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A B S T R A C T 

The rolling stock circulation depends on two different problems: the rolling stock assignment and the 
train routing problems, which up to now have been solved sequentially. We propose a new approach to 
obtain better and more robust circulations of the rolling stock train units, solving the rolling stock 
assignment while accounting for the train routing problem. Here robustness means that difficult 
shunting operations are selectively penalized and propagated delays together with the need for human 
resources are minimized. This new integrated approach provides a huge model. Then, we solve the 
integrated model using Benders decomposition, where the main decision is the rolling stock assignment 
and the train routing is in the second level. For computational reasons we propose a heuristic based on 
Benders decomposition. Computational experiments show how the current solution operated by RENFE 
(the main Spanish train operator) can be improved: more robust and efficient solutions are obtained. 

1. Introduction 

The globally growing demand and the inability to build more 
transport infrastructures to increase capacity in most of the world 
have led to a problem of severe congestion of urban and suburban 
areas. Congestion threatens our ability to get people where they 
need to be, with severe economic impacts; it also results in delays 
that also contribute to negative environmental impacts due to 
emissions resulting from inefficient system performance: the 
impacts pose an economic and health threat. Demand for trans
portation is increasing, so this threat is not going away and must 
be addressed. Many cities round the world have constructed 
railway Rapid Transit Networks (RTN) to improve their transport 
system performance. Our proposal is to meet with the growing 
demand through improved design and operation of rail RTN. 
Underground and suburban rail RTN problems are known as 
high-density network problems, in which the distances between 
the stations are relatively short and the frequencies are high. 

Planning processes related to railway systems are fields that are 
rich in combinatorial optimization problems. Well-known exam
ples of these are strategic and tactical problems addressed during 
the planning process. Due to the tremendous size of the planning 
process, it is usually divided into several steps such as network 

design, line planning, timetabling and rolling stock (RS) scheduling 
(i.e., rolling stock assignment and train routing (TR)) [17,18,6]: 

1. Network design: Designing a RTN is a vital strategic subject due 
to the fact that it reduces the future traffic congestion, travel 
time and pollution. The location decisions and the maximum 
coverage of the demand for the new network are the main goal. 

2. Line planning: The following step after designing a RTN is 
planning its lines (origin and destination stations, stops and 
frequencies). The problem of designing a line system aims at 
satisfying the travel demand while maximizing the service 
towards the passengers or minimizing the operating costs of 
the railway system. 

3. Timetabling: The general aim of the railway timetabling pro
blem is to construct a train schedule that matches the frequen
cies determined in the line planning problem. 

4. RS scheduling: RS circulations are determined once the RS 
assignment and TR problems are solved: 
• Given a train fleet and finding the optimal composition 

assignment to each train to satisfy both the timetable and 
the demand in a dense RTN is known as the rapid transit RS 
assignment problem; shunting operations are also taken 
into account in this phase. 

• The train routing (TR) problem is the process of determining 
a sequence for each train unit in the network once the RS 
assignment is known. The goal is to obtain sequences that 
minimize some cost such as the propagated delay in order 
to achieve a robust solution; a different objective might be 



to maximize maintenance opportunities. Train routing plan
ning must allow for each train unit to undergo different 
types of maintenance checks requirements. However, in our 
case light maintenance is done during valley hours, and 
train units that require maintenance are assigned to 
sequences with maintenance opportunities during valley 
hours (i.e., train units are swapped at the beginning of the 
planning period). We assume that the fleet size is large 
enough to remove any train unit requiring heavy mainte
nance from the network (this assumption holds true for our 
case study network). 

Traditionally, this planning process has been solved within a 
hierarchical process, i.e. sequentially. However, this approach may 
lead the system to operate in an inefficient way (i.e., determining 
the RS assignment and shunting operations without accounting 
for train units' sequences and the likely delays might produce sub-
optimal plans). An integrated approach may increase the flexibility 
and the robustness degree of the railway system; therefore, in this 
paper we propose an integrated mathematical model so as to 
improve the circulations of the RS in rapid transit networks. The 
word circulation refers to both the RS assignment and the TR 
problems. 

We present a Robust Circulation of the RS Model (RCRSM), 
which considers the RS assignment and TR problems in an 
integrated way. Here robustness means that (1) difficult shunting 
operations, which may produce negative cascading effects in case 
of malfunction, are selectively penalized so as to be minimized, 
(2) propagated delays are minimized, which indirectly minimizes 
the number of train swapping operations and (3) the need for 
human resources to perform train units' sequences is minimized. 

The rest of this paper is organized as follows. A literature 
overview and our contributions are presented in Section 2. We 
describe the rolling stock circulation problem in Section 3. In 
Section 4, the mathematical formulation is presented in detail. 
Section 5 contains the solution approach based on Benders 
decomposition. Section 6 shows computational results based on 
realistic case studies drawn from RENFE. Conclusions and refer
ences follow in the next sections. 

2. State of the art 

Several researchers have dealt with railway industry planning 
and managing problems. Alfieri et al. [1] propose an integer 
programming model so as to determine the RS circulation for 
multiple RS material types on a single line and on a single day; 
they use the concept of a transition graph to deal with the RS 
circulations; this concept is based on the assumption that for each 
trip, the next trip is known a priori. The objective is to minimize the 
number of train units such that the given passenger demand is 
satisfied. The approach is tested on real-life examples from Neder-
landse Spoorwegen (NS), the main operator of passenger trains in 
the Netherlands. The model described by Alfieri et al. [1] is 
extended by Fioole et al. [16], to include combining and splitting 
trains, as happens at several locations in the Dutch timetable. They 
use an extended set of variables to locally obtain an improved 
description of the convex hull of the integer solutions. Robustness is 
considered by counting the number of composition changes. Maroti 
[23] focuses on planning problems that arise at NS. He identifies 
tactical, operational and short-term rolling stock planning problems 
and develops operations research models for describing them. 
Peeters and Kroon [26] describe a model and a branch-and-price 
algorithm to determine a railway rolling stock circulation on a set of 
train lines. Given the timetable and the passengers' seat demand, 
the model determines an allocation of rolling stock to the daily 

trips. They evaluate the solution on three criteria: the service to the 
passengers, the robustness, and the cost of the circulation. Cadarso 
and Marin [8] propose a mixed integer optimization model to study 
suburban rapid transit robust RS assignment. They minimize total 
costs including service trips, robustness-relevant empty train move
ments and composition change costs. Almeida et al. [2] state 
that robustness can be improved by reducing the propagation of 
delays and increasing the number of feasible resource allocation 
exchanges. Cadarso and Marin [7] present an integer programming 
model to determine a sequence of operations to be rolled by the 
train units such that each operation is included exactly in one 
sequence and there is always the number of necessary train units 
available for every operation execution. Cacchiani et al. [5] describe 
a two-stage optimization model for determining robust rolling 
stock circulations for passenger trains. They also use the concept 
of a transition graph. Here robustness means that the rolling stock 
circulations can better deal with large disruptions of the railway 
system. They evaluate their approach on the real-life rolling stock-
planning problem of NS. 

All the previous research address the railway planning problems 
in a sequential manner. Even the authors who study RS circulations 
employ the concept of transition graph, which assumes that for each 
trip, the next trip is known. However, sequential solving approach 
has many drawbacks [4[. Although practical, the sequential nature of 
rolling stock assignment and routing optimization leads to sub-
optimal plans, with potentially significant economic losses. Improved 
plans can be generated by building and solving integrated models of 
some of the planning problems. The airline industry has been a 
leader in the development of integrated approaches for schedule 
planning and recovering from disruptions. There has been research 
in the integration of problems such as flight schedule and fleet 
assignment [20,9,11], fleet assignment and aircraft routing [25], 
aircraft routing and crew scheduling [24], and scheduling and 
competition [27,13]. All these problems were first developed and 
solved in a sequential fashion. However, the integration of them has 
outperformed sequential approaches. This fact is demonstrated in 
every cited paper. 

