-
Arellano et al. [62]. Bossavy et al. [63] proposed a comprehensive 
framework for evaluating and comparing different continuous-valued 
approaches for wind power ramp characterisation. Probably, the main 
limitation of that work is the use of synthetic wind power time series 
with specific ramp patterns. This constraints the obtained conclusions 
as real data are likely to show a wider variety of complex situations. 

3. Ramp underlying meteorological processes 

As stated in [11], the understanding of the meteorological 
phenomena that cause large ramp events is an important precursor 
to the development of a successful large ramp forecast procedure. 
This is so because the identification of the meteorological scales 
relevant in explaining ramp events may provide insights about the 
accuracy that could be expected with current Numerical Weather 
Prediction (NWP) models, as well as what efforts could be made to 
adapt them for ramp forecasting. Nevertheless, relating ramps to 
their underlying causes is a very case-dependent problem. First, it 
is rarely the case that different wind farm locations are charac­
terised by similar meteorological conditions. Even when two 
placements are located at similar latitudes (which may suggest 
similar macro-scale conditions), local effects may become quite 
different due to specific terrain characteristics, roughness, topo­
graphy or sea-land interactions. In addition, the lay-out of the 
wind farm (i.e. row-configured wind farms versus squared dis­
tribution) may place conditions to the occurrence of ramps during 
meteorological processes involving changes in wind direction. 
Another issue is the size of the area considered. If the aggregated 
wind power output of a large area is considered, it is expected that 
large ramp events would be related to large scale meteorological 
processes so that most of the wind farms would be affected at the 
same time. Conversely, micro- and mesoscale processes charac­
terised by short time and spatial scales may become relevant in 
explaining sudden variations in wind power output of a single 
wind farm. In some cases, the specific site conditions are also 
determinant in explaining the scale of the processes involved in 
ramp events [10]. Cutler et al. [10] probably constitutes the first 
work in analysing wind power ramps. This work focuses on a 
single wind farm, located in North-west coast of Tasmania. It was 
found that the specific site conditions reduced the influence of 
local effects so that large ramp events were found to be mainly 
related to large scale processes, such as low pressure systems and 
fronts. It was also noted that ramp events were evenly distributed 
over the day and they were less frequent in autumn. 

An interesting classification of the main meteorological processes 
that may derive in ramp events was provided by Zack [9[. According 
to the author, one can distinguish between phenomena driven by 
horizontal atmospheric processes and those driven by vertical atmo­
spheric processes. Among the former, processes related to two 



different scales can be described: passage of large-scale weather 
systems (such as fronts) and the onset of local/mesoscale circulations 
(such as sea-land breezes and mountain-valley winds). In both cases 
the state of the art in NWP models permits relatively good forecasts of 
these processes. On the other hand, phenomena driven by vertical 
processes (convection) are likely to be much difficult to predict. It is 
due to the fact that these phenomena are characterised by short life 
cycles, as well as a high sensitivity to perturbations of certain 
variables, such as turbulent mixing. For example, the existence of a 
high wind speed layer above the wind turbine level along with a 
sudden perturbation in stability conditions can derive in a vertical 
mixing of momentum, leading to high wind speeds at lower heights 
and causing an explosive increase in wind power output. Other 
example would be the sudden onset of a thunderstorm (usually 
referred to as moist convection). However, the author noted that even 
if current NWP models hardly forecast these events in timing and 
location, they can provide useful information related to favourable 
environmental conditions for the mentioned processes. 

In a similar vein, Musilek and Li [32] differentiated between 
meteorological processes typically causing ramp-up events (cold 
front, thunderstorm outflow, onset of mountain wave events and 
sea breezes) and ramp-down events (relaxation after cold front, 
boundary stabilisation and warm front). Special attention was 
placed to cold fronts, as the author sets a framework for detecting 
such events based on three weather features: temperature drop, 
wind shift and pressure trough. 

