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First-order equivalent to Einstein-Hilbert Lagrangian

M. Castrillén Lopez,'@ J. Mufioz Masqué,??) and E. Rosado Maria®©)
VICMAT (CSIC-UAM-UC3M-UCM), Departamento de Geometria'y Topologia, Facultad de
Matemdticas, UCM, Avda. Complutense s/n, 28040-Madrid, Spain

2 Instituto de Fisica Aplicada, CSIC, C/ Serrano 144, 28006-Madrid, Spain

3Departamento de Matemdtica Aplicada, Escuela Técnica Superior de Arquitectura, UPM,
Avda. Juan de Herrera 4, 28040-Madrid, Spain

(Received 2 September 2013; accepted 6 July 2014; published online 25 July 2014)

A first-order Lagrangian LV variationally equivalent to the second-order Einstein-
Hilbert Lagrangian is introduced. Such a Lagrangian depends on a symmetric linear
connection, but the dependence is covariant under diffeomorphisms. The variational
problem defined by LV is proved to be regular and its Hamiltonian formulation is
studied, including its covariant Hamiltonian attached to V. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4890555]

. INTRODUCTION

Let p : M — M be the bundle of pseudo-Riemannian metrics of a given signature (n+, n™),
nt 4+ n~ =n = dim M, over a connected C*> manifold oriented by a volume form v € Q"(M). The
Einstein-Hilbert (or E-H for short) functional is the second-order Lagrangian density L gy v on 9
defined along a metric g by s¢v,, where s¢ denotes the scalar curvature of g and v, its Riemannian
volume form; namely,

L o j2g=v/Tdetanlg | "5 = 25 +(rs), (D), = (), (P)) . ()

where (I'¢ )j-k are the Christoffel symbols of the Levi-Civita connection V4 of the metric g. As is
known (e.g., see Secs. 3.3.1 and 3.3.2 of Ref. 1), the first-order Lagrangian L defined along g by
V] det(g,,b)lgfk((l”g)fj(Fg)j;l — (Fg)’jk(l”g)fl) differs from Ly by a divergence term, but unfortu-
nately L, is not an invariantly defined quantity.

Below, we present a completely covariant description of a first-order Lagrangian LY which
is variationally equivalent to E-H Lagrangian L. Consequently, LV defines the same Euler-
Lagrange equations as L gy, namely, Einstein’s field equations in the vacuum for arbitrary signature.
In particular, this explains why the E-H Lagrangian admits a true first-order Hamiltonian formalism.
The difference of our approach with respect to the similar Lagrangian in Ref. 5 is the geometric
construction of it, compared with the coordinate expression developed in that article. The purely
geometric study of this topic allows one to a better understanding of its structure; specially, from the
standpoint of the geometric theory of classical fields.

In addition, although LY depends on an auxiliary symmetric linear connection V, this de-
pendence is natural with respect to the action of diffeomorphisms of M on connections and on
Lagrangian functions, as proved in Sec. IV. This fact justifies the construction of such a Lagrangian
and the interest of its existence.

Furthermore, the Lagrangian LV is seen to be regular and its Hamiltonian formulation is studied,
computing explicitly its momenta functions and the covariant Hamiltonian attached to V in the sense
of Ref. 11.
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Il. THE EQUIVALENT LAGRANGIAN LY DEFINED

The difference tensor field between the Levi-Civita connection V¢ of a metric g and a given
symmetric linear connection V on M is the 2-covariant 1-contravariant tensor given by

. . 0
Vo _ _ h h i
T8V = V8 _V = ((rg)ij — r,.j) dx' @ dx/ @ .,
where (I"8 )3'1« (resp. Fj. ) are the Christoffel symbols of the connection V¢ (resp. V). A Lagrangian
function LV on the bundle of metrics p : M — M is defined as follows:

LY (j2g) v = [s*@) + ¢ ((altos (VET#Y) )} (ve), . ViZg € s2om, @)

where we confine ourselves to consider coordinate systems ', ...,x)onM adapted to v, i.e.,

v=dx'A...Andx", Ve = ¢/ ldet (guv)lV, g = gundx" ®dx",

alty; : T M QTM — 3T*M ® T M denotes the alternation of the second and third covariant
indices, * : @T*M ® TM — ®*T*M ®* T M is the isomorphism induced by g,

W QW @ws®X > w @wy ® (w3)* ® X, VX € LM, Ywy, wy, w3 € Ty M,

and, finally, c : ®*T*M ®* TM — R denotes the (total) contraction of the first and second covariant
indices with the first and second contravariant ones, respectively. We write LV in order to emphasize
the fact that the Lagrangian depends on the auxiliary symmetric linear connection V previously
chosen.