Cadarso and Marin [10] and Cadarso et al. [12] demonstrate 
that this fact also applies in the railway industry where the 
integrated timetable planning and RS assignment and integrated 
disruption management are studied, respectively. Marin et al. [22], 
Lopez et al. [21] and Walker et al. [29] also develop integrated 
approaches within the railway industry. Marin et al. [22] and 
Lopez et al. [21] deal with the integration of railway network 
design and line planning problems while Walker et al. [29] deal 
with the simultaneous disruption recovery of a train timetable and 
crew roster. 

Contributions: As we have showed before, the RS assignment 
and TR problems have been traditionally solved in a sequential 
fashion. As this sequential solving approach may lead to inefficient 
(and even infeasible) solutions, we propose a new comprehensive 
approach to determine optimal train circulations, which integrates 
RS assignment and TR decisions. The major contributions of this 
paper include: 

1. Development of an integrated schedule optimization model 
that includes rolling stock assignment and train routing deci
sions. We avoid using the concept of transition graph, thus 
developing a more comprehensive decision support tool. 

2. Introduction of robustness in the integrated model through 
different approaches: 
• Penalization of difficult shunting operations, which mini

mizes negative cascading effects in case of malfunction. 
• Minimization of propagated delays, which means that the 

number of swapping operations are minimized obtaining 
robust and improved RS circulations. 



• Minimization of the need for human resources to perform 
train units' sequences. 

Altogether, we establish a connection between integration of 
planning phases and robustness. 

3. Definition of a heuristic based on the Benders decomposition so 
as to improve sequentially obtained circulations in reasonable 
computational time. 

4. Development of case studies using realistic problem instances 
obtained from the network of the Spanish train operator 
RENFE; we evaluate several scenarios involving different lines 
and conduct several sensitivity analysis on various model 
parameters and a multiobjective optimization analysis. 

3. Rolling stock circulation problem description 

In this section, the RS circulation problem is described in detail. 
First, the railway infrastructure is introduced. Then, timetabled 
services are introduced. Rolling stock and shunting operations are 
also briefly described. Explanation of the necessary steps to build 
RS circulations follows. Finally, the passenger demand treatment 
and the used robustness concepts are described. 

3.1. Railway infrastructure 

The railway network consists of tracks and stations. Depot 
stations form a subset of the stations, these are the locations 
where trains are parked or shunted. We model the infrastructure 
as a graph with nodes s eS representing the stations during a 
determined time period. Depot stations are represented by the 
subset SC c S. 

Tracks are the existing infrastructure between stations. 
Between two stations, two different linking infrastructures (i.e., 
tracks) exist, one for each direction of movement (this assumption 
holds true for our case study network). We represent the combi
nation of the linking infrastructure and time periods by arcs aeA; 
every arc is defined by its departure and arrival station and by its 
departure time. 

The railway infrastructure problem (i.e., station and rail corri
dor location problems) is a strategic problem. Therefore, it is out of 
the scope of this paper. For comprehensive surveys on this topic 
see [19] and [28]. 

3.2. Timetable 

The services are grouped in lines. A line is characterized by its 
terminal stations, by a path through the infrastructure between 
the terminals, and by a set of stations along the path. Train services 
run up and down between the terminals and call at the specified 
stations underway. 

The timetable departure times and frequencies are fixed and 
publicly available. The passengers know when the trains depart 
and plan their traveling accordingly. Departure times are very 
inflexible because the time slots are negotiated with a third party 
(the infrastructure manager) since the network infrastructure is 
shared among different lines. 

We distinguish two types of services: train services represented 
by feL' and empty services represented by feLe. The set of 
services is represented by L = L' u Le. 

A train service is a passenger train traveling from a depot 
station to another depot station stopping at a number of inter
mediate stations. They are characterized by their departure depot 
station, their arrival depot station, and every arc they travel on, 
given by a e A( c A. The distance rolled by a train service € e L' is 

the sum of the lengths of the arcs used by the train service. Train 
service timetabling is out of the scope of this paper. Therefore, all 
the train services in the timetable (which has been previously 
defined) must be performed. 

Rapid transit networks are characterized by high frequencies 
and a lack of capacity in depot stations. These facts make it 
difficult to operate the network without empty services € e If. 
These are defined by an origin, a destination and a departure time. 
Empty services can help satisfy both capacity and rolling stock 
material availability in depot stations. For our case study network 
empty services are not given in the timetable. Therefore, we will 
consider a finite set of empty services and the model will choose 
between this pre-fixed set of options. 

3.3. Rolling stock and shunting 

There are self-propelled train units of type meM; they all have 
a driver seat at both ends. Units of the same type can be attached 
to each other to form trains compositions. A composition ceCof 
train units is a sequence of elements of M. For our case study 
network, train compositions are predefined: compositions of up to 
two train units are allowed. 

Shunting operations complicate rapid transit networks because 
the performance time is on the order of the service frequency time. 
They are only performed in depot stations. Train units of the same 
type can be aggregated to form longer compositions, and composi
tions can be disaggregated into individual train units. Although 
composition changes enable the network operator to use smaller 
fleet sizes, it is always a complicating operation, due to the 
necessity of human resources and the possibility of failure in the 
mechanical system governing the process. 

3.4. Determining rolling stock circulations 

The RS circulations are completely determined with the RS 
assignment and the TR problems. 

Rolling stock assignment: The goal of the RS assignment pro
blem is to determine the type and number of train units to be 
assigned to the services considering a given timetable and a 
demand to satisfy in a context in which shunting is optimized. 

Train routing: The TR problem aims at assigning each individual 
train unit, referred to as an identification number, to RS operations 
(i.e., services, aggregations and disaggregations). Given the RS 
assignment, we must determine a sequence of operations to be 
rolled by an individual train unit such that each operation is 
included in exactly one sequence. 

3.5. Passenger demand 

For passenger demand, we use the expected number of passen
gers using each service, which is given by RENFE. The passenger 
demand for this problem is treated as a passenger flow pfa( 

through each space-time arc a belonging to each train service 
€ e L'. This passenger flow is obtained under normal conditions (i.e., 
assuming that the train services matched the designed timetable). 
Under this hypothesis, the model will treat the passengers from a 
centralized point of view (i.e., only the operator criteria are 
optimized). However, since the proposed problem relates to a 
suburban rapid transit network, it is obvious that every passenger 
will have the option to choose any other available company or 
transportation mode. Thus, the operator has to factor in passenger 
behavior to avoid losing passengers to other transportation com
panies. In a simplified approach, passenger behavior can be sum
marized as follows: if the passenger maintains his/her satisfaction 
with the transportation mode, he/she will remain in the system. 
As long as the system operator maintains certain standards within 



the transportation system, we assume that the passenger flow is 
known. 

Under the assumption that public timetables are met, trans
portation standards might be described by the capacity offered in 
each train service. The composition assigned to each train service 
will be a tradeoff between the operating costs and the behavior of 
passengers (represented by their comfort level). 

We acknowledge that this approach treats the demand heuristi-
cally The approach is unable to trace individual passengers; instead, 
it considers demand on the arcs (i.e., between successive stations). 
Passengers on a longer journey appear in the demand of each arc 
underway. Whenever the demand of an arc exceeds the allocated 
capacity, part of the demand remains unattended: these passengers 
are unattended, and they are supposed to leave the system. However, 
the demand on successive arcs is not linked to each other. Therefore, 
an unattended passenger still shows up in the demand of later arcs. 
This approach is heuristic in that it ignores the dynamic interaction 
between demand and supplied capacity. However, Cadarso et al. [12] 
justify this heuristic approach. 