A well-documented case study was performed in the ERCOT area, 
where wind energy deployment plans have led to high wind power 
penetration levels. Freedman et al. [12] compiled the main meteor­
ological underlying processes of aggregated wind power ramp events 
observed during the years 2005 and 2006, and a very well detailed 
analysis on some specific ramp events was performed. From a 
statistical point of view, ramp-up events were found to be more 
frequent than ramp-down events. This fact seems to be explained by 
the passage of weather systems such as fronts that usually provoke 
sudden wind increases followed by a gradual decline. In addition, it 
was noted that ramp-up events were primarily caused by convective 
events during the hot season (mainly observed in evening hours), 
whereas frontal passages accounted for most of them during the cold 
season. A different daily pattern was found in Bradford et al. [24] for a 
set of 34 locations in the same area. The author attributes this fact to a 
particular low convective activity during the period considered 
(summer 2009), which points to the idea that seasonal patterns of 
ramp events may vary from year to year. Nevertheless, the fact that 
this work analysed ramp events at individual locations whereas the 
former was based on the aggregated regional wind power was not 
remarked as a potential explanation. 

Another interesting case study is the pilot project in the Alberta 
Electric System Operator (AESO) area [11,13], a relatively flat 
region situated close to a large mountain range. In this case, 
orographic effects were deemed to be determinant in explaining 
the challenging weather regimes observed. In [11] the main 
phenomena related to ramp events were described: shallow cold 
air,2 cross-mountain flows and cold surge events. From a statistical 
point of view, it was found that ramp-up events were more 
common than ramp-down events, the former taking place mainly 
from May to July and the latter during the period August-January. 

Kamath [26] provided a statistical analysis on ramp event 
patterns for the aggregated wind power in the Bonneville Power 
Administration (BPA) balancing area in 2008 (with a installed 
capacity of around 1 GW at the time). This region, situated in 
Pacific Northwest (USA), is characterised by a noticeable wind 

2 Wind farms are in the interface between a low level mass of cold air 
(characterised by light winds) and a strong cross-mountain flow of warm air. 

resource, which has led to a concentrated development of wind 
projects. It was found that both ramp-up and ramp-down events 
happened more often in the afternoon than in the morning, and 
also from March to August. In line with previous works, ramp-up 
events were more common than downward ramps. Barbour et al. 
[21] reported some characteristics observed in three different 
wind projects located in this region, concluding that the size of 
the project has an impact on the number of ramps (in such a way 
that smaller projects with less spatial diversity showed a higher 
number of ramps), whereas differences in ramp intensities were 
mainly associated to the specific location of the wind farms. 

Kamath [30] analysed the relation between daily averaged 
weather measurements and ramp events in two regions with 
important wind penetration levels: the Tehachapi Pass (that belongs 
to the area of the California Independent System Operator, CAISO) and 
the Columbia Basin (BPA area). Based on feature selection techniques, 
the author concluded that wind measurements (in particular, average 
wind speed, speed gusts and wind direction) were of main interest in 
detecting days with ramp occurrence in both regions. It was also 
noted that the average air temperature and the average relative 
humidity measured in specific weather stations were also relevant for 
the case of the Tehachapi region. 

Walton et al. [46] analysed spatial consistency of ramp events in 
Iowa (U.S.) by relating ramp underlying meteorological causes and 
time lags between ramps observed at different locations (within 
160 km). Results suggested that ramp occurrence in the presence of a 
strong pressure gradient propagated faster (less than 2 h) than those 
related to a frontal passage (between 3 and 6 h). Probably, the main 
limitation of the work is that it deals with wind speed data. Hence, 
ramps are defined in terms of fast wind speed variations, while power 
ramps can also be motivated by issues concerning the wind-to-power 
conversion process (yaw misalignment, wind turbine shut-down or 
severe mutual interference between wind turbines). The author also 
discusses the extent to which wind a ramp observed at 10 m entails a 
wind ramp at 80 m (hub height), given that wind observations at 
10 m height are usually more abundant. 

