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Abstract

Let M be the set of metric spaces that are either graphs with bounded degree or
Riemannian manifolds with bounded geometry. Kanai proved the quasi-isometric
stability of several geometric properties (in particular, of isoperimetric inequalities)
for the spaces in M. Kanai proves directly these results for graphs with bounded
degree; in order to prove the general case, he uses a graph (an ε-net) associated to
a Riemannian manifold with bounded geometry. This paper studies the stability of
isoperimetric inequalities under quasi-isometries between non-exceptional Riemann
surfaces (endowed with their Poincaré metrics). The present work proves the sta-
bility of the linear isoperimetric inequality for planar surfaces (genus zero surfaces)
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without the condition on bounded geometry. It is also shown the stability of any
non-linear isoperimetric inequality.

Keywords: Isoperimetric inequality; linear isoperimetric inequality;
quasi-isometry; infinite graphs; Riemann surfaces.

1 Introduction and main results

An interesting problem in the study of geometric properties of graphs and
surfaces is to consider their stability under appropriate deformations. Let M
be the set of metric spaces that are either graphs with bounded degree or
Riemannian manifolds with bounded geometry. In the 1985, in [7] M. Kanai
proved the quasi-isometric stability (see the definition of quasi-isometry after
Theorem 1.1) of several geometric properties (in particular, of isoperimetric
inequalities) for the spaces in M.

We shall be interested not only in his results but in the ideas behind the
proofs. Concretely, those relating the manifold with a particular graph (an
ε-net of the manifold) in order to study the stability of isoperimetric inequal-
ities by quasi-isometries. Several authors have followed Kanai in studying the
stability of some other property, or in proving the equivalence of a manifold
with a different associated graph (see, e.g., [1], [4]).

A non-exceptional Riemann surface S will mean a two-dimensional mani-
fold with a complete conformal metric of constant negative curvature −1. In
this case, the universal covering space of S is the unit disk D endowed with
its Poincaré metric. The only exceptional Riemann surfaces are the sphere,
the plane, the punctured plane and the tori.

A Riemann surface S satisfies the α-isoperimetric inequality (1/2 ≤ α ≤ 1)
if there exists a constant cα(S) such that

AS(Ω)
α ≤ cα(S)LS(∂Ω) (1)

for every relatively compact domain Ω ⊂ S. Throughout, AS, LS and dS refer
to Poincaré area, length and distance of S and LII refers to the 1-isoperimetric
inequality also known as the linear isoperimetric inequality.



The isoperimetric inequality on a graph G with bounded degree can be
defined as follows. For a subset T of V (G), define its boundary as ∂T :=
{q ∈ V (G) \ T : dG(q, T ) = 1}. It is said that G satisfies the α-isoperimetric

inequality if there exists a constant cα(G) so that

(

#T
)α

≤ cα(G)#∂T

for any non-empty finite subset T of V (G), where # denotes the cardinal.

There are close connections between LII and some conformal invariants of
Riemann surfaces, namely the bottom of the spectrum of the Laplace-Beltrami
operator, the exponent of convergence, and the Hausdorff dimensions of the
sets of both bounded geodesics and escaping geodesics in the surface (see [5],
[6], [8, p.333]).

The injectivity radius ι(p) of p ∈ S is defined as the supremum of those
r > 0 such that BS(p, r) is simply connected or, equivalently, as half the
infimum of the lengths of the (homotopically non-trivial) loops based at p.
The injectivity radius ι(S) of S is the infimum over p ∈ S of ι(p).

In this work we consider the stability of isoperimetric inequalities under
quasi-isometries between non-exceptional Riemann surfaces. This stability
was proved by Kanai in [7] in the very general setting of graphs and Rieman-
nian manifolds in M (bounded geometry in a Riemannian manifold M means
a lower bound for the Ricci curvature and ι(M) > 0). We have an example
showing that the stability fails, even for Riemann surfaces, without the hy-
pothesis ι(S) > 0. Since this example involves non-zero genus surfaces, it is
natural to wonder if the stability holds for planar surfaces.