Elasticity of demand is out of the scope of this paper. However, 
level of service, which might be perceived through attributes such 
as price of travel and total trip time, affects the total volume of 
demand [14]. Nevertheless, we assume that the demand is fixed. 
This assumption is reasonable when the entry of new operators is 
unlikely. However, if new operator entry occurs, the unconstrained 
demand will likely change due to elasticity of demand. Cadarso 
et al. [13] account for elasticity of demand as a result of new 
services. 

3.6. Robustness 

Robustness is introduced penalizing composition changes and 
empty services. When a composition change is performed, multi
ple failures can occur, forcing the train unit to be parked for a long 
time and causing a disruption. The mechanical system used to 
perform a composition change sometimes fails and requires extra 
time to enact the change. Above all, composition change times are 
overestimated to account for the effects mentioned above and to 
introduce robustness into the system. Finally, if a malfunction 
occurs it must be contained to avoid negative disruptive effects. 
Containment is easier if the disruptive event occurs during off-
peak hours. Similarly, empty services during rush hours compli
cate network operation because they use the same infrastructure 
as train services. During rush hours they are also heavily pena
lized. It is also better to avoid (if possible) empty services to 
destination depot stations with time-dependent capacities (i.e., 
stations that are shared with different lines). The system is made 
more robust by assigning only one material type per line (i.e., for 
every train service operating the same line, the material must be 
equal). This constraint increases swapping opportunities between 
different train services at depot stations in the same line. Thus, 
propagation of negative disruptive effects may be mitigated in an 
easier way. This assumption holds true for our case study network. 
However, it could be easily relaxed in our modeling approach. 

Delay penalization is another way to include robustness to the 
model. The propagated delay from one operation (i.e., services, 
aggregations and disaggregations) to another operation (operation 
connection) is defined by pd = max(ad-slack,0), where ad is an 
aleatory variable representing the arrival delay (see [7]), and slack 
is the planned slack between both operations. When pd > 0, the 
train unit performing the first operation will not be on time to 
perform the following operation, that is, the operation connection 
cannot be performed. However, the operation connection will be 
considered feasible but penalized in the objective function. This 
feasibility is justified for RENFE performance, because in real 
operation, they do not permit propagated delays. Although there 

is a lack of capacity and resources in the network, RENFE planners 
always reserve some train units and, in case of delays, they swap to 
avoid delay propagation. Consequently, the obtained statistical 
data might be considered independent of the sequence. Thus, this 
robustness criterion indirectly minimizes the number of necessary 
swapping operations and the human resources required to per
form the material swapping. 

Another issue affecting train units' performance is their ability 
to be ready for departure. Train units are equipped with air 
compressed circuits to activate brakes. When a train unit is 
stopped, these circuits are automatically emptied and some time 
is needed to inflate them again. Therefore, in order to prepare a 
train unit (which has been stopped for a while) for departure, 
human resources are needed. Thus, robustness may be also 
introduced through penalizing crew requirement due to brake 
malfunction between two services in a sequence. With this 
criterion more human resources will be available in case of 
disruptive events and their negative effects will be contained in 
an easier way. 

4. Robust circulation of the rolling stock model 

Railway planning is currently divided into several optimization 
steps from first strategic decisions to daily operations. It is well 
known that disintegrated planning produces optimal solutions for 
each stage but non-optimal global solutions. We propose a new 
integrated model for the RS and TR problems so as to obtain better 
train circulations. A greater robustness degree and more efficient 
schedules may be obtained through an integrated approach, which 
considers two consecutive planning stages: one way of obtaining a 
high-quality solution in the second stage is the introduction of 
some slack in the first stage. Similarly, a robust solution adds slack 
to safeguard against data perturbation. This slack may provide a 
smooth interface between subsequent planning stages. This fact 
becomes a connection between robustness and integration. 

The Robust Circulation of the RS Model (RCRSM) is based on the 
rolling stock assignment and train routing models proposed by 
Cadarso and Marin [7,8]. They considered the railway rolling stock 
and train routing problems for rapid transit networks. Compared 
to these two papers, the novelty of the current paper lies in the 
following aspects: 

• The development of a multiobjective integrated linear integer 
programming model for schedule optimization that combines 
RS assignment and TR problems. 

• The development of an algorithmic framework that allows us to 
find solutions to the integrated model, which are demonstrated 
to be superior to the ones obtained with the sequential 
approach presented in [8,7], 

• We solve this model using realistic problem instances obtained 
from the network of the Spanish railway operator RENFE. We 
also perform sensitivity analysis on model parameters and 
conduct a multiobjective optimization study. 

In order to be able to formulate the RCRSM, we need to define 
the following sets, parameters and variables. 

4.1. Sets 

• I is the set of services indexed by €. Each service is character
ized by an origin, a destination and a departure time. 

• L.' cL is the subset of train services. These services are per
formed to attend the passenger demand. 

• Le c I is the subset of empty services. These services cannot 
attend passenger demand. 



• S is the set of nodes indexed by s and s'. The nodes are defined 
by a station and a time period. s~ denotes the preceding node 
to s (i.e., s~ and s represent the same station during consecu
tive time periods). 

• SC c S is the subset of depot nodes. 
• CS c S is the subset of nodes at which the material is counted. 
• A is the set of arcs indexed by a. They are characterized by a 

departure station and time period and an arrival station. 
• M is the set of train unit material types indexed by m. 
• C is the set of compositions indexed by c. 
• Cm c C is the subset of compositions composed of material 

type m. 
• A? is the set of arcs a served by train service € e L'. 
• / is the set of operations indexed by i and j . There are three 

types of operations: train and empty services (indexed by 1), 
aggregations (indexed by 2) and disaggregations (indexed 
by 3); the last two types of operations refer to composition 
changes. 

• xc
e variables take value 1 so as to indicate whether composition 

c e C is scheduled for service € eL. 
• se<jj;!''c variables take value 1 if operation i ending at node s is 

followed by operation j beginning at node s', both of them with 
composition c. 

The model contains the following additional variables: 

• ys are non-negative integer variables. They denote the train 
inventory of composition c in node s. 

• upat, are non-negative variables. They denote unattended 
passengers in arc a served by train service f eL'. 

• ef'c'(<5ef'c/) e {0,1}. They take value 1 if an aggregation (a disagg
regation) starts at node s, from composition c to composition c'. 

• ccc/' e {0,1}. They take value 1 if a composition change starts at 
node s, from composition c to composition c'. 

• (f)c
is((p

c:s) are non-negative variables. They determine the num
ber of operation i that end (/ that begin) in node s with 
composition c; 0, otherwise. 

4.2. Parameters 

• occ is the operating cost per rolled kilometer for composition c. 
• fcrrv is the number of kilometers in service €. 
• upcae is the unattended passenger cost in arc a served by train 

service f eL'. 
• Ss is the penalty for composition change in node s. 
• y/, £ are the train delay cost per time period and the need for 

human resources cost per time period, respectively. 
• flpdj'j'] is the number of expected delay time periods propa

gated from operation i ending at node s to operation j begin
ning at node s'. 

• cr1^ is the penalty for the need for human resources to enable 
train units to be ready between operation i ending at node s 
and operation j beginning at node s'. 

• pfae is the expected passenger flow in arc a served by train 
service f eL'. 

• qc is the passenger capacity in composition c. 
• caps is the depot station s capacity. 
• a(fi = -1(1), if service € leaves from node s (if service € arrives 

at node s). 
• Xm ' s the flee t s ' z e f° r train unit material of type m. 
• e, d are the time needed for aggregation and disaggregation, 

respectively. 
• tuc is the number of train units in composition c. 
• (3^ = 1(0), if service € is operating at the count time period 

(otherwise). 
• cncc> is the number of compositions c needed to obtain a 

composition c' in case of aggregation (number of compositions 
c' obtained from composition c in case of disaggregation). 