If yij =yji,i,j=1,...,n, are the coordinates on the fibres of p induced from a coordi-
nate system (x")7_, on M, namely, g, = y;j(g.)dx' ® dx/ for every metric g, over x € M, and
", y; s Yij.ks Yijkl = Yij.ik) denotes the coordinate system induced on J 290, then Ly is locally
given by

Ley = p (yacybd _ yabycd) Yab.ed + Lo, 3)

where (y'/) = (y;;)"" is the inverse matrix of the symmetric matrix (y;;),

Lo = py" {y"’" (ymr, G~ ymr,hG;j) +GlGY, — G;’;Gﬁ%m} ,
4)

p =/ ldet (y;)

’

and Gi; : J'9 — R are defined by G, = 33 (Vrs.j + Yjsr — Yrjs)-
If L'V is the second-order Lagrangian on 901 determined by the second summand of the right-
hand side in the formula (2), namely

. i
LY (2g) = ¢ ((altos (V¥TY) )7),
then (2) can equivalently be rewritten as follows: LY = Lgy + pL’V and as a calculation shows,

v oo e Jaaeny, aeT),
L OJg—g”{ T — (5)

+ (1) (%), = (095, (T*7),,

o+ (09);, (T5Y),, = (o), (159),}

Lemma 2.1. The Lagrangian LY is of first order.



082501-3 Castrillon Lépez, Mufioz Masqué, and Rosado Maria J. Math. Phys. 55, 082501 (2014)

Proof. Taking the definition of T4V and the formulas (5)(1) into account, one obtains

VIdet (gu)I(LY o j’g) = —Lgy o j’g (©6)
et (gl { (1), (1), = ()5, (),

i

fari, oty l
|det (g.v)lg”" {@ - Bx’j (Fg) T

(1"8) r Fl + (Fg) Fl (Fg)at Fl } '
Hence (oL + Lry) o j?g depends on the values of the metric g and its first derivatives only. O

In fact, the following local expression is readily deduced:

LV — pyjr Ga Tl _ Ga Tl + Ga Fl _ Ga Fl _ aFIl’l aFi/
jitra ai'trj jrt oai irt aj 9x/ oxi ’

Ti, : J'9 — R being the functions defined by 7} = G}, — I'},.

Remark 2.1. As LY has a geometrical definition, the local expression above actually provides a
global Lagrangian. Moreover, if V is a flat linear connection and one considers an adapted coordinate
system to V (i.e., a coordinate system on which all the Christoffel symbols of V vanish), then the
local expression for LV coincides with the local Lagrangian L; defined in the Introduction.

lil. LY AND Lgy ARE VARIATIONALLY EQUIVALENT

As a computation shows, the second summand in the definition of LY can be rewritten in terms
of the metric g and the auxiliary connection V only, as follows:

c ((alt23 (Vng'v))ﬁ) (g”g” g]rgl ) 8ri.sj

3 {(2g" —ghg" — g gy g™

bi ra

8" +g"g " —2g

srjb gbrgw)g

ir ab) gjs

sr _ab

—8"8") 8"} gab.j8rs.i
ar arL;
- g (dxl - W)
{(zgjs ar g]rgas) grj,srliu'
+(g78"" — 28" g") gan.iT};} -

Lemma 3.1. If D; denotes the total derivative with respect to x', then
f i :
c ((alt23 (VETEY)) ) ve = — (Di((Len)y) 0 j°8) v
where

3LEH
(LEH)V Z 2=5: ay b ycrb (cmyar + F}L:rym)) . (7)

C<r



082501-4 Castrillon Lépez, Mufioz Masqué, and Rosado Maria J. Math. Phys. 55, 082501 (2014)

From this lemma it follows that LY and Ly are variationally equivalent as, according to the
formula (2), one has

(17 )y = (Lo = )y ¢ (o (T ) v,
={(Len — D; (Len)y)) o jzg} V.

Hence LY = Lgy — D; ((L E H)iv) and therefore, LY and L gy differ in a total divergence.
The proof of Lemma III.1 follows by computing D; ((L EH)iV) using (3) and (7), taking the
identity D;p = 5y y,,,; into account, after a simple—but rather long—computation.

IV. DEPENDENCE ON V

Below, the dependence of the Lagrangian LV with respect to the symmetric linear connection
V, is analysed. First, some geometric preliminaries are introduced.