A few works have recently studied the link between large scale 
atmospheric processes and ramp events [50,64]. In Gallego-Castillo [50], 
the focus is placed in the connection between meteorological data 
generated with a Global Circulation Model (GCM) and ramp events 
observed at the wind farm level. With this purpose, the author 
introduced a two-staged methodology based on Principal Component 
Analysis (PCA) and mutual information. Results concerning two wind 
farms in Spain suggested different degrees of connection between the 
global/synoptic scales and the wind power dynamics. In particular, 
regional wind regimes governed by the channelling effect of the Ebro 
valley (North-east of the Iberian peninsula) together with zonal 
pressure gradients (east-west) were found to be connected to ramp 
occurrence for one of the wind farms. Couto et al. [64] identified a 
number of synoptic weather regimes through a combination of PCA 
and clustering analysis in Portugal, and analysed their influence on 
ramp events experienced in the Portuguese power system. Strong ramp 
events were found to occur mostly in winter, ramp-up events being 
mainly caused by low pressure systems and frontal zones from the 
Atlantic Ocean, while ramp-down events were driven by the drop in 
wind speed due to the passage of low pressure centres in their motion 
towards the continent. Ramp events in summer were found to be of a 
lower intensity, and caused mainly by thermal low intensification in the 
Iberian peninsula. In addition, specific weather regime sequences were 
also identified as situations that may potentially lead to ramp events. 

4. Experiences on wind power ramp forecasting 

A ramp definition (addressed in Section 2) together with skills 
and tools oriented to identify underlying meteorological processes 



(Section 3) represents the basis of wind power ramp forecasting. 
Nonetheless, performing ramp forecasts is not straightforward. 
Indeed, owing to the novelty of the topic, there is a variety of 
approaches to the problem, revealing that there is no agreement 
on how ramp forecasts should be provided and evaluated. For 
instance, some works put emphasis on providing ramp alarms in 
terms of binary occurrence or probability distributions [7,23,24] 
while others focus on forecasting ramp features, such as ramp 
rates (AP/Atr) [19]. Moreover, the use of different ramp defini­
tions (see Section 2) represents an additional difficulty when 
comparing results from different analyses. This section sum­
marises the most relevant approaches to ramp forecasting 
reviewed, together with the main conclusions reported. 

4.1. Deterministic forecasting 

Cutler et al. [10] evaluated the performance of a conventional 
wind power forecasting methodology (i.e. not specifically oriented to 
ramp forecasting) during time periods where ramp events were 
observed. The case of a 65 MW wind farm was considered. Wind 
power forecasts were obtained from the combination of BoM 
MesoLAPS and the Danish WPPT model. BoM MesoLAPS is an 
atmospheric Limited Area Model (LAM) with a horizontal resolution 
of 12.5 km. WPPT performs wind power forecasts from recent local 
power observations, the time of the day and wind speed and direction 
forecasts at 10 m height provided by the LAM. The analysis was 
performed for prediction horizons comprised between 19 and 42 h 
ahead. It was concluded that the forecasting error observed during 
ramp events was similar to that committed by the reference model 
(the climatological mean). This result was mainly due to the low 
accuracy of the LAM model in predicting wind during these events. 
More specifically, timing errors (ramps predicted with a delay of a few 
hours) seemed to play an important role since they are severely 
penalised by the Root Mean Squared Error (RMSE) criterion. To the 
authors, this fact therefore questions the usefulness of the RMSE to 
evaluate the forecasting performance of wind power ramps. 

Concerning the aforementioned Alberta forecasting pilot pro­
ject (see Section 3), wind power forecasts up to 1-48 h ahead were 
provided by several forecasters. In this case, a wealth of NWP 
models were employed, so that a statistical stage was required to 
optimally generate the power forecast from the available meteor­
ological outputs. Truewind [11] reported that the use of a global 
criterion to tune this step (minimisation of the RMSE) led to a 
systematic low accuracy of ramp rates prediction. Along these 
lines, Focken and Lange [13] remarked that models had to be 
tuned either to minimise a global criterion or to maximise the 
performance during ramp events, but both criteria could not be 
met at the same time. In addition, ramp-down events were found 
to be more difficult to predict that upward ramps [11]. 