• fis,s = 1, if a composition change which started in node s' is still 
being operated in node s. 

• st,Sf are the initial and final nodes in the planning period. 
• Sjc = 2(1), if i is a disaggregation (i.e., i=3) followed by trains 

with c composition (otherwise). 
• fijC = 2(\), if j is an aggregation operation (i.e., j=2) preceded 

by trains with c composition (otherwise). 
• co is a scalar ranging in [0, 1]. Its different values produce 

different Pareto optimal solutions. 

4.3. Variables 

The most central decision variables are x£ e {0,1} defined for 
€ e L, c e C and se^ ' , c e {0,1} defined for i,j el,s,s' eSC,ceC: 

Note that (pc
is and (pc, are the only variables that link the rolling 

stock assignment to the train routing constraints. Therefore, the 
proposed integrated model can be used for any underlying rolling 
stock scheduling or train routing problems as long as they are 
expressed in terms of (pc

js and <p? . 
The RCRSM mathematical formulation is as follows. 

4.4. Objective function 

minz = <a 2 J,occkmfx
c
f+ 2 2 upca/upa/+ 2 2 »scc^ 

€ e Lc e C f e \}a e Af 5 e SCc.,cf e C 

+ (l-a>) 
ij e Is,s' eSceC1 L J J 

(1) 

We minimize the following items in the objective function: 

1. Operating costs for train and empty services (i.e., € eL); for 
dangerous empty services € e Le the value km( is increased in 
order to introduce robustness. 

2. Unattended passengers costs, that is, every passenger who 
cannot board the train due to capacity shortages is assumed 
to be a cost for the operator. 

3. Shunting costs; the parameter i9s is modulated depending on 
the shunting operation, that is, if a shunting operation is likely 
to fail, the associated cost to it will be increased to introduce 
robustness. 

4. Expected delay; for calculating the pd1-^ values, expressed in 
minutes, we take advantage of the fact that the slack between 
operations is always a constant value. Therefore, this value can 
be captured through the location parameter 0?> a n c ' t n e 

propagated delay is calculated in (2) (see [7]): 

£[pC] = C ' 
An 

\-4, 
Y-(?t. \ 

ffjji 

1-4 — ^ —Oifi 

+ mu 
. eaV2 

V / 

(2) 

where 4(x) ' s the cumulative distribution function of a stan
dard normal distribution, mis is the scale factor, er;s is the 
standard deviation, and y is equal to 0 if 0? < 0 or y is equal to 
0j'j', otherwise. 



5. The need for human resources to enable train units to be ready 
between operations; the penalty cr}fs' depends on the time the 
train unit has been stopped. First, it grows linearly with time, 
and after a while it is constant. Consequently, a piecewise 
penalization function is used for crjj'. 

Even though the presented objective function is a cost function 
(its units are monetary units), we acknowledge that there are two 
main parts of different nature: rolling stock assignment costs, 
which are given by the first three terms, and train routing costs, 
which are given by the last two terms (these ones are transformed 
in monetary units with y/, £). Therefore, the presented problem is a 
multiobjective problem, which is formulated as a single-objective 
optimization problem. The optimal solutions to the single-
objective optimization problem are Pareto optimal solutions to 
the multiobjective optimization problem (i.e., different values of m 
produce different Pareto optimal solutions). 

The robust circulation of the rolling stock model (RCRSM) 
described here is formulated as a multicommodity flow model. 
It minimizes a combination of system-related and service-related 
criteria subject to constraints for the underlying rolling stock 
assignment and train routing problems. The purpose of the 
constraints is summarized as follows: 

• The passenger demand for each train service is linked to the 
capacity of the allocated train units. 

• As for the rolling stock, each service gets at most one composi
tion assigned; train units' flow conservation is ensured; the 
amount of used rolling stock is limited; the storage and shunting 
capacity of the stations is controlled. 

• Coupling constraints establish the relationship between rolling 
stock constraints and train routing constraints. 

• For train routing, each operation gets a predecessor and a 
successor operation (sequence constraints). 

station as s but e(d) time periods before). Obviously, the inventory 
is always non-negative. 

2 2 tucyc
s+ 2 2 tucPrf 

S e CSc e Cm € e Lc e Cm 

+ 2 2 2 Pe^tUceFf + tuc8(%:')<xm VmeM (7) 
S e CSs' e SCc,C' e Cm 

I,tucy
c
s+ 2 ^^is,s(tuee

c
sf' + tucSecf)<caps VseSC 

CeC S' e SCc e C 
(8) 

Fleet capacity constraints (7) ensure that the number of train 
units used at the count time period is limited by the size of the 
fleet. Note that these constraints count the running trains and 
those ones in depot stations. Depot capacity constraints (8) ensure 
that the total capacity of the station is not exceeded: 

-fsf 

' + 8ec
s-

a VseSC, c,deC 

VseSC, ceC 

(9) 

(10) 

Constraints (9) count the number of composition changes in 
every depot station. Note that for all the composition changes that 
are not physically possible (i.e., due to composition incompatibil
ity), the variables ec

s'
c', Sec/' are fixed to zero value. Constraints (10) 

denote that the inventory during the initial and final nodes must 
be equal. Consequently, the obtained schedule is periodic. 

4.7. Coupling constraints 

xc
e = q>\s VfeL, ceC, seSC-.a?^ 

X <p1s Vfel, ceC, seSC:a^s 

= (p2S Vse SC, c,d eC 

= 4>2S+e VseSC, c,deC 

Sec
c •-<P3.s VseSC, c,d eC 

(11) 

(12) 

(13) 

(14) 

(15) 

4.5. Passengers constraints 

The following group of constraints links the allocated seat 
capacity to the number of passengers pfa/. 

Yiacx
c
e>p^ae-upa/ Vfel\ aeAe (3) 

CeC 

Constraints (3) say that for each arc aeA attended by train 
service € e if, the capacity of the train is enough to accommodate 
the passenger demand minus the number of unattended 
passengers. 

8ecf = <#; '+ „ VseSC, c,deC (16) 

4.6. Rolling stock constraints 

J 4 = l VfeL1 

ceC 

J x J , < l Vfelf 

(4) 

(5) 

Constraints (11)-(16) determine the characteristics of each 
operation: the node at which it starts and ends and the composi
tion assigned. This information is stored in the variables (pc

js,(p^s. 
For example, in constraints (11) each time that variable xc

e takes 
value 1, the right hand side of the constraint will also be one. 
Therefore, variables q>\s will take value 1 every time a train or 
empty service departs from s with composition c. Similarly, 
variables (f>\ s will take value 1 every time a train or empty service 
arrives at s with composition c. The same explanation follows for 
constraints (13)-(16). s+e(s+d) represents the same station as s but 
e (d) time periods later. 

4.8. Sequence constraints 

XXse4fC = ai,c4>ls (»£) 
j e Is' e S 

Vie I, seS, ceC (17) 

Constraints (4) state that each train service € e L' must be assigned 
a composition c. Constraints (5) express that empty services f elf 
get at most one composition: 

ycs- + 2 ^ + 2 ec
s'-

c
e+ 2 cnc,,c-Sec

s'L
c
d 

''<-, CeC CeC 
V,s = ] 

= ycs+ 2 4+ X cnc,c, • ec
s-

a + X8ec/' VseSC, ceC (6) 

Inventory conservation constraints (6) ensure the train units' 
flow balance. These constraints consider the increase or decrease 
of the inventory depending on departing and arriving services and 
also on local shunting operations (s~e(s~d) represents the same 

2 2 se% 
ie Is' eS 

-pjc(p
Cjs (XCjs) Vjel, seS, ceC (18) 

Constraints (17)-(18) are sequencing constraints. They ensure that 
every operation is preceded by another one and that every 
operation is followed by other operation. Here, the variables 
cpc

is,(pjS are used. The former introduces i's operation ending 
information in order to find a following compatible operation. 
Similarly, the latter shows beginning information of operation j to 
find a preceding compatible operation. rfs,Xjs are dual variables. 