The image of a linear connection V by a diffeomorphism ¢ : M — M is defined to
be (¢ -V)yY =¢- (V¢—|.X(¢71 . Y)), VX,Y € X(M). As is well known (e.g., see p. 643 of
Ref. 4), the Levi-Civita connection of a metric transforms according to the rule: ¢’1 .V8 = Ve's,
Hence the following formulas hold:

¢ TEV =TTV 0V = o7y =g SV, st =578,

where SV(X,Y) = trace(Z — RY(Z, X)Y) is the Ricci tensor of V (e.g., see Sec. VI, p. 248 of
Ref. 8). Moreover, the lift of ¢ to the bundle of metrics p : 9 — M is given by ¢(g,) = (¢~ H* s
Vg, € p~'(x) (cf. Ref. 12); hence p o ¢ = ¢ o p, and the mapping ¢ : M — M has an extension
to the r-jet bundle ) : J*9 — J M defined by, ¢ (j7g) = jj(@ogod™).

Let vop be the nowhere-vanishing p-horizontal n-form on 90 defined as follows: (von),, = vy,
Vg, € M, where, as above, v, denotes the Riemannian volume form attached to g,.. Hence vap = pv,
where p is as in (4). Every rth order Lagrangian density A on 91 can thus be written as A = Lvgy
for a certain Lagrangian function L € C*(J"91) and A is invariant under diffeomorphisms, i.e.,
(@) A = A, V¢ € Diff M, if and only if L is, i.e., L 0 ¢ = L, as (¢")*A = (L 0 ¢)(¢p*von)
and, according to Proposition 7 of Ref. 13, vgp is invariant under diffeomorphisms, i.e.,
d)*ng = V9.

The E-H Lagrangian density Lgyv is known to be invariant under diffeomorphisms, i.e.,
(@P)*(LgyVv) = Lgyv, V¢ € Diff M. In fact, there exists a classical result by Weyl (Appendix II of
Ref. 15, also see Refs. 6 and 9), according to which the only Diff M-invariant Lagrangians on J>9
depending linearly on the second-order coordinates Y, ;; are of the form AL gy + u, for scalars
A, L.

Therefore, transforming the equation LYv = Lzyv + L'Vvgy by a diffeomorphism ¢, one
obtains (¢")* (LYV) = Legpv + (L" 0 $®)von, and one is led to compute L'V o ¢, which, by
using the formulas above, is proved to transform according to the following rule:

LY og?=17%""Y. ®)

V. HAMILTONIAN FORMALISM
A. Regularity of LY

Proposition 5.1. For dimM = n > 3, the Lagrangian LV is regular, namely, the following
square matrix of size %nz(n + 1) is non-singular:

(apuv,w >u<u,w ( azHV )ufv,w (9)
8yah«0 a<b,c ayab,cayuv,w a<b,c ’
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where

i, aLY aLY
pit=—— HY=) ——y—L". (10)
0yijk ‘= 0yijk

Proof. From the very definition of HV it follows:
aHY 2Ly

ayab,c B i<j 8yab,cayij,k

Yijks

and the formula (9) above. Moreover, we claim that the functions p“*" depend linearly on the
variables y,; .. In fact, as a calculation shows,

apuv,w 82LV
8yab,c B 8yah,cayuv,w
— oyl 92 (G[“ i _GzGi.)
ayab,cayuv,w Jisrl iy

— (1+5ab)1(1+5w)10 {ybw (yauycv 4 yavycu) 4 yaw (ybuycv + ybvycu)

cu  ow cv uw) _yuv( aw | bc ac bw)

=y (Y + ¥y YO+ ¥y
— (yuayvb + yubyva) ywc + 2yabyuvywc} )
Therefore, in order to prove that the matrix (9) is non-singular, it suffices to prove that the variables

Yab.c can be written in terms of the functions p*¥*. To do this, we first compute

148,y ,uv,w —
§ pm P Yur YvsYwg = Yqr,s T Ygs.or — Yrs.q

u,v,w

- % Z yab (ysq)’ab,r + Yrq)}abﬁs)
a,b

+ Z yahyrs (yab,q - yqa,b) .
a,b
Evaluating the previous formula at g, , by using adapted coordinates (i.e., y;;(gx,) = &;d;j, & = 1),
and letting Y, (j; 8) = %prw(j;og)s,sseq, it follows:
Trsq(jxlog) = yqr,s(jxlog) + yqs,r(jxlog) - yrs,q(j)gog)

=32 €afq (8sgaar(jsy8) + 8rg¥aas(yy )

+ Za £a€r0ps ()’aa,q(jjog) - yqa,a(jxlog)) .