The use of two NWP model outputs was considered in Greaves 
et al. [7] to predict the power output of both individual wind farms 
and portfolios. In this case, the analysis of the ramp forecasting 
accuracy was performed in base of a binary ramp classification. 
Under this approach, there are three possible outcomes for each 
observed/predicted ramp event: 

• True Forecast (TF) (also referred to as Hits and True positive): a 
ramp event is observed and predicted within a specific time 
interval. 

• False Forecast (FF) (also referred to as False alarm and False 
positive): a ramp event is predicted but not observed. 

• Missed Ramp (MR) (also referred to as False negative): a ramp 
event is observed but not predicted. 

Based on these definitions, the ramp forecasting accuracy can 
be assessed by defining the Forecast Accuracy (FA), the Ramp 

Capture (RC) (also named hit percentage) and the Critical Success 
Index (CSI), as follows: 

FA = 

RC = 

CSI: 

TF 
TF + FF' 

TF 
TF + MR 

TF 
:TF + FF + MR 

(5) 

(6) 

(7) 

In the mentioned study [7], the combination of several NWP 
outputs for ramp forecasting was called into question as the related 
RC index was found to be lower than the one obtained through the 
use of a single NWP model. In addition, the authors noted that the use 
of a binary ramp definition poses certain problems for the evaluation 
of the ramp forecasting performance. For example, the MR index 
might be overestimated if it happens that a ramp is well predicted in 
timing but the predicted amplitude is slightly lower than the thresh­
old of the employed ramp definition. 

Bradford et al. [24] reported another wind power ramp fore­
casting experience based on a binary ramp definition. In this case, 
the use of a high resolution NWP model (the Weather Research 
and Forecasting model, WRF, at 3 km spatial resolution) along with 
a power curve model was employed to forecast wind power 
output at 34 locations over a one-month period. The RC index 
(see Eq. (5)) and Peirce's Skill Score (PSS) were employed. The PSS 
is defined as follows: 

PSS = 
(TF-TN)-(FF-MR) 

: (TF + MR)-(FF+TN)' (8) 

where TN stands for True Negative (a ramp event is neither 
observed nor predicted). Both statistics showed a very low 
accuracy in predicting ramps, which was attributed to specific 
limitations of the methodology (such as the use of wind forecasts 
and observations at 2 m height) rather than to the WRF model 
performance. 

Collier et al. [25] analysed the impact of considering upstream 
wind measurements to improve very short-term ramp forecasting 
(the considered prediction horizons ranged up to 6 h). The basic idea 
was to refine wind power forecasts obtained through conventional 
models (NWP model combined with recent SCADA observations) by 
adding information gathered in upstream locations (in the order of 
100 km). It was found that the use of the forecast error observed at 
the upstream locations provided more information than using raw 
upstream measurements. The analysis showed that the ramp capture 
improvement was limited, although better forecasts of ramp features 
such as the ramp rate were observed. However, two limitations 
should be remarked: (i) only ramps related to a specific wind 
direction were considered and (ii) those ramps due to cut-out speed 
were excluded from the analysis. 

Yang et al. [56] discussed the impact of the planetary boundary 
layer (PBL) parameterization on the ramp forecasting perfor­
mance. Three different PBL parameterizations were considered. 
The authors concluded that one of them showed the best overall 
performance under stable conditions, while no single PBL para­
meterization clearly outperformed the others when all atmo­
spheric conditions were considered. 