The RCRSM presented formulation leads us to a huge model 
size. For a real instance in the rapid transit network in Madrid, we 
have with this new integrated formulation more than one hundred 



million binary variables. In order to deal with such a huge model 
we employ Benders decomposition. 

5. Solution approach: Benders decomposition 

Benders decomposition may be obtained by classifying vari
ables into difficult and easy variables. Here, the difficult ones are 
the RS and coupling variables: [x£,yf, upa/, e

cf ,Secf, cccf'', 
cpc

js, (pjS]
T. Once difficult variables are known, it is relatively easy 

to determine the optimal sequence associated to them; easy 
variables are sequence variables (seq1^'0). Hence, we have that 
the Benders Master Model (MM) will be composed of the passen
gers constraints (3), RS constraints (4)-(10), coupling constraints 
(11)-(16) and both a new objective function and Benders optim-
ality cuts to be defined; and the Benders SubModel (SM) will be 
the train routing (TR) model. 

We define in the following subsections the Benders SM and 
MM. 

9: end if 
10: end for 
11: end for 
12: end for 
13: return a;,/?f 

minz = (1 -co) 
i' e /'/ e f 

Subject to : 

2 se$ = a$ (K{) Vi'e/' 

2 serf;=$ (Af) Vj'e/' 
i' e CO>' 

(22) 

(23) 

(24) 

5.2. Benders submodel 

The Benders SM at each iteration it (SMU) will be the train 
routing model: 

(19) 

see}!, e TZ+ Vi',/ e /' (25) 

minz = (1 -co) 
ij e IS,S' e See C 

j e Is' e S v 

1 e Is' eS 
hc€ iAl 

Vie/, seS, ceC 

yj el, s eS, c e C 

(20) 

(21) 

where (pc
tf and cp9' come from the MM solution at iteration it 

(MM11). Consequently, the right hand side of the train routing 
constraints becomes a datum. 

Therefore, the SMlt can be reformulated as in [7], where the 
authors develop an integer model to determine train sequences 
once the RS assignment is known. In this case, for each iteration 
we will know the RS assignment from the MM, so we can 
reformulate the SM into the mentioned formulation. 

In the reformulated Benders SM defined by (22)-(25) indexes 
i',f are appearing. They do not have the same meaning as before. 
In the previous formulation i,j only referred to the type of 
operation (i.e., services, aggregations or disaggregations). How
ever, i',f are now numbering operations. For example, a service 
may be numbered as operation number 56: departure and arrival 
stations and times as well as assigned composition are associated 
to this operation number. Consequently, we know whether two 
different operations are compatible or not by means of the their 
numbers. This compatibility is given by the new set CO1!,, which 
elements represent whether operations i',/ are compatible or not. 

Therefore, when the index i' appears in the reformulated SM, 
we are actually referring to i,s,c. The same applies for/. Algorithm 
1 performs a mapping between the different formulations. Here, 
tf s is the time duration of operation i which started in node s. 

Algorithm 1. Mapping from filcq>c
js,atccpc

is to fit,a/. 

1: 
2: 
3: 
4: 
5: 

6: 

7: 

8: 

i' = l 

for i = l to |/| do 
for c = l to \C\ do 

f o r s = l to \S\ do 
if q>c

is = 1 then 

Pi^PiM, 
a{^aic(p

c
is 

zVf + 1 ' 

We have relaxed the integrality property of the binary variable 
serf.' considering that the relaxed SM with integer data has an 
integer solution (see Proposition 5.1). The TR model formulation 
used in this work is developed in order to provide feasible 
sequences whatever the RS assignment is. This is achieved by 
ensuring minimum idle times between operations. Hence, the 
routing SM will always be feasible and no feasibility cuts are 
needed for the MM. 

The Dual model of the Reformulated SM at each iteration it 
(DRSMtt) is as follows: 

ZDRSM<' = 2 afKi' + 2 P) h 
iel j el 

K{ + A/ < (1 -co)[¥E[p^} + Ccrj,'] (seqf) Vi', j " e CO* 

Kf e K Vi' e / 

X, e K Vj" e /. 

(26) 

(27) 

(28) 

(29) 

Proposition 5.1. Under the assumption of integrality of vector b, the 
linear programming relaxation min{z(x): A • x = b,xe 1Z+] of the 
train routing problem min{z(x): A -x = b,xe Z+} will have an 
optimal solution that is integer. 

Proof. Suppose we have an optimal basis B from the reformulated 
SM. From linear programming we know that B is a non-singular 
submatrix of A, where A is the coefficient matrix. B will hold the 
following attributes: 

• it will be always composed of elements belonging to the 
following set: {0,1} (see constraints (23) and (24)), thus the 
first condition for B being totally unimodular [30] is matched; 

• and, due to the problem characteristics (i.e., every operation j 
must be preceded (followed) by a unique one, except for 
aggregations (disaggregations) where at most two different 
operations must precede (follow)), B will be always totally 
unimodular: every column in B will have at most two non-zero 
elements, and its rows can be partitioned into two sets such 



that two nonzero entries in a column are in different sets 
of rows. 

Hence, the optimal basis B will always be totally unimodular 
and det(B) = + 1 (B is an optimal basis: det(B) # 0), so the linear 
relaxation solves the integer problem [30]. c 

In order to build the Benders MM optimality cuts, once we 
know the dual variables K(,fy we must obtain the variables in the 
Benders MM: K$S,^S. Algorithm 2 performs a mapping between 
the variables. Here, OP; determines the type of operation (i.e., 
services, aggregations and disaggregations) off; AS/ determines 
the arrival node s of operation f; DS( determines the departure 
node s of operation f; and Q< denotes the assigned composition c 
to operation f. 

Algorithm 2. Mapping from K;,/l;< to K$s,Xis. 

1: fo r i '= 1 to |/'| do 
2: for i = l to |/| do 
3: for c = l to \C\ do 
4: for s = l to \S\ do 
5: if i e OP( and c e Q and s e AS( 

6: Ki^K{ 

7: end if 
8: if i e OPj> and c e Q and s e DSr 

9: AitS^Ai 
10: end if 
11: end for 
12: end for 
13: end for 
14: end for 
15: return Kc

is,X
c
iiS 

+ DRSM"' 

then 

then 

5.2. Benders Master Model 

The Benders MMU will be as follows: 

f e k e C ^gj/f leA,? SeSCc,C'eC 

subject to constraints (3)-(16) and 

(30) 

» > 2 2 2 «i,c<#X,f + 2 2 2 / ^ ^ M * vit e A0BCit, (31) 

where (31) are Active Optimality Benders Cuts at iteration it 
(AOBCn). 

Algorithm 3 shows the overall Benders decomposition proce
dure. UB,{ and LBlt are the upper and lower bounds of the solution 
process, respectively, e is the allowable error, z* tt is the objective 
function value of the master model at iteration it. z* t is the 

DRSM" 

objective function value of the dual reformulated submodel at 
iteration it. v*,x*f,seq*}' are the optimal values for the model 
variables o,x^,seq''. 

Algorithm 3. Benders decomposition. 