If g #r # s # g, then Trgq(jt 8) = Yors (L &) + Yo (it &) — ¥rs.q (i, g). Hence

Yars Gl ) = 1 (Trsg Gl ) + Yuur Gl 2)) - (11)

Ifg =r,r #s,then
Yrsr(J5,8) = Yrrs(j4,8) = 5 D €abrYaas(iy8)- (12)

Ifr =s,q #r,then
Yrrg(i28) = 2Ygrr (4 8) = Yrrg (i ©) (13)

+ ) eatr (Yaeq(74,8) = Yaaa(ify8)) -

The formula (12) can be rewritten as

28rTrsr(jxlog) = gryrr,s(jxlog) - Zu#r ‘9ayaa,s(jx10g)'
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Summing up over the index r, ZZ srTm(jxlog) =02- H)Z & Yrrs( j;og), and replacing this
formula into (12) it follows:

Yrsr(j4,8) = Yrrs(isy8) = 556r ) €aYasaljs,8):

Therefore
Vrrs(g®) = Yrsr () + 25 > €aVasalisy8)- (14)
Replacing (14) into (13), we eventually obtain
Y aVeaalin®) = i3 ) €aYaag(j4,8) = 2557 D €aYagalin8): (15)

and replacing y,..,(j\ ). >, eayaa,q(jxlog), and )", £aYga.a(J,,&) into (13) it follows:

Yrrg(y8) = 29rr(4y8) = Yrar (i, ) + 5257 D € Yaga(i3,8)

- ,18:2 Za SaTaaq(jxlog)-

Hence

Yarr G8) = 35Ty Ghe) + 3 (1= 255 ) Trar (i)
50257 Do TagaJ )

+ 303 Dy Fa Yaaa(idy0)- (16)

It q=r=s, then Trrr(jxlog) = - Za;ér 8a8ryra,a(jxlog)- From (15) we obtain Za;ﬁr Sayra,a(jxlog)
and then

1 1 1 1
D, Earaalin®) = —€r¥enr (i, ®) + 5 3, € Taar (if,)
- zﬁzaguTaru(jxlog)s
and replacing it into the previous equation,

Yo (74,8) = Yrrr (i) = 725 D € Yaar(4y8) + 25755 Y e Yara(iiy8)-

Hence
yrr,r(jxlog) = Trrr(j;og) + 8ran2 Za 8aTaar(jxlOg)
— 26,55 ) € Varalig8)- (17)
The formulas (11), (14), (16) and (17) end the proof. O

B. Hamilton-Cartan equations
The Poincaré-Cartan form for the density L"'v is the n-form on J !9 given by
Oy = > (=D pitdy;; Avi — HYY,
i<j

the momenta p"/** and the Hamiltonian function H"V being defined as in (10), and the Hamilton-
Cartan equations can geometrically be written as

(j'8)" (iyd®ysy) = 0, (18)

for every p'-vertical vector field Y € J'91, which are known to be equivalent to Euler-Lagrange
equations, where p' : J'9 — M is the natural projection.
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According to Proposition 5.1, (x, Vi, P"U"), j <k, u < v, is a coordinate system on Jom.
Letting ¥ = 9/dy,, and Y = 9/9p"""™ in (18), it follows, respectively:

Z ’ (p“”’k Ojlg) = —8Hv oj'e

k axk ayub '
-1 v

d(ywoi'e) _ oH o ity

Ixw apuu,w

which are the Hamilton-Cartan equations in the canonical formalism.

C. Covariant Hamiltonian

An Ehresmann (or nonlinear) connection on a fibred manifold p : E — M is a differential 1-
form y on E taking values in the vertical sub-bundle V (p) such that y (X) = X forevery X € V(p),
e.g., see Refs. 10, 11, and 14. Given y, one has T(E) = V(p) @ ker y, ker y being the horizontal
sub-bundle attached to y.

According to Ref. 11, the covariant Hamiltonian " associated to a Lagrangian density A on
J'E with respect to y is the Lagrangian density defined by setting H? = ((p(l))*y — 9) Awp — A,
where p' : J'E — M, p} : J'E — J°E = E are the natural projections, and w, is the Legendre
form attached to A, i.e., the V*(p)-valued p!-horizontal (n — 1)-form on J'E given by