Only a few works have focused on purely time series based 
models applied to ramp forecasting, i.e. with no NWP data as 
inputs. Zheng and Kusiak [19] presented a study on time series 
models for wind power ramp rate forecast. The ramp rate time 
series was obtained from the difference between two consecutive 
power measurements in a 10-min basis (the first-difference of the 
wind power time series). A set of meaningful explanatory variables 
was identified from SCADA measurements. Several multi-variate 
time series models were built and compared for different 



prediction horizons between 10 and 60 min. It was found that a 
support vector machine (SVM) algorithm outperformed the rest of 
the models, providing reasonable forecasts for horizons up to 
40 min. Unfortunately, the authors do not provide insights about 
the advantages of forecasting the first-difference of the time series 
instead of predicting the power time series directly. 

Gallego-Castillo et al. [34] proposed a regime-switching model 
based on artificial neural networks (ANNs) in an effort to differ­
entiate ramp and non-ramp regimes; to this end, the proposed 
model considered different ANN architectures and regression 
windows for each regime. The current regime was assessed at 
each time-step in base of the most recent observation of the wind 
power gradient. A noticeable improvement for the case of one 
hour-ahead forecast was attained, specially for the case of ramp-
up events. However, the trial-and-error procedure involved in the 
ANN training was deemed to have a negative impact on the 
identification of the regime thresholds. 

Ferreira et al. [40] employed a supervised learning algorithm to 
capture ramp events through a Hidden Markov Model (HMM) in a 
large scale wind farm located in US Midwest. Conversely to the 
approach addressed in [34], HMMs allow the modelling of ramp 
regimes as a non-observable process whose probabilities have 
been inferred from data. An interesting point of this work is that, 
in order to account for ramp seasonal patterns, the algorithm 
continuously updates the HMM with the most recent NWP out­
puts and SCADA measurements. This model was implemented for 
very short-term forecasting (30-90 min ahead), and demonstrated 
better performance than persistence. 

A detailed analysis for very short-term wind power ramp fore­
casting was presented by Gallego-Castillo [50], where the author 
considered several type of time series based models (linear autore-
gressive, varying coefficient and ANN models) in order to discuss, 
among other factors, the role of the model complexity into the ramp 
forecasting performance. This study also analysed the impact of 
incorporating atmospheric information on the model performance. 
It was found that (i) atmospheric information improved ramp 
forecasting for all the case studies and models and (ii) the observed 
improvement was more sensitive to the identification of proper 
meteorological variables rather than to the statistical model choice. 

4.2. Probabilistic forecasting 

Some works have recently pointed out the potential contribution 
of probabilistic forecast to wind power ramp prediction [8,23,54]. 
Indeed, estimating probability distributions of ramp features such as 
amplitude, timing and duration would allow forecasters to better 
communicate complex situations rather than providing point-
forecasts. This information permits end-users to be aware about 
different risk levels during decision-making processes. 

Potter et al. [8] represents one of the first works describing the 
advantages of a probabilistic ramp forecasting approach. A discus­
sion about proper evaluation methods for such forecasts is 
addressed, with special emphasis placed on the Reliability Dia­
gram (RD). The notion of reliability is widely employed in 
probabilistic wind power forecasting [67]. In the case of ramp 
events, a RD aims at reflecting the agreement between the relative 
frequency of the observed and the predicted ramps. Another 
interesting contribution in [8] has to do with the value of ramp 
forecasting in terms of system operation costs. The author sum­
marises the operation costs as follows: 

M 
Cost = H+F+— (9) 

r 

where H is the cost that is incurred to cover a forecast event, F is 
the cost associated to purchasing ancillary services not needed, M 
relates the costs of a non-predicted event and r is the ratio 

between the cost of pre-purchasing ancillary services and the 
penalty incurred when a ramp event is not covered. From this 
conceptual expression, it is possible to argue that, for low values of 
the ratio r, the most cost-effective option is to include ramp 
forecasts into the operation process. 