-oo; it=\, e 1: Set AOBCit <- 0; UB" <- oo; LB" < 
2: Solve MMU 

qit—I 7 * 

MM" 

4: Call Algorithm 1 
5: Solve DRSMtt 

6: Call Algorithm 2 

3:LBit = max{LBit-',z* } 

7: UBk = mm{UBit-\ 
8: GAP = ^jg^ 
9: if GAP<e then 
10: return xf,seqf 
11: Stop 
12: end if 
13: AOBCit ^yes 
14: it^it+\ 
15: Go to 2 

6. Computational experiments 

Our experiments are based on realistic cases drawn from 
RENFE's regional network in Madrid (Fig. 1), also known as 
"Cercanias Madrid". Nowadays, RENFE makes its planning in a 
sequential manner: the circulations are obtained by solving two 
problems in an isolated way. The two problems are the rolling 
stock assignment and train routing problems. Once they are solved 
they obtain train circulations. Furthermore, RENFE does not use 
operations research techniques to obtain the circulations. Conse
quently, their schedule may be improved by using them. See [7] 
and [8] for further details in the application of operations research 
techniques to RENFE planning: the authors propose a sequential 
planning. However, sequential planning may lead to a suboptimal 
schedule. We show here how integrated planning may overcome 
the sequential approach by producing better, smoother and more 
robust plans. 

The "Cercanias Madrid" rapid transit network is characterized 
by its modular structure. That is, in real life it is separated into 
different and independent modules for operating purposes. Every 
module has its own infrastructure. Here, we study two different 
modules: the first one composed of line C5, and the second one 
composed of lines C3 and C4. 

Line C5 has 23 stations (Fig. 2) and 4 depot stations: Mostoles el 
Soto, Atocha, Fuenlabrada and Humanes. It has more than 320 
train services scheduled each day with frequencies on the order of 
3 min during peak hours. There is one material type available and 
train services can be assigned compositions of one train unit or 
two train units. 

In lines C3 and C4, there are nearly 400 scheduled train services 
each day with frequencies on the order of 10 min. Line C3 is 
composed of 12 stations (Fig. 3) and 3 depot stations: Chamartin, 
Atocha and Aranjuez. In line C4, there are 18 stations (Fig. 4) and 
8 depot stations: Parla, Parla Industrial, Getafe Centra, Atocha, 
Chamartin, Tres Cantos, Alcobendas and Colmenar Viejo. Some 
depot stations are shared between both lines. There is one 
material type available and the train services can be assigned 
compositions of one train unit or two train units. The same 
material is used for both lines, so the RS can be interchanged 
between them. 

Our runs are performed on a Personal Computer with an Intel 
Core2 Quad Q9950 CPU at 2.83 GHz and 8 GB of RAM, running 
under Windows 7 64Bit, and our programs are implemented in 
GAMS 23.2.1/Cplex 12.1. 

The rest of this section is divided into different subsections: in 
Section 6.1 we aim at applying the Benders decomposition pre
sented in Section 5; however, this approach fails to provide 
optimal and even feasible solutions for the operator, thus we 
propose a heuristic in Section 6.2 so as to polish sequentially 
obtained solutions. For the study cases in Sections 6.1 and 6.2 we 
assume that to=0.5. We relax this assumption in Section 6.3, 
where we perform sensitivity analysis on various model para
meters and conduct a multiobjective optimization study. 



Fig. 1. RENFE's rapid transit network around Madrid. 
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Fig. 3. Line C3. 

6.1. Benders decomposition 

This subsection shows the results obtained when applying 
Benders decomposition (see Section 5) to two different case 
studies drawn from the rapid transit network "Cercanias Madrid" 
operated by RENFE: first line C5 and second lines C3 and C4. 

Line C 5: Fig. 5(a) shows the evolution of the Benders upper and 
lower bounds for the line C5 case study. We have set up a 
maximum computational time of 14,400 s. As we can see, Benders 
decomposition fails in finding the optimal solution within the 
maximum time limit: the optimality gap provided by this approach 
is around 83%. 



Fig. 4. Line C4. 

Fig. 5. Evolution of the Benders upper and lower bounds, (a) Line C5 case study, (b) Lines C3 and C4 case study 

Lines C 3 and C 4: Similarly, Fig. 5(b) shows the evolution of the 
Benders upper and lower bounds for the lines C3 and C4 case 
study. We have set up the same maximum computational time as 
before. Again, Benders decomposition fails in finding the optimal 
solution within the maximum time limit: the optimality gap 
provided is around 4150%. 

Applying Benders decomposition with AOBCib we have observed 
that the algorithm fails in providing acceptable solutions in a 
reasonable number of iterations or time, namely computational 
effort. During the initial iterations it provides solutions with an 
unaffordable number of composition changes and empty services. 
Therefore, the algorithm runs many iterations without providing 
any improvement with respect to sequentially obtained solutions, 
making the Benders MM bigger and more difficult to solve due to 
the large number of Benders optimality cuts. We develop a heuristic 
in the next subsection so as to solve the problem within reasonable 
computational time and to improve sequentially obtained solutions. 

6.2. Polishing sequentially obtained solutions 

The proposed Benders MM is composed of (30), (3)-(16) and 
optimality cuts (31). In these cuts, two different terms are 
appearing on the right hand side: the first one representing ending 
operations and the second one beginning operations. The issue is 
to design a smart schedule to achieve robust sequences. However, 
the schedule (i.e., the timetable) for a train service € e L.' is already 
fixed. Hence, it makes no sense to try to change it. Nevertheless, 
the schedule for empty services and shunting operations is not 
fixed, we may decide on it. Therefore, we will only include those 

terms referring to empty trains and shunting operations in the 
optimality cuts. 

Consequently, a new set 1^ is defined. It is a set of operations 
composed of empty trains, aggregations and disaggregations. 
So, the new Benders based Heuristic AOBCit (HAOBCit) are showed 
in (32): 

»> 2 2 2 &i,c<P\A"+ 2 2 2 / V M 
Z e / i S e S c e C j e / i S e S c e C 

c,lt ViteHAOBC, 

(32) 

The proposed heuristic is not an exact method: we are not 
obtaining exact solutions to the integrated model but improving 
sequentially obtained results. Therefore, a stopping criterion must 
be selected. For these case studies this criterion will be as follows: 
stop if a specified number of iterations has elapsed in total or since 
the last Best Solution was found. Then, the heuristic will terminate 
if five consecutive iterations do not improve the Best Solution 
found. We define the Best Solution as that one with the lowest 
expected propagated delay. 

Consequently, the Benders based heuristic consists of obtaining 
an initial RS assignment. Then, the train routing is obtained, and 
based on that routing a new RS assignment is obtained. Obviously, 
the RS assignment and shunting schedules change every iteration. 
For the first iteration we provide to the Benders based heuristic 
with the rolling stock assignment problem solution. 

Line C 5: Table 1 shows the evolution of the solution for each of 
the performed iterations for Line C5. In the first column the 
iteration number is shown; the number of train units used in 
the proposed solution (#C) in the second column; the train service 



operating costs (TSOC) in the third column; the empty service 
operating costs (ESOC) in the fourth column; the unattended 
passenger costs (UPC) are shown in the fifth column; the number 
of composition changes (#CC) in the sixth column; the expected 
delay propagation (EDP) in minutes in the seventh column; and 
the solution time (ST) in seconds in the last column. 

At each iteration a different solution is obtained. It may seem 
that some solutions are equal in some costs. However, we must 
account for the fact that the empty trains and shunting schedule is 
being changed. Consequently, operating costs might be equal but 
the sequences are being changed and so does the EDP. Moreover, 
each iteration provides the operator with a feasible planning 
which may be implemented. The operator may decide to choose 
among them according to several criteria such as train units 
maintenance and crew scheduling. Therefore, this approach pro
vides different solutions to the operator. 

