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Abstract—This letter presents a deep insight on a real imple­
mentation of a train-to-wayside radio on subway tunnels that 
makes use of a 2 X 2 multiple-input-multiple-output orthogonal 
frequency-division multiplexing (MIMO-OFDM) setup. The main 
purpose of this letter is to study in detail the keyhole phenomenon 
of an MIMO-OFDM train-to-wayside communication system on a 
tunnel. MIMO keyholes are studied in different tunnels sections, 
and capacity results are provided. Moreover, we introduce the 
first keyhole measurements on a railway tunnel. Finally, we follow 
a quantitative approach to estimate keyhole probabilities on each 
tunnel stretch and capacity outage curves. 

Index Terms—Keyholes, multiple-input-multiple-output 
(MIMO), orthogonal frequency-division multiplexing (OFDM), 
propagation, railways, subway tunnels, train-to-wayside commu­
nications. 

I. INTRODUCTION 

I NCREASINGLY, railway systems and in particular sub­
ways need broadband train-to-wayside communications 

systems for two main applications: driverless train-control 
systems and noncritical radio-based services like CCTV, 
customer information, etc. These technologies have strong 
requirements, and one of the most important of them is the 
need of full duplex communication between train and wayside, 
with large bandwidth requirements. Currently used narrowband 
radio systems (such as TETRA or GSM-R) cannot meet these 
requirements [1]. 

3 GPP LTE has been proposed as the new standard for 
railway communications [2] and, as it is widely known, one of 
the key technologies of LTE is multiple-input-multiple-output 
(MIMO) [3]. Whether used with LTE or with other systems, 
MIMO is likely to be a suitable technology to provide large 
bandwidth in such a hostile environment as railway tunnels [4]. 
However, the propagation of radio waves in tunnels may cause 
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undesirable effects related to MIMO, in particular keyholes. A 
keyhole happens when we have low spatial correlation and a 
low rank in the channel matrix [5], so it is a phenomenon that 
seriously decreases the performance of the whole system and 
needs to be carefully studied. In this letter, the performance of a 
multiple-input-multiple-output orthogonal frequency-division 
multiplexing (MIMO-OFDM) train-to-wayside communication 
system on subway tunnels is analyzed, with a particular focus 
on the presence of keyholes (following a quantitative approach 
to estimate keyhole probabilities). 

The influence of the tunnel cross-section in radio propaga­
tion is well known [6], so we present results measured on many 
radically different tunnels built up with different constructive 
methods to study carefully its impact on MIMO performance 
and keyhole influence. 

It is almost impossible to properly reference every con­
tribution related to MIMO in tunnels. However, we need to 
mention the most important research work related to this topic: 
the pioneer paper on this field [7] that provided narrowband 
measurements with both antennas placed in the ground, like 
many others [8], [9]; simulations [10]; and broadband measure­
ments [11], [12] but with no train involved. 

As far as we know, there are no broadband train-to-wayside 
measurements that consider keyholes in tunnels. Thus, in this 
literature review, we can only mention the keyhole's theoret­
ical background [5] and, closer to the main contributions of this 
letter, the measurements and an experimental procedure to esti­
mate keyholes reported in [13]. 

This letter is organized as follows. Section II briefly covers 
the general architecture of the MIMO testbed employed in the 
measurement campaign and the channel estimation and keyhole 
estimation procedure. In Section III, we present the obtained 
results, and, finally in Section IV, conclusions are presented. 

II. SETUP AND PARAMETER ESTIMATION 

A. Setup 

To carry out these measurements we opted for a testbed al­
ready developed by some members of this group [14] that makes 
use of an implementation of both a DVB-T2 transmitter and 
a receiver. The reason of this choice was our need of OFDM 
(LTE's technology for the downlink), diversity, and the fact that 
we could work at 594 MHz (close to the lowest LTE bands 
and also valid for railway purposes). This testbed makes use of 
the frame structure of DVB-T2, but unlike DVB-T2 [which is 
multiple-input-single-output (MISO)] [15], it is 2 x 2 MIMO. 
Table I summarizes the main parameters of the MIMO testbed. 
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TABLE I 
MAIN PARAMETERS OF THE MIMO TESTBED 

Parameter Symbol Value 

FFT mode - 2K 

Guard Interval 07 1/8 

Scattered pilot pattern PP1 

Modulation - 64QAM 

Sampling frequency Fs 9.1429 MHz 

Useful symbol time Tu 2048/Fs=224 us 

Guard time Tg Ts/8=28 us 

Symbol time Ts 252 us 

Bandwidth BW 8 MHz 

Data subcarriers Nd 1878 

Carrier spacing A/ 4.26 KHz 

Fig. 1. Rolling stock of the 3000-2 series. The array was mounted on the cabin's 
window over a dielectric surface (in black). 