The main result in this paper is the following.

Theorem 1.1 Let S and S ′ be quasi-isometric non-exceptional genus zero

Riemann surfaces. Then S ′ satisfies the linear isoperimetric inequality if and

only if S satisfies the linear isoperimetric inequality. Furthermore, if f : S −→
S ′ is a c-full (a, b)-quasi-isometry, and c1(S

′) < ∞ then c1(S) ≤ C, where C
is a universal constant which just depends on a, b, c and c1(S

′).

A function between two metric spaces f : X −→ Y is said to be an (a, b)-
quasi-isometric embedding with constants a ≥ 1, b ≥ 0, if

1

a
dX(x1, x2)− b ≤ dY (f(x1), f(x2)) ≤ a dX(x1, x2) + b ,

for every x1, x2 ∈ X. Such a quasi-isometric embedding f is a quasi-isometry

if, furthermore, there exists a constant c ≥ 0 such that f is c-full, i.e., if for
every y ∈ Y there exists x ∈ X with dY (y, f(x)) ≤ c.



Two metric spaces X and Y are quasi-isometric if there exists a quasi-
isometry between them. It is easy to check that to be quasi-isometric is an
equivalence relation on the set of metric spaces.

For surfaces of positive finite genus, the following result shows that the
first conclusion of Theorem 1.1 holds:

Theorem 1.2 Let S and S ′ be quasi-isometric non-exceptional Riemann sur-

faces with finite genus. Then S ′ satisfies the LII if and only if S satisfies the

LII.

However, we have an example showing that the second conclusion of The-
orem 1.1 fails in this case of positive finite genus.

The idea behind the proof of Theorem 1.1 is simple: each surface is split
into a thin part (with small injectivity radius) and a thick part; a slight mod-
ification of the proof of Kanai’s theorem applied to the thick part, together
with some new arguments to show that the thin part is “essentially” preserved
under the quasi-isometry give the theorem. A difficulty is the following: two
quasi-isometric surfaces have a similar shape at a large scale (if viewed from
sufficiently far), but they can look very different at a small scale (by defini-
tion a quasi-isometry may not be continuous). In particular, the image of a
continuous loop by a quasi-isometry need not be a continuous curve, and thus
the injectivity radii can be very different in two quasi-isometric surfaces. The-
orem 1.3 deals with this situation and states that a quasi-isometry between
planar surfaces maps points with small injectivity radius to points with small
injectivity radius (in a precise quantitative way).

Theorem 1.3 Let S and S ′ be non-exceptional genus zero Riemann surfaces

and let f : S −→ S ′ be a c-full (a, b)-quasi-isometry. For each ε′ > 0 there

exists ε > 0 which just depends on ε′, a, b, c, such that if ι(z) < ε then ι(f(z)) <
ε′.

We show that a very different situation appears when dealing with the
α-isoperimetric inequality, 1/2 ≤ α < 1.

Theorem 1.4 Let S and S ′ be quasi-isometric non-exceptional Riemann sur-

faces with ι(S) > 0, and 1/2 ≤ α < 1. Then S ′ satisfies the α-isoperimetric

inequality if and only if S satisfies the α-isoperimetric inequality and ι(S ′) > 0.

Note that here we have no hypothesis on genus.

Hence, the behavior of the α-isoperimetric inequality in Riemann surfaces
under quasi-isometries is very different in the cases α = 1 and α < 1.



One of the main ingredients in the proofs is the relation between a surface
S and a graph (an ε-net) associated to S.

2 Sketch of the proof of Theorem 1.1

This section is devoted to present the main ideas in the proof of Theorem 1.1,
which follows Kanai’s approach. See [3] for details.

In Kanai’s results it is essential that both ι(S) and ι(S ′) are positive;
these conditions will be avoided due to Theorem 1.3 and the thick-thin de-
composition of Riemann surfaces given by Margulis Lemma (see, e.g., [2,
p.107]). Concretely, for any ε < sinh−1 1 (sinh−1 denotes the inverse func-
tion of sinh) any Riemann surface, S, can be partitioned into a thick part,
Sε := {z ∈ S : ι(z) > ε}, and a thin part, S \Sε, whose connected components
have a simple structure (the fundamental group of each connected component
of S \ Sε is generated by a single element).