We compare the obtained heuristic integrated solution, the 
best solution found by the Benders decomposition (with a com
putational time limit of 14,400 s), the sequentially obtained solu
tion and the current solution in Table 2. In the second column #C 
is shown. TSOC are in the third column, ESOC in the fourth one, 
UPC in the fifth column, #CC in the sixth one, EDP in the seventh 
column, and the expected delay reduction (EDR) in the last one. 
The Benders based heuristic chooses the solution that produces 
the lowest EDP. We can see how the obtained solution in the 
heuristic integrated approach (Benders Heuristic) improves 
the EDP with respect to the rest of solutions: the solution obtained 
by the Benders decomposition (which is impractical due to the 
huge ESOC and #CC), the current solution operated by RENFE 
(Current solution) and the one obtained by the sequential 
approach (RS and TR solution, see [7] and [8]). In addition, the 
number of performed composition changes is reduced with 
respect to the solution obtained by the sequential approach; this 
reduction is always good news because of the possibility of 
malfunction: the lower the number of composition changes, the 
greater of the robustness degree. However, the achievement of this 
robustness is not for free. We acknowledge that TSOC and ESOC 
increase a bit in the heuristic integrated solution as compared to 
the sequential approach. Moreover, UPC is also increased with 

Table 1 
Line C5 Benders heuristic solution at each iteration. 

Iteration 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

#C 

64 
65 
65 
65 
66 
66 
66 
66 
66 
66 
66 
66 

TSOC 

80,099.7 
80,563.44 
80,570.64 
80,570.64 
80,727.6 
80,346 
80,413.68 
80,346 
80,346 
80,360.4 
80,346 
80,742 

ESOC 

1265 
1645.3 
1393.04 
1490.24 
1359.04 
1553.92 
1457.44 
1526.32 
1563.12 
1475.2 
1574.32 
1612.1 

UPC 

3554 
3248 
3248 
3248 
3248 
3639 
3554 
3639 
3639 
3696 
3639 
3326 

#CC 

20 
14 
16 
14 
14 
10 
14 
12 
10 
12 
10 
12 

EDP 

111.8 
72.05 
75.01 
67.16 
68.69 
69.76 
61.03 
71.89 
69.54 
66.07 
63.53 
70.48 

ST 

28.68 
54.07 
46.16 

187.39 
60.92 

258.17 
55.18 

349.83 
147.44 
261.13 
112.96 
58.07 

respect to the current solution. Nevertheless, this might be seen as 
a dummy increase: the network operator considers service to be of 
good quality when standing passengers do not exceed a density of 
3.5 pax/m2. We have therefore attempted to match this objective: 
we have imposed the upper limit to passenger capacity to that one 
corresponding to a density of 4 pax/m2 (so as to have an average 
density which is lower). Thus we get a service quality roughly 
equal to the one the operator is looking for. However, this does not 
mean that the remaining passengers are unattended, but they will 
be able to board the trains in the real life (the real capacity is not 
the one corresponding to a density of 4 pax/m2). In the current 
solution UPC is much lower because all the train services have the 
greatest composition assigned. For more details on this see [8], 
However, a great EDR is obtained. In order to get a deeper insight 
in the expected delay reduction, the distribution of the propagated 
delay is shown in Fig. 6 for the integrated and sequential 
approaches. In the integrated approach the number of operations 
connections (defined by two different and consecutive operations 
performed by the same train unit) (vertical axis) with positive 
expected propagated delay (horizontal axis, expressed in minutes) 
is slightly reduced. Consequently, the number of needed swapping 
operations will be also reduced. Therefore, the integrated planning 
turns out to be more robust and smoother to be operated. 

In the integrated approach the computational time is of 1620 s. 
It is higher than in the sequential approach. However, the obtained 
solution has fewer composition changes than the solution in the 
sequential approach and has fewer operation connections with 
positive expected propagated delay: the solution is more robust. 
Furthermore, the are fewer operation connections with positive 
expected propagated delay. In addition, computational time is still 
reasonable for the planning horizon we are working on. Alto
gether, the integrated approach becomes an interesting way of 
tackling the problem of the circulations for the operator. 

Lines C 3 and C 4: Again, we use the proposed Benders heuristic 
to solve the integrated model. In Table 3 we can see the evolution 
of the solution for each of the performed iterations. The results 
obtained in this case study lead us to similar conclusions as the 
ones presented for the line C5 case study. In the first column the 
iteration number is shown. The #C in the second column, the TSOC 
in the third column, the ESOC in the fourth column, the UPC are 
shown in the fifth column, the #CC in the sixth column, the EDP in 
minutes in the seventh column, and the ST in the last column. 
In each iteration a different solution is obtained. Among all the 
feasible solutions provided by the heuristic we choose the solution 
with the lowest EDP. 

We compare the obtained heuristic integrated solution, the 
best solution found by the Benders decomposition (with a com
putational time limit of 14,400 s), the sequentially obtained solu
tion and the current solution in Table 4. Table 4 may be read 
as Table 2. We can see how the obtained solution by the heuristic 
integrated approach improves the EDP with respect to the rest 
of the solutions and reduces the number of performed composi
tion changes with respect to the solution obtained by the sequen
tial approach. Note that the solution found by the Benders 
decomposition is impractical due to the huge number of ESOC 
and #CC. 

Table 2 
Line C5: Benders heuristic integrated solution, Benders decomposition solution, sequential (RS and TR) solution and current solution. 

Solutions #C TSOC ESOC UPC #cc EDP EDR (%) 

Benders heuristic 
Benders decomposition 
RS and TR 
Current 

66 
70 
64 
74 

80,413.68 
84,321.96 
80,099.7 
109,765.2 

1457.44 
19,852.22 

1265 
2232.1 

3554 
3222 
3554 

874 

14 
45 
20 

0 

61.03 
122.36 
111.80 
141.37 

56.9 
13.44 
20.91 

-
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Fig. 6. Line C5: number of operations connections for each propagated delay in the integrated approach (left side) and in the sequential approach (right side). 

Table 3 
Lines C3 and C4 Benders based heuristic solution at each iteration. 

Iteration 

1 
2 
3 
4 
5 
6 
7 
8 

#C 

63 
62 
64 
64 
66 
65 
65 
66 

TSOC 

87,837.52 
88,937.23 
89,811.43 
88,653.73 
90,206.71 
90,532.66 
90,128.2 
90,754.33 

ESOC 

4090.83 
3810.84 
4624.2 
3796.80 
4179 
3780.6 
4061.61 
3608.19 

UPC 

2177 
2177 
3403 
2723 
2177 
2077 
2177 
2177 

#CC 

34 
38 
32 
32 
36 
40 
38 
38 

EDP 

163.98 
179.2 
152.25 
147.95 
164.46 
183 
182.37 
182.37 

ST 

132.05 
213.55 
350.08 
581.20 
550.32 
684.89 
487.13 
605.78 

Again, in order to get a deeper insight in the EDR, the 
distribution of the propagated delay is shown in Fig. 7 for the 
integrated and sequential approaches. In the integrated approach 
the number of operations connections (vertical axis) with positive 
expected propagated delay (horizontal axis, expressed in minutes) 
is reduced. Consequently, the number of needed swapping opera
tions will be also reduced. 

The computational time is increased compared to the line C5. 
Now, the time needed to solve the model is of 3605 s. This is due 
to the fact that in this case two different lines are being solved, 
there are more depot stations and possibilities for shunting 
operations are greater. Thus, Benders heuristic's cuts are larger 
and the problem becomes more difficult to be solved. Never
theless, as the purpose of this work is to propose the schedule well 
in advance to the day of operations execution, the computational 
time required is still reasonable. 

6.3. Sensitivity analysis and multiobjective optimization 

This subsection is devoted to the objective function: first, we 
conduct several sensitivity analysis on various objective function 
parameters (we assume that to=0.5); second, we perform a 
multiobjective optimization study (i.e., we vary the co values). 