Special interest has been paid to the temporal uncertainty of ramp 
events. This is so because the phase error committed by NWP models 
entails ramps well predicted in amplitude but not in timing, which 
severely penalises the performance of power point-forecasts and 
binary ramp occurrence predictions. A first attempt to characterise 
the temporal uncertainty of ramp events was carried out by Greaves 
et al. [7]. The probability distribution of the delay (positive or 
negative) between observed ramps and predicted ramps was esti­
mated for two different prediction horizons (3 h and 24 ho). This 
probability distribution, situated in the central part of a predicted 
ramp, was utilised to inform about the timing temporal uncertainty in 
a visual manner. An important limitation of this work is that the 
estimated probability distribution of the delay is non-time-dependent 
because it was estimated once for all the events. Consequently, the 
analysis on different uncertainty levels for different underlying ramp 
causes was not addressed. 

Bossavy et al. [23] proposed a methodology based on ensemble 
forecasts to provide confidence intervals for ramp-timing estimation. 
Ensemble forecasting makes reference to a forecasting strategy based 
on the use of a wealth of future meteorological scenarios, referred to 
as members, which are obtained by running a NWP model with small 
perturbations in the initial state and/or different parametrizations. 
The case of three wind farms located in France was considered, and 
the Ensemble Prediction System of the ECMWF was employed. Each 
ensemble member was used to estimate wind power forecasts from 
1 to 80 h ahead. When a ramp event was predicted by a number of 
members, the related timing values were employed to infer a 
statistical distribution of the ramp timing, leading to better results 
than those obtained with a reference model. The performance 
evaluation was based on the Brier Score (BS), which measures the 
accuracy of the predicted probabilities for events with two categories 
(binary outputs). The BS is usually defined as 

1 N 

BS = N ^ ( P i _ r i ) 2 ' ( 1 0 ) 

i 

where pt is the probability of ramp occurrence within a time interval, 
r,- is the observed event index (0 for non-ramp and 1 for ramp 
occurrence) and N is the number of provided probabilities. This 
procedure was further explored by Bossavy et al. [54], concluding 
that the use of ensembles provides a more reliable ramp capture than 
the one obtained with a unique wind power scenario. 

Zack et al. [27] developed a ramp oriented wind power forecasting 
tool to generate very short-term probabilistic forecasts of the ramp 
rate. The forecasts consist of a set of graphics reflecting the probability 
to observe ramp rates larger than several pre-established thresholds 
for several horizons, from 15 min to 6 h ahead. Ramp rates were 
defined for three different time periods, namely 15, 60 and 180 min. 
Wind power point-forecasts were also provided together with 80% 
confidence bands. The probabilistic forecasts were evaluated with the 
Ranked Probability Score (RPS), which generalises the aforemen­
tioned BS for more than two categories [68]. 

Ferreira et al. [52] introduced a new approach to the problem of 
probabilistic ramp detection. The method employs a Monte Carlo 
sampling process to build a number of power generation scenar­
ios. From these scenarios, the probabilities of observing a power 
gradient exceeding a certain threshold were computed for each 
time step. According to the authors, such form of the outputs 
enables TSOs to address (stochastic) unit commitment properly, 
since it is possible to evaluate the risk level for different situations 
in such a way that the adopted decisions depend ultimately on the 



Table 3 
Main ramp forecasting models reviewed in the literature. "TS" stands for time series based models; "Ramp occ" means ramp occurrence; "prob" stands for "probabilistic 
model". 

Author Model type Horizons Outputs Evaluation metrics 

Cutler [10] 
True wind [11] 
Greaves [7] 
Zheng [19] 
Bradford [24] 
Collier [25] 
Bossavy [23] 
Zack[27] 
Gallego-Castillo [34] 
Ferreira [40] 
Bossavy [54] 
Yang [56] 
Gallego-Castillo [50] 
Ferreira [52] 
Ellis [66] 

NWP+TS 
NWP 
NWP 
TS 
NWP 
NWP 
NWP 
NWP 
TS 
TS 
Ensembles 
NWP 
TS 
Monte Carlo 
NWP 

19-42 h 
1-48 h 
3-24 h 
10-60 min 
0-24 h 
0-6 h 
1-48 h 
15 min-6 h 
1-5 h 
30-90 min 
1-80 h 
12-36 h 
1-6 h 
1-24 h 
6 h 