In order to prove Theorem 1.1, it will be shown that it suffices to con-
sider the thick parts of S and S ′ for some particular choices of ε and ε′, so
that Kanai’s insight can be brought to Sε and S ′

ε′ if we avoid the (possible)
contribution to the LII given by ∂Sε and ∂S ′

ε′ .

Let us consider H > 0, a metric space X, and a subset Y ⊆ X. The set
VH(Y ) := {x ∈ X : d(x, Y ) ≤ H} is called the H-neighborhood of Y in X.

We will need the following technical results.

Lemma 2.1 Let S and S ′ be non-exceptional genus zero Riemann surfaces,

and f : S −→ S ′ be a c-full (a, b)-quasi-isometry. Then, given 0 < ε, ε1 <
sinh−1 1, there exist 0 < ε′, ε̃ < ε1, which just depend on ε, ε1, a, b, c, so that

f(Sε) ⊂ S ′

ε′ ⊂ Vc(f(Sε̃)).

As a first goal it is going to be proved the LII intrinsic to a bordered
surface, Sε contained in S; note that Sε is not necessarily connected. To this
end, we define below the “thick” boundary of a subset of S as its intrinsic
boundary in Sε, and the “intrinsic” LII that will refered to as LIIε.

Definition 2.2 Given a non-exceptional Riemann surface S, ε > 0 and a
domain Ω in Sε, define

∂εΩ := ∂Ω ∩ Sε = ∂Ω \ ∂Sε.

Definition 2.3 Sε is said to satisfy the ε-linear isoperimetric inequality, LIIε,
if there exists a positive constant c, such that if Ω is a relatively compact



domain in Sε with smooth boundary, then

AS(Ω) ≤ c LS(∂εΩ). (2)

A reduction is that it suffices to prove LIIε for intrinsic geodesic domains
in Sε. A domain Ω ⊂ S is said to be a geodesic domain if ∂Ω is a finite number
of simple closed geodesics, and AS(Ω) is finite. An intrinsic geodesic domain

is a geodesic domain intrinsic to Sε, i.e., the intersection of a geodesic domain
in S with Sε.

Let us denote by c1(Sε) the sharp ε-linear isoperimetric constant of Sε and
by c1,g(Sε) the sharp ε-linear isoperimetric constant of Sε for intrinsic geodesic
domains.

Lemma 2.4 Let S be a non-exceptional Riemann surface and ε ≥ 0 so that

ε < sinh−1 1. Then,

Sε has LIIε ⇐⇒ Sε has LIIε for intrinsic geodesic domains in Sε.

In fact, c1,g(Sε) ≤ c1(Sε) ≤ c1,g(Sε) + 2.

Following Kanai’s procedure, the LII will be transferred from bordered
surfaces to nets and viceversa. To this end, a subset G of S is said to be
δ-separated for δ > 0, if dS(p, q) > δ whenever p and q are distinct points of
G. It is called maximal if it is maximal with respect to the order relation of
inclusion.

Consider the distance dG in G induced by the distance dS of S. Concretely,
given p1, p2 ∈ G, dG(p1, p2) = M if and only if M ≥ 0 is the only natural
number such that

δM ≤ dS(p1, p2) < δ(M + 1). (3)

The set of neighbors of p in G is defined as N(p) = {q ∈ G : dG(p, q) = 1}
and this gives a graph structure to the set G. Such graph will be referred to
as δ-net.

Let S be a Riemann surface and 0 < ε < sinh−1 1. We have that ι (Vε(Sε)) ≥
c(ε), where c(ε) := sinh−1

(

e−ε sinh ε
)

. The pair (G, δ) will denote a δ-net as-
sociated to the pair (S, ε) as follows: Set δ ≤ 1

2
ι(Vε(Sε)), and choose a maximal

δ-net G on Sε so that

AS(Sε ∩BS(p, δ)) >
1

2
AS(BS(p, δ)), (4)

for all p ∈ G; such choice of G is possible due to Collar Lemma. Note also
that G does not need to be connected.