Sensitivity analysis: We acknowledge that the presented objective 
function combines actual operating costs with other terms that are 
related to penalties in order to introduce robustness to the system 
(fern,?, upcae, Ss) and costs per delay and need for human resources 
(y/,Q, which are difficult to be estimated. Therefore, it is very 
important to investigate the sensitivity of our results to changes in 
these parameter values. The results of the sensitivity analysis to these 
model parameter values for each of the studied lines are presented in 
Tables 5 and 6. The parameters are varied within -20% to +20% of 
their nominal values. The first column of the tables shows the 
parameter to be varied (the percentage variation is shown in the 
first row). Each element in the tables presents the percentage 

variation in the objective function with respect to the objective 
function value for the nominal parameter value (i.e., percentage 
variation of 0). As shown in the tables, the objective function values 
vary between -14.32% and 12.38% and are reasonably stable to 
significant variations in model parameters. 

Multiobjective optimization: The objective function in (1) accounts 
for two different main costs: RS assignment costs and TR costs. 
Consequently, giving different weights to each of the costs by means 
of co yields different solutions. The operator might be interested in 
knowing these different solutions because we are making decisions 
in the presence of trade-offs between two conflicting objectives: 
minimizing rolling stock assignment costs means that we incur into 
greater train routing costs and vice versa (see Fig. 8). Fig. 8 shows the 
pareto-optimal fronts for the line C5 and the lines C3 and C4. Because 
our model is a mixed-integer programming model, each different 
value for co does not necessarily provide a different solution. Due to 
this reason we use discontinuous lines to depict the pareto-optimal 
fronts. Each cross (for the line C5) and dot (for the lines C3 and C4) 
represent a solution for a co value. 

6.4. Summary 

The proposed algorithmic framework allows us to find solu
tions to the circulation problem in an integrated fashion. This 
integration leads us to a huge optimization model, thus we define 
a heuristic to solve it. The solutions we have obtained with the 
integrated approach are better than those ones obtained with the 
sequential approach. We have presented two case studies, which 
are drawn from line C5 and lines C3 and C4 in RENFE's regional 
network in Madrid: 

• Line C 5: Applying a sequential approach we were able to 
reduce the expected delay by a 20.91% compared to the current 
solution operated by RENFE (see [7]). Now, applying the 
integrated approach we polish sequentially obtained solutions 
and we show that a reduction of a 56.9% is possible. 

• Lines C 3 and C 4: Again, applying a sequential approach we 
were able to reduce the expected delay by a 16.19% (see [7]). 
However, applying the integrated approach we polish sequen
tially obtained solutions and we show that a reduction of a 
24.4% is possible. 

Therefore, solutions from the integrated approach clearly out
perform solutions from the sequential approach. Moreover, we 
also state that this great reduction in expected delays does not 
mean an unaffordable increase in operating costs. The better 
feedback we have by solving the two problems in an integrated 
way makes this improvement possible. 



Table 4 
Lines C3 and C4: Benders heuristic integrated solution, Benders decomposition solution, sequential (RS and TR) solution and current solution. 

Solutions #C TSOC ESOC UPC #cc EDP EDR (%) 

Benders heuristic 
Benders decomposition 
RS and TR 
Current 

64 

63 
72 

88,653.73 
95,621.39 
87,837.52 

136,633.86 

3796.80 
21,254.47 

4090.83 
6083.88 

2723 
1896 
2177 
1550 

32 

34 
0 

147.959 
178.36 
163.983 
195.65 

24.4 
8.83 
16.19 
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Fig. 7. Lines C3 and C4: number of operations connections for each propagated delay in the integrated approach (left side) and in the sequential approach (right side). 

Table 5 
Sensitivity analysis for line C5. 

Parameter 

kmt 

UPCa,/ 

»s 

V 

c 

-20% 

1.80 
1.42 

-2.56 
-1.05 

-10.23 

-15% 

3.34 
4.78 

-1.41 
1.33 

-5.25 

-10% 

1.30 
8.80 
0.37 
0.48 

-3.27 

- 5 % 

1.41 
5.25 

-0.14 
-0.64 
-2.17 

0% 

0 
0 
0 
0 
0 

5% 

-0.06 
1.36 
0.73 
2.77 
5.30 

10% 

0.97 
2.61 
1.87 
2.04 
9.51 

15% 

0.14 
0.25 
2.04 

-0.19 
9.61 

20% 

0.78 
0.96 
2.66 
7.33 

12.38 

Table 6 
Sensitivity analysis for lines C3 and C4. 

Parameter 

kmt 

"PV 
»s 

V 

C 

-20% 

1.41 
-3.23 
-1.66 
-2.50 

-14.32 

-15% 

2.04 
-1.81 
-1.19 
-1.01 
-7.21 

-10% 

1.56 
1.01 
0.78 
0.13 

-4.74 

- 5 % 

1.01 
2.59 

-0.44 
0.41 

-2.87 

0% 

0 
0 
0 
0 
0 

5% 

-0.86 
0.69 
0.39 
1.42 
3.03 

10% 

1.87 
1.19 
2.78 
1.97 
5.17 

15% 

2.48 
2.51 
3.12 
2.19 
8.51 

20% 

2.81 
3.61 
3.96 
5.43 

10.81 

7. Conclusions 

We have proposed a new approach to solve the rolling stock 
circulation problem. We address two different problems: the 
rolling stock assignment problem and the train routing problem. 
Up to now, they have been solved in a sequential manner, that is, 
the solution of one of them is known before solving the other one. 
Our approach proposes to integrate both problems. Consequently, 
it overcomes the drawbacks of the sequential approach, namely its 
iterative nature and the likely of obtaining sub-optimal or even 
infeasible solutions. 

The integrated approach is a good frame to improve the 
robustness degree of the system. We get the robustness through 
different points of view: rolling stock operations and operations 
connections. Among rolling stock operations we may cite empty 
trains and composition changes. They are always difficult opera
tions and complicate the network performance. A way of introdu
cing robustness here is penalizing selectively these operations in 

K _ * - Line C5 pareto-optimal front 

* - Lines C3&C4 pareto-optimal front 

9 9.5 10 10.5 

RS assignment costs 

Fig. 8. Pareto-optimal fronts for lines C5 and C3 and C4. 

order to ameliorate their possible negative effects in the network 
operation. The other way of introducing robustness we have 
presented is related to schedule performance and punctuality. 
In order to perform operations connections properly, the schedule 
must be matched. However, the schedule is not always operated as 
planned and deviations from the planned operations may produce 
delays in operations. We account for these possible delays in order 
to produce a resistant schedule to them. 

The proposed integrated model to solve the rolling stock 
circulations has an enormous size to be solved by the current 
commercial software. Therefore, we propose to decompose it 
using Benders decomposition. Using this technique the submodel 
may be reformulated in order to make it easier to be solved. 



However, for computational reasons we propose a Benders based 
heuristic to solve the proposed model. 

Computational experiments show how the current solution 
operated by RENFE can be improved: more robust and smoother 
solutions are obtained. RENFE planners do not use operations 
research techniques for planning purposes. Therefore, the planning 
is greatly improved. Furthermore, the proposed integrated approach 
also outperforms the solution obtained using operations research 
techniques in a sequential manner. We are able to produce plans 
with fewer composition changes which are considered to be danger
ous by planners. Selectively penalizing them we ameliorate their 
probability to produce negative cascading effects in the network. In 
addition, we also account for delays: we reduce the number of 
operations connections with positive propagated delay, thus redu
cing the number of re-scheduling operations (i.e., swapping opera
tions) and making it easier for the operator to recover. 

The solution provided by our integrated approach is the schedule 
to be implemented by the operator. Consequently, the available 
planning horizon is enough to consider the needed computational 
times reasonable for implementation. Nevertheless, development of 
more intelligent heuristics to reduce the model size and computation 
costs may be defined. 
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