Power output 
Power output 
Ramp occ 
Ramp rate 
Ramp occ 
Ramp occ 
Ramp occ (prob) 
Ramp occ (prob) 
Power output 
Ramp occ 
Ramp timing (prob) 
Ramp occ 
Power output 
Ramp occ (prob) 
Ramp occ (prob) 

RMSE 
MAE, RMSE 
FA, RC 
MAE 
RC, PSS 
RC 
RD 
RPS 
RMSE 
PSS 
BS 
FA, RC 
Weighted RMSE 
CSI, ROC 
ROC, RD 

risk assumed by the TSO. The receiver operating characteristic 
(also referred to as ROC curve) was employed as a means to 
evaluate the experimental results. The idea behind the ROC curve 
is to reflect the sensitivity of the model in discriminating true 
positives and false positives with respect to some parameter (e.g. 
the amplitude threshold). 

More recently, Ellis et al. [66] analysed the performance of several 
models in predicting high variability events (ramp events but also 
fluctuation periods). As inputs, the considered models employed 
meteorological reanalysis data previously processed through PCA. A 
single wind farm with a rated power of 80 MW located in Australia 
was employed as case study. In line with previous studies, the results 
of the analysis suggested that meteorological information over large 
geographical areas contributed to improve forecasts, though the 
performance was found to decrease with the severity of the 
ramp event. 

Table 3 summarises the main ramp forecasting models 
reviewed in the literature together with their main characteristics. 

5. Conclusions and recommendations 

Wind power ramp forecasting is a relatively recent topic moti­
vated by the need of improving the management of large and fast 
wind power output variations, specially in a context of power systems 
with high wind penetration. Since 2007, the number of related works 
has increased progressively. The present study provides a review 
covering up to August 2014, and organised into three main topics: 
(i) ramp definition, (ii) ramp underlying meteorological causes and 
(iii) experiences reported on wind power ramp forecasting. This 
review allowed us to identify the following weak points concerning 
ramp forecasting that shall be addressed in the future: 

1. Ramp event definition: There exists a broad range of ramp 
definitions in the literature, most of them relying on the binary 
approach (ramp/non-ramp). The related thresholds were 
usually assessed ad hoc, suggesting a lack of agreement with 
end-users. In this regard, practices as that followed by Cutler 
et al. [28] should be followed. On the other hand, non-binary 
approaches recently proposed seem to achieve a more robust 
ramp characterisation. However, they are less intuitive and 
end-users might be initially reluctant to use them. 

2. Explanatory variables: Ramp underlying causes have been studied 
and described in a wealth of works, with special focus placed on 
meteorological processes at different time/spatial scales. However, 
because of the complex nature of ramps, expertise gained from the 
reported experiences cannot be easily generalised to other case 

studies. Thus, from an operational point of view, advanced 
methodologies oriented to identify information (meteorological, 
but also from the wind farm state) relevant in explaining ramp 
occurrence should be further investigated. These methodologies 
shall provide explanatory variables, in the form of low-
dimensional signals, to optimally feed ramp forecasting models. 
Optimal outputs: Probably due to the novelty of the topic, what 
constitutes the optimal output of a ramp-oriented forecasting 
tool is still unclear. Ramp event alerts, probabilistic ramp event 
occurrence and ramp rate forecast represent some examples of 
the different ramp forecasting standpoints reviewed. In this 
regard, in order to prevent the development of ramp forecast­
ing tools whose contribution is not clear [35], the role of ramp 
events into the various decision-making problems involved in 
wind power integration deserves further analyses. 
Ramp forecast value: It is generally accepted that wind power 
forecasts benefit end-users differently [69]. In this regard, 
specific cost-functions describing the impact of ramp events 
on the different end-user activities are still required. A follow-
up of the analysis introduced in Potter et al. [8] should be 
addressed, assessing specific cost values for specific case 
studies. This is the base to have forecasters design models 
well-suited for real-life problems. 
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