. 0L —
wp = (—l)lflﬁdx1 Ao Adxi A - ANdX" ®@dy*, A= Lv,

1

and 0 = 0% ® 3/dy”, 0% = dy* — y*dx', is the V(p)-valued contact 1-form on J'E. Locally,
HY = ((Vf‘ +y8) 2L - L) v.
Let 7 : F(M) — M be the bundle of linear frames and let ¢ : F(M) — 971 be the projec-

tion given by ¢(Xi,...,X,) =g« = gaw @ w", where (w', ..., w") is the dual coframe of
(X1,...,X,) € Fr(M), ie., g, is the metric for which (Xy,..., X,) is a g,-orthonormal ba-
sisand ¢, =1 for 1 <h <n™, g, =—1 for n7 + 1 < h < n. The projection g is a principal

G-bundle with G = O(n*, n™). Given a symmetric linear connection I" with associated covari-
ant derivative V, and a tangent vector X € T, M, for every u € 7~ 1(x) there exists a unique I'-
horizontal tangent vector Xi’“ € T,(FM) such that, JT*XL“‘ = X. Given a metric g, € ¢~'(x), let
u € m~'(x) be a linear frame such that g(u) = g,. The projection q*(X,ilr") does not depend on
the linear frame u chosen over g,; we refer the reader to Lemma 3.3 of Ref. 12 for a proof of
this fact. In this way a section ¢V : p*TM — T of the projection p, : T — p*TM is de-
fined by setting oV (g., X) = q*(X],:r‘). The retract y¥ : T9 — V(p) associated to oV, namely,
yV(Y) =Y —0oV¥( p«Y), VY € T, M, determines an Ehresmann connection on the bundle of metrics

and the Lagrangian density AV = LVv admits a “canonical” covariant Hamiltonian HYY. Locally,

Y (8. /0x7) = = > T4 (0¥ (8x) + T4 (0)yak (8:)}@/ 3y, -
k<l

Hence, yi,j = =T yar + T} yak), and

v ; ) aLY v
HY = Z (ykl,j - (ijyal + Fjlyak)) - L V.

= VTN

From a direct computation the following result is deduced:
IfH = HVVV, then

v . . .
HY (jlg)=LV(jlg) — 20(g)s* ¥ (x), Vjlge J'M,
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where 58V is the scalar curvature of the symmetric linear connection V with respect to the metric g,
namely

o [ ar, ar! i i
&V _ Sk )k 9l I pi ol
st =g { wr — e T Ul — Ty

The Hamilton-Cartan equations for a covariant Hamiltonian H?” attached to a connection y are

9 (p™*oj'e 2 w OH”
> ( )—Z< V”’wog)(p Vo jlg)=—o—oj's,

dxk Vb 0Yab

k u<v

d(vwoj's , IHY
M—i_yuv,wo.]lg:

.1
Ixw 8puv,w °J &

(for example, see Ref. 2). Note that for y = 0 (that s, the trivial connection induced by the coordinate
system) these equations coincide with the local expression of the Hamilton-Cartan equations for HV
given in Sec. V B.

VL. CONCLUSIONS

We have defined a first-order Lagrangian LV on the bundle of metrics which is variationally
equivalent to the second-order classical Einstein-Hilbert Lagrangian.

This Lagrangian depends on an auxiliary symmetric linear connection, but this dependence is
covariant under the action of the group of diffeomorphisms.

We have also proved that the variational problem defined by LV is regular and its Hamiltonian
formulation has been studied, including the covariant Hamiltonian attached to V.

Moreover, we should finally mention the completely different behaviour of LV with respect to
the Palatini Lagrangian.

Let g : € — M be the bundle of symmetric linear connections on M. The Palatini variational
principle consists in coupling a metric g and a symmetric linear connection V as independent fields,
thus defining a first-order Lagrangian density L pv on the product bundle 91 x s € as follows:

(Lpv) (gx, jLV) = 55V (X)(Vg)s,

and varying g and V independently. The Palatini method can also be applied to other different
settings; e.g., see Refs. 7 and 3, but below we confine ourselves to consider the classical setting for
the Palatini method. As is known, the Euler-Lagrange equations of L p are the vanishing of the Ricci
tensor of g (Einstein’s in the vacuum) and the condition V = V¥ expressing that V is the Levi-Civita
connection of the metric.

In our case, we can similarly define a first-order Lagrangian 9t x ,; € by setting L(j'g, j'V) =
Lue(j*g) +c¢ ((alt23(Vg Tg,v)n) (p o g). Assuming M is compact, then the action associated with
L is given as follows:

S(g, V) = / LY('g, j' V),
M

and by considering (1) an arbitrary 1-parameter variation g, of g and (2) the 1-parameter variation
V, = V 4+ tA attached to A € I'(S’T*M ® T M) of V, we obtain (1) Einstein’s equation and (2)
0= [, c(alt3(VEA)) v,, VA € T'(S*’T*M ® T M), which lead us to a contradiction.
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