In order to make the design and installation on the rolling 
stock simple, in this work we formed the arrays with short 
dipoles. All the antennas involved in these measurements are 
well matched at the desired frequency band. Fig. 1 shows the 
antenna array in one of the windows of the train. This location 
was chosen because most of the times it is impossible to place 
on-board antennas on the most suitable location (i.e., the front 
windshield), so we opted for a mid-suited easy-access location. 
Wayside antennas were placed at the end of the platform, the 
axis of the array 30° to the tunnel axis. This orientation was 
chosen to almost meet worst-case conditions. Antenna element 
spacing was A (51 cm) on both arrays. 

B. Channel Estimation 

Here, we followed the same estimation procedure as in our 
previous paper [14], which is described in this section. 

If Xk represents the transmitted data symbol vector (for the 
Arth subcarrier), the received vector Yk can be computed by 

Yk(thfk) = Hk(t,, h)Xk{ti, h) + Nk(t,, fk) (2) 

where Hk is the MIMO channel matrix and Nk is the noise 
vector related to subcarrier k. Channel matrix normalization is 
shown in (3). It takes into account the average power of the 
OFDM symbol Hk (tijk) on every subcarrier of the symbol. 
Thus, for the Zth symbol for every subcarrier k, we have the 
following channel matrix normalization: 

hij(ti, fk) 
",ijk,i — 

\Hk{U, fk) 
(3) 

This normalization decouples attenuation and channel-matrix 
properties, so the capacity (and the keyhole probability) is in­
dependent from the distance between transmitter and receiver 
(but not from other parameters, as, for example, tunnel cross 
section). 

If we suppose equal (or uniform) power allocation for each 
subchannel, capacity can be computed using the classical equa­
tion for MIMO 

C, UP log2 det I IM + 
SNR 

HH H (4) 

where M and N are the number of receiving and transmitting 
antenna elements, respectively, and HH means the transpose 
conjugate of H. We compute Cyp for each time ti and subcar­
rier fk (1878 subcarriers). 

C. Keyhole Estimation 

Tunnels can be considered oversized waveguides (cross-sec­
tion dimension larger that A), so we can assume that several 
modes are excited within the tunnel. Each one of them will 
have its own attenuation figures, so the combination of them 
at a single point could lead to fast fading conditions. These con­
ditions are likely to help MIMO systems to improve its perfor­
mance. This is the theoretical basis (from the modal point of 
view) of MIMO systems in tunnels [16]. 

On a diversity scenario, we know that, speaking in general, 
the higher the correlation of the signals, the lower the capacity 
of the channel. When we have a low spatial correlation between 
antennas and, unexpectedly, H has a low rank (ideally equal to 
1), we may have a keyhole [5]. The example that better illus­
trates this scenario is a wall with a narrow hole on it separating 
the transmitting array and the receiving array. The mathematical 
formulation of this phenomenon can be obtained in the classic 
paper previously referred to [5]. 

To compute keyholes, we need to perform the singular value 
decomposition of Hfc. Hence, if H = UDVH, where U and V 
are unitary matrices and D is a diagonal matrix, whose elements 
are the nonzero eigenvalues of H 

D diag (\/A7, 2 ; ' An, 0, ,0). (5) 

In our 2 x 2 MIMO scenario, we can have two eigenvalues at 
most (Xk = 0 if k > 2). Then, to determine if we are under 
keyhole conditions, for each realization of Hfc, we follow the 
criterion of [13], as in 

max(Ai iA2) 

min(Ai]A2) 

> SNR 
<SNR 

-*• keyhole 1 
no keyhole J (6) 

If we were in an ideal scenario (no noise) it would be enough to 
compute the rank of H, but in the presence of noise, this will be 
misleading [13]. The measured SNR is 20 dB. 

Then, we need to separate the influence on channel capacity 
of the correlation between elements in the array and the key­
holes. This was done by checking that when a realization of H 
was under "keyhole conditions" (6), the correlation was below 
0.75. This value guarantees that the measured correlation be­
tween the elements of the array does not play an important 
role [17]. Potential keyholes with correlations higher than 0.75 
were discarded. 
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Fig. 2. Old tunnel cross sections (Callao-Plaza de Espafla). 
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Fig. 3. New tunnel cross sections (Villaverde Alto-San Cristobal). 
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III. EXPERIMENTAL RESULTS 

A. Measurements 

We carried out a measurement campaign on Line 3 of Metro 
de Madrid. The measurements were performed on two different 
tunnels (Figs. 2 and 3), and for each scenario, 16 measure­
ments were carried out. These two scenarios comprise a wide 
subway-tunnel variety: new and uniform tunnels, made by a 
boring machine, and the old ones, manually excavated with fre­
quent changes on its cross section 

The interstation Callao-Plaza de Espana is a 571-m shallow 
tunnel, and its cross section varies significantly in a short dis­
tance due to columns and other obstacles (see Fig. 2 for details 
of each stretch within this tunnel). On the other hand, the inter­
station of Fig. 3 is 1718 m long and was entirely carried through 
using a boring machine, so the cross section of the tunnel is very 
uniform. 