The strategy of the proof of Theorem 1.1 is as follows: Consider S and
S ′ Riemann surfaces and f : S −→ S ′ a quasi-isometry, (G, δ) and (G′, δ′)
nets in (S, ε) and (S ′, ε′). It will be assumed that S ′ satisfies the LII that
will be transferred to the net (G′, δ′). Then it will be shown that (G, δ) and
(G′, δ′) are quasi-isometric and so (G, δ) also satisfies the LII. Finally, this
LII will be transferred to S. The next two results deal with transferring the
LII between surfaces and nets. A direct application of [7, Lemma 4.5] is the
following result:

Lemma 2.5 There exists a universal constant ε0 with the following property:

Let S ′ be any non-exceptional Riemann surface satisfying LII and 0 < ε′ <
min

{

ε0, (12c1(S
′))−1

}

. Let (G′, δ′) be a δ′-net associated to (S ′, ε′). Then,

(G′, δ′) also satisfies the LII and c1(G
′) ≤

12 sinh δ′

cosh(δ′/2)− 1
c1(S

′).

Lemma 2.6 Let (G, δ) be a δ-net associated to (S, ε). Then

(G, δ) has LII =⇒ Sε has LIIε. (5)

As a last step, it will be constructed a quasi-isometry between the two nets
(G, δ) and (G′, δ′) associated to (S, ε) and (S, ε′) respectively with 0 < ε <
sinh−1 1 and 0 < ε′, ε̃ < ε given by Lemma 2.1.

Proposition 2.7 The nets (G, δ) and (G′, δ′) are quasi-isometric. More pre-

cisely, there is a C ′-full (A,B)-quasi-isometry g : G −→ G′, with A =

amax

{

δ′

δ
,
δ

δ′

}

, B = 5+
aδ

δ′
+

b

δ′
and C ′ = 2+

a(2δ + C(ε, ε̃)) + 2b+ c

δ′
where

C(ε, ε̃) is the maximum diameter of the connected components of Sε̃\Sε where

ε̃ is given by Lemma 2.1.

Moreover, for any X ⊂ G, #X ≤ µ#g(X) where µ ≤ 13
a(2δ′+b)

δ .

In [7, Lemma 4.2] Kanai proves that the LII on graphs is preserved by
quasi-isometries; thus an immediate consequence is:

Corollary 2.8 For (G, δ) and (G′, δ′) as above,

(G, δ) satisfies the LII ⇐⇒ (G′, δ′) satisfies the LII.

Moreover, c1(G) ≤ µ12A(B+2C−1)+C−2c1(G
′), with µ as in Proposition 2.7.

Finally, the combination of all previous results will give the proof of The-
orem 1.1.



Proof of Theorem 1.1. Assume that S ′ has LII. If ε0 is the constant
in Lemma 2.5, let us fix 0 < ε < ε0 and let 0 < ε′, ε̃ < min

{

ε0, (12c1(S
′))−1

}

given by Lemma 2.1. Let (G′, δ′) be a net associated to (S ′, ε′). Since S ′ has
LII, by Lemma 2.5, G′ has LII. If (G, δ) is a net associated to (S, ε), then
Proposition 2.7 gives that (G, δ) and (G′, δ′) are quasi-isometric, and Corollary
2.8 concludes that (G, δ) has LII. Lemma 2.6 states that Sε has LIIε and,
since 0 < ε < ε0, S has LII.

Moreover, the isoperimetric constant obtained c1(S) < ∞ depends just
on ε, a, b, c, c1(S

′). In order to avoid the dependence on ε, it suffices to take
ε = ε0/2, since ε0 is a universal constant. ✷
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functions on trees, Poten. Anal. 15 (2001), 199-244.

[5] Fernández, J. L., and M. V. Melián, Escaping geodesics of Riemannian surfaces,
Acta Math. 187 (2001), 213-236.
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