The speed of the rolling stock is accurately fixed by the 
on-board signaling system, so we can guarantee that every mea­
surement taken was carried out at the same speed (±2 km/h). 
In our setup, as it is described in Section II, we placed both 
the on-board and the platform antenna in a realistic way that 
is somewhat far from the ideal conditions [18] for such a 
train-to-wayside setup. 

B. Results 

As we stated before, in this letter we provide two different 
results: MIMO capacity and keyhole statistics. 

In Fig. 4, a summary of the conditional keyhole probabilities 
is provided. We see the probability of having a keyhole for each 
one of the six stretches that form the Callao-Plaza de Espana in­
terstation (stretches 1-6, seen in Fig. 2) and two more stretches 

Fig. 4. Keyhole probabilities for each type of tunnel cross section. In blue, 
keyhole probability per meter; in red, keyhole probability with no normalization. 
At the right, we show the cross-section for each stretch. Stretches 1-6 belong to 
Fig. 2, and 7 and 8 to Fig. 3. 

from the other tunnel (stretches 7 and 8, seen in Fig. 3). The 
higher the number of the stretch, the farther the transmitter and 
the receiver (1-6 on one side, and 7 and 8 on the other. See 
Figs. 2 and 3). We also provide a conditional keyhole proba­
bility taking into account the length of every stretch (in Fig. 4, 
in blue), and not only for the entire stretch (in Fig. 4, in red). 
We can see that the two-tubes stretch (Number 3, Fig. 2) con­
centrates almost 50% of keyholes, while its length only rep­
resents 32% of the measurement distance, even this stretch is 
not either the nearest or the farthest one. Tunnel stretch 7 is al­
most keyhole-free, and stretch 8 has no keyholes at all. More­
over, if we separately average every stretch of both old tunnel 
(stretches 1-6) and the new one (7 and 8), we find that it is far 
more likely to have a keyhole in the section-shifting old tunnel 
than in the "stable" new one. This is mostly due to the frequent 
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TABLE II 
C90 VALUES FOR OLD AND NEW TUNNEL 

[MIMO AND SINGLE-INPUT-SINGLE-OUTPUT (SISO)] 

Tunnel 2x2 MIMO lxl SISO 

Old tunnel 

New tunnel 

6.978 

6.424 

3.578 

3.239 

changes in the tunnel cross section and by the cross sections 
itself. 

In Fig. 5, the obtained cumulative distribution function 
(CDF) for the capacity (measured in bits/second/Hertz) of the 
old and new tunnel scenarios are depicted. In order to extract 
further conclusions regarding the performance of the different 
MIMO configurations, a suitable parameter is the capacity ex­
ceeded in 90% of the measurements (C90). See Table II for the 
C90 values. 

If we compare the new tunnel and the old one in terms of 
capacity, we see that the capacity is better in the old tunnel. 
This is attributable to changes in tunnel cross section that led 
to a larger diversity (due to multipath because each change in 
the section implies that many modes are excited). 

All these results clearly state that both changes in section 
and shape have a strong influence on keyhole probability. The 
stretch that concentrates more keyholes (per length unit) is 
stretch number 3, closely followed by number 2. Number 3 
has many changes on its cross section due to the presence of 
columns between the two tubes. Stretches 7 and 8 have almost 
no irregularities of a significant size or cross-section changes 
and have almost no keyholes. Stretches 1 and 4 have similar 
shape and size and also have two very similar keyhole patterns. 
Thus, it is clearly stated that both changes in section and section 
itself have a strong influence on keyhole appearance. 

IV. CONCLUSION 

The performance of an MIMO-OFDM system has been eval­
uated with a measurement campaign carried out in the subway 
of Madrid, Spain. Keyhole probabilities have been estimated 
for many tunnel scenarios. Influence of tunnel cross section and 
changes in the cross section itself have a strong influence on the 
appearance of keyholes. 

Somewhat paradoxically, tunnels more likely to have key­
holes are also better in terms of capacity. The reason is that 
capacity is higher enough to overcome the decrement due to 
keyholes. 
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